
CoJACK – Achieving Principled Behaviour Variation
in a Moderated Cognitive Architecture

Rick Evertsz
AOS Group

Level 1, 594 Elizabeth Street, Melbourne, Victoria 3000, Australia
rick.evertsz@aosgrp.com

Frank E. Ritter

College of Information Sciences and Technology
The Pennsylvania State University, University Park, PA 16802

frank.ritter@psu.edu

Paolo Busetta,
Matteo Pedrotti

AOS Group
Wellington House, East Road, Cambridge, CB1 1BH, UK

paolo.busetta@aosgrp.com
matteo.pedrotti@aosgrp.com

Jennifer L. Bittner

Department of Psychology
The Pennsylvania State University, University Park, PA 16802

jlb503@psu.edu

Keywords:
Modelling and Simulation, Cognitive Architecture, Agents, CGF.

ABSTRACT: We describe the CoJACK cognitive architecture. It is designed to provide an intuitive, high level
behaviour representation language that exhibits variability across individuals and across time for use in synthetic
environments. The included moderator layer enables modelling of physiological factors and affect. We report initial
results of an investigation of variability and time-based moderation in the dTank simulation. The results show that
moderation leads to interesting effects and that variability is generated in a principled and repeatable fashion.

1. Introduction

Simulation is now an indispensable part of the
military environment, and is used in many areas
including training, tactics development, mission
rehearsal, course of action analysis and hardware
acquisition. Applications typically require the
inclusion of simulated human entities because
humans are an essential part of most operations (Pew
& Mavor, 1998, 2007). However, in contrast to
hardware such as aircraft, tanks and weapons
systems, even highly-trained humans can vary
significantly in their response to a given situation.
Although the inherent variability of humans has been
widely recognized, Semi-Autonomous Forces (SAF)
have, for various reasons, tended to neglect this

phenomenon. One reason for this is the difficulty of
modelling the depth and breadth of human behaviour.
In addition, early studies focused on obtaining
predictable and repeatable results, for example, in
basic training scenarios.

Despite their consistency, inflexible human
behaviour models can lead to a false sense of
confidence in the predicted outcomes of more
advanced scenarios. This predictability may produce
results that do not reflect reality (Poncelin de
Raucourt, 1997) and can lead to poor training
outcomes.

In fact, modelling the variance in human behaviour is
not the antithesis of predictability or repeatability. By

incorporating variability, we strive to predict both the
potential for variation, as well as the range of that
variation, not to create models that intrinsically
behave differently each time they are run.

Our approach yields models that are deterministic;
given the same initial state and time course of events
in the Synthetic Environment (SE), the models will
behave in precisely the same way every time. If,
however, one alters the parameters of the underlying
cognitive architecture (including a random seed), the
models will generate different behaviour. These
parameters can be altered manually through the GUI
or automatically via moderators that are
environmentally driven (e.g. temperature or
precipitation) as well as the simulated human entity’s
physical or affective state (e.g. fatigue or fear).

CoJACK™ (Norling & Ritter, 2004) is a novel
cognitive architecture, based on JACK™ (Busetta,
Rönnquist, Hodgson & Lucas, 1999), which predicts
how behaviour varies as a function of the changes to
the architecture’s parameters. It supports the
definition of moderators that modulate these
parameters and thereby predicts, in a principled way,
how behaviour varies as a result of physiological and
affective factors. CoJACK’s novel contribution to the
field lies in its synthesis of an easy-to-use BDI
representation with a cognitive architecture. In
contrast to cognitive architectures that break tasks up
into very small steps (cf. ACT-R (Anderson, 2007)),
CoJACK combines a high-level plan representation
with sub-symbolic equations that influence
computation without obscuring that high-level
viewpoint.

After reviewing current behaviour modelling tools,
we describe our approach with CoJACK and its
current implementation. We also describe some
preliminary experiments to explore variance in its
behaviour, and the lessons we have learned so far.

2. Current Behaviour Modelling Tools

The representation of human behaviour in simulation
began with attempts to model decision-making using
conventional procedural software languages, such as
Fortran. Although simple behaviours independent of
context may be represented in this way, the code
rapidly becomes complex and difficult to extend or
maintain.

To overcome this problem, SAFs provided the ability
to script behaviour. These scripts, built prior to the
scenario’s running, govern the behaviour of the
entities, determining their movements and actions.
However, because they are scripts, they are inflexible
and thus a poor vehicle for modelling variation.

In an effort to provide more intelligent behaviour
than is possible with scripts, researchers created
models using Artificial Intelligence (AI) languages
like Soar (Jones et al., 1999) and JACK. This
resulted in much more realistic decision-making, but
did not address the issue of individual variability
(other than that which results from differences in
each agent’s knowledge). Consequently, variation has
to be explicitly programmed in these models – an ad
hoc and time-consuming process.

ACT-R (Anderson, 2007) is a cognitive architecture
with sub-symbolic parameters that predict variation
in cognition. These include noise parameters that can
be increased to produce further variation. ACT-R was
developed in the context of small laboratory tasks
used to test psychological theories. The programming
primitives in ACT-R (production rules) are fine-
grained and represent cognitive operations of the
order of 50 ms. This can make ACT-R models
tedious to build, and potentially difficult for Subject
Matter Experts (SMEs) to understand, and therefore
less suitable for building models of human behaviour
for use in simulation.

ACT-R is currently primarily concerned with
cognition; but there are other architectures that
address sources of variability, such as physiology and
emotion. For example, PSI is a relatively new
cognitive architecture that is intended to integrate
cognition, emotion and motivational factors (Bartl &
Dörner, 1998; Bach, 2007). PMFServ (Silverman,
2004) was designed to provide performance-
moderating functions but has grown into a more
complete architecture for representing affective
states.

Gratch and Marsalla (Gratch & Marsella, 2004)
provide a model of task appraisal and its effect on
performance. Their model can be hooked up to
simulations to generate behaviour, but they do not
include other moderators. Hudlicka and Plautz
(Hudlicka & Pfautz, 2002) provide a more general
model, and provide the ability to work with arbitrary
simulations. IMPRINT (Booher & Minninger, 2003)
includes more moderators, but IMPRINT does not
generate behaviour or interact with external
simulations (but see (Lebiere et al., 2002), for work
towards this end).

These architectures have various strengths and
weaknesses, but none were designed to provide an
intuitive, SME-friendly representation based on a
moderated cognitive architecture. Our goal in
developing CoJACK was to provide developers a
high-level intuitive representation that is both
underpinned by a principled cognitive architecture
and capable of being moderated by physiological and

affective factors. CoJACK adds principled variation
to behaviour models based upon properties found in
the human cognitive system. It also predicts how
moderating factors such as fatigue and emotion affect
the cognitive architecture. CoJACK achieves this
without compromising JACK’s high-level, intuitive
tactics representation.

3. Design Approach

To understand CoJACK, it is necessary to have some
basic knowledge of JACK’s structure.

3.1 JACK

JACK is based on the Belief/Desire/Intention (BDI)
model, a paradigm that explicates rational decision-
making about actions. Drawing on Bratman’s
(Bratman, 1987) work on situated rational agents, this
approach has been applