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ABSTRACT:  We describe the CoJACK cognitive architecture. It is designed to provide an intuitive, high level 
behaviour representation language that exhibits variability across individuals and across time for use in synthetic 
environments. The included moderator layer enables modelling of physiological factors and affect. We report initial 
results of an investigation of variability and time-based moderation in the dTank simulation. The results show that 
moderation leads to interesting effects and that variability is generated in a principled and repeatable fashion. 
 
1.  Introduction 

Simulation is now an indispensable part of the 
military environment, and is used in many areas 
including training, tactics development, mission 
rehearsal, course of action analysis and hardware 
acquisition. Applications typically require the 
inclusion of simulated human entities because 
humans are an essential part of most operations  (Pew 
& Mavor, 1998, 2007).  However, in contrast to 
hardware such as aircraft, tanks and weapons 
systems, even highly-trained humans can vary 
significantly in their response to a given situation. 
Although the inherent variability of humans has been 
widely recognized, Semi-Autonomous Forces (SAF) 
have, for various reasons, tended to neglect this 

phenomenon. One reason for this is the difficulty of 
modelling the depth and breadth of human behaviour. 
In addition, early studies focused on obtaining 
predictable and repeatable results, for example, in 
basic training scenarios. 

Despite their consistency, inflexible human 
behaviour models can lead to a false sense of 
confidence in the predicted outcomes of more 
advanced scenarios. This predictability may produce 
results that do not reflect reality (Poncelin de 
Raucourt, 1997) and can lead to poor training 
outcomes. 

In fact, modelling the variance in human behaviour is 
not the antithesis of predictability or repeatability. By 



incorporating variability, we strive to predict both the 
potential for variation, as well as the range of that 
variation, not to create models that intrinsically 
behave differently each time they are run.  

Our approach yields models that are deterministic; 
given the same initial state and time course of events 
in the Synthetic Environment (SE), the models will 
behave in precisely the same way every time.  If, 
however, one alters the parameters of the underlying 
cognitive architecture (including a random seed), the 
models will generate different behaviour. These 
parameters can be altered manually through the GUI 
or automatically via moderators that are 
environmentally driven (e.g. temperature or 
precipitation) as well as the simulated human entity’s 
physical or affective state (e.g. fatigue or fear). 

CoJACK™ (Norling & Ritter, 2004) is a novel 
cognitive architecture, based on JACK™ (Busetta, 
Rönnquist, Hodgson & Lucas, 1999), which predicts 
how behaviour varies as a function of the changes to 
the architecture’s parameters. It supports the 
definition of moderators that modulate these 
parameters and thereby predicts, in a principled way, 
how behaviour varies as a result of physiological and 
affective factors. CoJACK’s novel contribution to the 
field lies in its synthesis of an easy-to-use BDI 
representation with a cognitive architecture. In 
contrast to cognitive architectures that break tasks up 
into very small steps (cf. ACT-R (Anderson, 2007)), 
CoJACK combines a high-level plan representation 
with sub-symbolic equations that influence 
computation without obscuring that high-level 
viewpoint. 

After reviewing current behaviour modelling tools, 
we describe our approach with CoJACK and its 
current implementation.  We also describe some 
preliminary experiments to explore variance in its 
behaviour, and the lessons we have learned so far.   

2.  Current Behaviour Modelling Tools 

The representation of human behaviour in simulation 
began with attempts to model decision-making using 
conventional procedural software languages, such as 
Fortran. Although simple behaviours independent of 
context may be represented in this way, the code 
rapidly becomes complex and difficult to extend or 
maintain. 

To overcome this problem, SAFs provided the ability 
to script behaviour. These scripts, built prior to the 
scenario’s running, govern the behaviour of the 
entities, determining their movements and actions. 
However, because they are scripts, they are inflexible 
and thus a poor vehicle for modelling variation.  

In an effort to provide more intelligent behaviour 
than is possible with scripts, researchers created 
models using Artificial Intelligence (AI) languages 
like Soar (Jones et al., 1999) and JACK.  This 
resulted in much more realistic decision-making, but 
did not address the issue of individual variability 
(other than that which results from differences in 
each agent’s knowledge). Consequently, variation has 
to be explicitly programmed in these models – an ad 
hoc and time-consuming process. 

ACT-R (Anderson, 2007) is a cognitive architecture 
with sub-symbolic parameters that predict variation 
in cognition. These include noise parameters that can 
be increased to produce further variation. ACT-R was 
developed in the context of small laboratory tasks 
used to test psychological theories. The programming 
primitives in ACT-R (production rules) are fine-
grained and represent cognitive operations of the 
order of 50 ms. This can make ACT-R models 
tedious to build, and potentially difficult for Subject 
Matter Experts (SMEs) to understand, and therefore 
less suitable for building models of human behaviour 
for use in simulation. 

ACT-R is currently primarily concerned with 
cognition; but there are other architectures that 
address sources of variability, such as physiology and 
emotion. For example, PSI is a relatively new 
cognitive architecture that is intended to integrate 
cognition, emotion and motivational factors  (Bartl & 
Dörner, 1998; Bach, 2007).  PMFServ (Silverman, 
2004) was designed to provide performance-
moderating functions but has grown into a more 
complete architecture for representing affective 
states. 

Gratch and Marsalla  (Gratch & Marsella, 2004) 
provide a model of task appraisal and its effect on 
performance. Their model can be hooked up to 
simulations to generate behaviour, but they do not 
include other moderators. Hudlicka and Plautz  
(Hudlicka & Pfautz, 2002) provide a more general 
model, and provide the ability to work with arbitrary 
simulations. IMPRINT  (Booher & Minninger, 2003) 
includes more moderators, but IMPRINT does not 
generate behaviour or interact with external 
simulations (but see (Lebiere et al., 2002), for work 
towards this end). 

These architectures have various strengths and 
weaknesses, but none were designed to provide an 
intuitive, SME-friendly representation based on a 
moderated cognitive architecture. Our goal in 
developing CoJACK was to provide developers a 
high-level intuitive representation that is both 
underpinned by a principled cognitive architecture 
and capable of being moderated by physiological and 



affective factors. CoJACK adds principled variation 
to behaviour models based upon properties found in 
the human cognitive system. It also predicts how 
moderating factors such as fatigue and emotion affect 
the cognitive architecture. CoJACK achieves this 
without compromising JACK’s high-level, intuitive 
tactics representation. 

3. Design Approach 

To understand CoJACK, it is necessary to have some 
basic knowledge of JACK’s structure. 

3.1 JACK 

JACK is based on the Belief/Desire/Intention (BDI) 
model, a paradigm that explicates rational decision-
making about actions. Drawing on Bratman’s  
(Bratman, 1987) work on situated rational agents, this 
approach has been applied to a wide range of 
problems, including fault diagnosis for Space Shuttle 
missions  (Georgeff & Ingrand, 1989). The BDI 
paradigm was developed in response to a perceived 
problem with existing AI approaches to the planning 
problem. Agents are typically situated in a dynamic 
environment and must constantly review their goals 
and activities. They should also be aware of the 
resource-bounded nature of their reasoning. Earlier 
AI approaches to planning only addressed the offline 
planning problem – how to achieve the goal given 
infinite time and resources. They failed to address the 
temporal pressures that apply when trying to achieve 
goals within a fluctuating environment that presents a 
multitude of interacting, conflicting and changing 
opportunities. 

From the perspective of a cognitive architecture, the 
key programming constructs of JACK are: 

• Events – are the central motivating factor in 
agents. Events are generated in response to 
external stimuli or as a result of internal agent 
computation. 

• Plans – are procedures that define how to 
respond to events. When an event is generated, 
JACK computes the set of plans that are 
applicable to the event. These plans are subjected 
to a process of deliberation, where the agent 
selects the plan that will form its next intention.  
Plans have a body that defines the steps to be 
executed in response to the event. Non-
deterministic choice allows the agent to try 
alternative plans to achieve the goal. 

• Beliefsets – are used to represent the agent’s 
declarative beliefs in a first order, tuple-based 

relational form.  Beliefsets are analogous to the 
Working Memory (WM) of a production system. 

• Intentions – are the currently active plan 
instantiations, i.e. the plan instances that the 
agent is committed to. Plans are abstract entities 
that describe potential patterns of thought and 
action. A plan becomes an intention when the 
agent instantiates it with symbolic references to 
concrete entities in the environment, and 
commits to its execution. 

JACK represents and executes tactics in a manner 
that maps well to SMEs’ introspections about their 
own reasoning processes. The tactics representation 
includes a front-end that allows analysts to specify 
tactics graphically at a high-level without having to 
worry about low-level detail. The graphical 
representation is extremely useful for visualising the 
logical structure of tactics and for discussing them 
with SMEs. Therefore, a key design goal for 
CoJACK was to retain JACK’s high-level 
representation and ease-of-use. 

3.2 CoJACK Extends JACK with Timing, Errors, 
and Moderators 

CoJACK augments JACK with a set of cognitive 
architectural constraints and parameters, as well as a 
moderator layer. Based upon cognitive parameter 
values, the architectural constraints add latency to the 
current intention’s reasoning steps and to memory 
access. CoJACK also affects the choice of beliefs 
retrieved in response to a memory access attempt; 
this includes effects such as failure to retrieve a 
matching belief, retrieval of a belief that only 
partially matches, and retrieval of an alternative 
matching belief (i.e. not the one that JACK would 
have chosen first). A similar mechanism affects the 
selection of the next intention to execute. Thus the 
agent can choose an unanticipated intention or even 
fail to retrieve one of its current intentions. The 
cognitive parameters can be moderated at runtime, 
leading to further variation in behaviour. For 
example, a caffeine moderator could be added that 
decreases the time taken to perform reasoning steps, 
leading to shorter response times. 

3.3 Key CoJACK Assumptions and Features 

The goal for CoJACK was to develop a cognitive 
architecture that predicts the timings and errors in 
human performance without compromising the 
usability of the BDI representation. We start with the 
assumption that humans share a common cognitive 
architecture and physiology, and that variation results 
from individual differences in knowledge and the 



values of the architecture’s and physiology’s 
parameters. CoJACK’s cognitive parameters are 
taken from ACT-R and adapted for a BDI 
architecture. ACT-R’s parameters have been 
experimentally validated across a wide range of 
tasks.  We have found that they are an excellent 
starting point for a new architecture such as 
CoJACK. Cognition can be modulated by variations 
in physiology (as represented by the moderator layer; 
see next section). 

One way to view cognitive architectures is to classify 
them in terms of the constraints they impose upon 
cognition models. Howes and Young (Howes & 
Young, 1997) point out that cognitive architectures 
consist of soft and hard constraints. Soft constraints 
can be overridden whereas hard constraints enforce 
particular properties on the models, with no way to 
circumvent them within the architecture. From this 
perspective, CoJACK is intended to provide hard 
constraints (because they are provided automatically 
to a JACK model), but because of the Java 
implementation and the ability to extend JACK and 
CoJACK, the constraints are somewhat soft. This 
approach offers considerable flexibility because the 
degree of cognitive modelling sophistication and 
consequent behavioural variance can be altered to 
suit the goals of the simulation study. 

CoJACK addresses the following five key aspects of 
cognition: 

Limited access to procedural and declarative 
memory – Working Memory (WM) refers to the 
currently active subset of the human cognitive 
system, in some sense, the contents of consciousness. 
WM is the mechanism of human cognition that 
maintains information during processing. It is limited 
in capacity as evidenced by decreased performance in 
tasks that require many temporary items to be held in 
memory. Although the term WM is usually restricted 
to declarative memory, it should also encompass the 
dynamic aspects of procedural memory. CoJACK 
incorporates WM access limits (termed errors of 
omission) through an activation-level mechanism that 
is similar to the ACT-R approach. In contrast to its 
support for declarative memory, ACT-R does not 
include a theory describing how recency and decay 
apply to dynamic procedural memory. Unlike ACT-
R, this is a real issue for CoJACK because it 
represents procedures as plans rather than 
productions. A plan typically has a number of steps 
and when a CoJACK agent forms an intention, that 
intention is held in a dynamic memory buffer that 
enables the agent to step through the procedure. 
CoJACK can maintain a number of such intentions 
(determined by sub-symbolic activation-level 

equations), and switches its focus to the most active 
intention. This allows it to work on a number of tasks 
concurrently, much as a short-order cook manages 
multiple dishes (Kirlik, 2006). 

Error-prone retrieval from procedural and 
declarative memory – In addition to failing to 
access memory elements, errors can occur when the 
wrong memory item is retrieved. A partial-matching 
mechanism  (Anderson & Lebiere, 1998) accounts 
for some of these errors (termed errors of 
commission). CoJACK adopts a similar approach.  

Cognition takes time – One of the major limitations 
of most AI-based models is that they fail to represent 
the time taken to think and act.  If, for example, the 
granularity of the simulation is 1 second, a model 
can, in theory, and often in practice, run through a 
series of decision-making steps in 1 (simulated or 
real) second that would take a human half an hour. 
CoJACK addresses this problem by computing the 
time of reasoning steps (based on its moderated 
parameter set). 

Limited focus of attention – Resource limitation is a 
key property of human cognition. The allocation of 
this limited computational resource is generally 
referred to as attention.  In CoJACK, the modelling 
of attention takes account of the following: 

How an agent deliberately focuses its attention in a 
particular direction (e.g. focusing on an important 
goal while ignoring distracting environmental 
stimuli.) 

How factors like caffeine or fatigue moderate an 
agent’s attention. 

How the properties of memory affect attention.  
For example, WM elements have a limited life 
span. If a WM element is essential to the current 
task, the agent must counteract its natural decay 
through some form of rehearsal. This rehearsal 
process consumes attentional resources. 

Cognition can be moderated – Human behaviour 
can be modified (moderated) by a range of factors, 
including temporal, environmental, physiological and 
internal factors. Moderators can influence entity 
behaviour directly – for example, caffeine typically 
provides a 10% faster reaction time on a simple 
reaction time task. Moderators can also influence 
lower-level mechanisms that give rise to the changed 
performance – for example, caffeine reduces reaction 
time and increases the ability to focus, allowing 
performance on a vigilance task to remain virtually 
sustained at its original level instead of decreasing 
over the span of an hour (for some subpopulations) 
(Boff & Lincoln, 1988). By simulating the effects of 



moderators on underlying mechanisms, it is possible 
to predict behaviour variation that will occur for a 
task that has not yet been studied closely. For 
example, if the effects of caffeine on the low-level 
aspects of cognition and the body are well 
understood, but the effects of caffeine on, say, radar 
operators had not been specifically studied, it would 
be possible to provide at least initial predictions of 
caffeine’s effects on the behaviour of radar operators 
based on knowing their cognitive mechanisms and 
the knowledge necessary to perform the task. 

4. CoJACK Details 

Because JACK was intended for use in resource-
limited environments (such as mobile autonomous 
systems), it is lightweight and efficient. An important 
goal for CoJACK was to provide an environment in 
which the user can easily enable/disable the cognitive 
architecture. When disabled, the agent runs as a 
normal JACK agent.  When enabled, the agent’s 
behaviour is modulated by the cognitive architecture. 
Therefore, it was important that CoJACK not modify 
the syntax of JACK. Furthermore, the CoJACK 
extensions were implemented so as to not affect the 
performance of normal JACK models. This was 
achieved by having the CoJACK extensions added at 
compile time if enabled for the agent in question. 

4.1 Sub-symbolic Properties 

Models in CoJACK are largely built at the symbolic 
level (specifying the plans, events and beliefs 
handled by an agent). However, the final behaviour 
of a CoJACK model depends on the sub-symbolic 
properties of the architecture. 

In CoJACK, beliefs and intentions are subject to sub-
symbolic effects. To unify their treatment, they are 
collectively termed chunks in CoJACK. A belief is a 
declarative memory chunk and intentions are 
procedural memory chunks. From the point of view 
of Working Memory (WM), a chunk is a single item1. 

Activation level is a key aspect of the sub-symbolic 
properties of CoJACK. Chunks have an activation 
level that changes over time as the chunk is used. 
This activation level is one of the main influences on 
the likelihood that a chunk will be retrieved, and how 
long that retrieval will take. Given a set of competing 
chunks (i.e. ones that match the retrieval 

                                                
1 Even if an intention has, say, 50 steps, it will be 
treated as a single WM item. Thus, if the modeler 
creates a plan with 50 steps, it signifies that the plan 
is “compiled” and therefore its WM burden is low. 

specification), CoJACK will select the most activated 
chunk, subject to the chunk being above the retrieval 
threshold. Recall that CoJACK events govern the 
agent’s computational flow (i.e. internal and external 
events produce intentions which then drive 
behaviour). When an event is processed, it acts as an 
activation source for chunks. Event activation can be 
moderated to support goals with varying “salience” 
(e.g. “Stay alive” might have a higher activation than 
the goal “Watch TV”). This provides a 
straightforward method for the developer to focus the 
agent’s attention on pertinent events (e.g. those that 
are threatening to the agent). 

CoJACK has over 30 cognitive parameters that 
govern a wide range of sub-symbolic properties 
including: chunk activation, the time taken to retrieve 
or modify memory elements, and various noise 
factors.  Individual differences between agents can be 
represented by supplying differing initialisation 
parameter values. Moderators can also further affect 
these cognitive parameters at runtime, for example, a 
“fatigue” moderator can be added that increases the 
time taken to retrieve or modify memory elements. 

4.2 Moderator Representation 

Each moderator is represented as a mathematical 
function denoting its input/output mapping. 
Moderators can also have internal reservoirs and 
decay functions that determine how the reservoir 
level varies over time (e.g. to model the rate caffeine 
is excreted). Composite moderators can be created 
that represent the interaction between one or more 
moderators (e.g. the interaction between caffeine and 
alcohol, and how that affects reaction time). The 
inputs to a moderator can be (i) events from the 
simulation environment, (ii) internal events (e.g. the 
timing and amount of caffeine dosage where the 
simulation environment does not provide such data), 
and (iii) outputs from other moderators. 

4.3 CoJACK in Synthetic Environments 

Figure 1 is a conceptual model of how a CoJACK 
agent fits into an SE. Tactics are represented using 
JACK’s standard graphical BDI representation, but 
their performance is modulated by the underlying 
CoJACK architecture. Thus, whereas a JACK agent 
could instantly memorise a lengthy Rules of 
Engagement card, a CoJACK agent would exhibit 
Working Memory limitations. The figure shows two 
moderators: fatigue and caffeine. These reside in the 
Moderator Layer and feed into the cognitive 
architecture’s parameter set, leading to moderated 
cognition (e.g. hampered memory retrieval in the 
case of fatigue). The CoJACK agent has an 



embodiment that represents aspects of its physical 
body. Sensory and physiological information from 
this embodiment feeds into the moderators (e.g. 
caffeine intake tops up the reservoir in the caffeine 
moderator). The agent embodiment overlaps to some 
extent with the embodiment in the SAF itself. This 
boundary is shown as a dotted line because extent of 
this overlap varies depending on the SAF in question. 
The SAF provides sensory information (perception) 
and effects the actions specified by the agent. 
Additionally, the agent embodiment can take non-
sensory input from the SAF (e.g. thermal energy 
based on the ambient temperature). 

 
Figure 1.  CoJACK in a Synthetic Environment.  

 

5. Case Study of CoJACK’s Variability 

To explore these agent behaviours, we have been 
exercising them in dTank, a simple tank game that 
can be used as a lightweight synthetic environment 
(Ritter et al., 2007). Designed to compare agent 
architectures (Sun, Councill, Fan, Ritter & Yen, 
2004), dTank has been used to examine how situation 
awareness might play out in a synthetic environment.  
Ritter et al. (2007) showed that situation awareness 
matters. Their report used two types of tank, a basic 
opponent tank and a tank with adjustable response 
delay. Their report showed that as response delay 
increased (in this case, from 0 to 3s), performance 
decreased and that the time range of expected effects 
of situation awareness on performance is supported 
by the simulation.  

Here, we have created three 20 x 20 km maps for 
general comparisons using Sherman tanks. We are 
also working on an ambush scenario with a different 

map.  The first terrain is a simple plain board.  It 
functions as a base case and is useful in 
troubleshooting and debugging. The second and third 
simulate tank battles between German and British 
forces in World War II  The battle of Medenine took 
place on a primarily open plain surrounded by hills 
(Figure 2, upper image).  We chose this battle 
because an analysis of the details of how the battle 
was fought is available (Poncelin de Raucourt, 1997).  
The third terrain (Figure 2, lower image) is based on 
the battle of El-Alamein. This terrain contains 
primarily open ground with a few low hills.  It is 
interesting because it is also a famous tank battle and 
provides a more complex domain due to the centre 
hills. 

 

 
Figure 2.  The maps used in the analyses.  

To provide a fair comparison, the basic dTank tactics 
for each commander were taken from the simple 
default knowledge used to create previous tanks 
(Ritter et al., 2007).  The basic subtasks are shown in 
Figure 3.  This knowledge makes the commander 
capable of moving forward, turning, turret rotation, 
targeting and firing.  This strategy relies on directed 
target search. After it has identified a target, the tank 
begins attacking. There remains some discussion 
about how uniformly this knowledge has been 
implemented in the tank commanders we present 
here, which we will have to take up after further 
analyses.  When comparing architectures, the 
knowledge equivalence across models is important. 



 
Figure 3.  The default knowledge in the tank 

commanders.  

We have only recently connected all these 
components, and are starting to examine the wealth 
of data dTank generates. The dTank system provides 
measures of: time to end of scenario, xy locations, 
number of shots and actions, variance in shots and 
actions, time between actions, number of kills and 
variance across runs and across tanks.  From these 
measures, we can compute % of tanks destroyed, and 
efficiency of shooting. We also can examine change 
in performance across time for the more sophisticated 
tank commanders. 

To start to illustrate the performance of CoJACK, we 
first ran Smart Java commanders against each other.  
These results are shown in Table 1a.  They show that 
the tanks were fairly successful at shooting, and that 
the Java tanks were more predictable (smaller SD) 
than the CoJACK tanks (Table 1b).  Figure 4 shows 
how the two of the tank commanders move (Java and 
CoJACK), based on an idea given to us by Sue Kase.  
The CoJACK tanks show less variance in their 
movement path and more intelligence.  The Java 
commander has a more random path (and was killed 
sooner).   

We are continuing to explore how these tanks 
performed, and what measures are of greatest 
interest.  As we automate this drawing process we 
believe that we will see that the Java commanders 
have more variance in movement, and less variance 
in performance, and that CoJACK commanders have 
more variance in movement than the JACK 
commanders. 

Table 1.  Results for teams of 4 v 4 on empty 50 x 
50 tile map on 1 Km2 map, 10 runs.  Standard 

deviations in parentheses.  Other results include 
neither or both teams destroyed.  

(a)  Smart Java vs. Smart Java (4 v 4) 

Team Wins Other Tanks 
destroyed 

Successful 
Shots 

Shots 

Red 3 2 32 (0.92) 138 (1.81) 156 (1.43) 

Blue 5 2 34 (1.07) 147 (2.58) 150 (2.67) 
 

(b)  CoJACK vs. CoJACK.(4 v 4) 

Team Wins Other Tanks 
destroyed 

Successfu
l Shots 

Shots 

Red 2 0 19 (1.35) 110 (6.88) 241 (6.74) 

Blue 8 0 34 (1.45) 187 (6.43) 253 (3.06) 
 

 

  
Figure 4.  Tank movement patterns, CoJACK 

(top), and Smart Java (bottom, detail expanded on 
bottom right).   

6. Discussion 

CoJACK appears to be useful.  It generates variable 
performance in a synthetic environment tied to 
theories of cognition and implemented with the 
usability of an agent architecture.  It shows that 
theoretically grounded moderated behaviour in an 
agent architecture is possible, and that the generated 
behaviour can be interesting and productive.  It, like 
other cognitive architectures, will need to be used 
more widely and more broadly before we fully 
understand it, but it is a promising architecture.  It 
offers another platform for implementing the results 
of Silverman’s review of moderators (Silverman, 
2004).   



We have also learned some things about variation. 
Variation in cognition does not necessarily lead to 
variation in behaviour, and we have seen that 
variation from the environment may lead to variation 
in a fixed agent, increasing the apparent range of 
performance. We have seen the need to include 
equivalent amounts of knowledge for fair 
comparisons, and also the need for running dTank in 
batch mode to generate summaries of behaviour.   

At this point in time, we have the agent architecture 
(CoJACK), the agents (the knowledge noted above 
and the Java implementations for comparison), the 
environment (dTank), and some of the measures of 
interest.  We are developing further measures of 
interest, further agents, better support from the 
environment, and better agent architectures.  We will 
be exploring the moderators already implemented but 
not tested. We are now ready to study the effects of 
variability directly.   
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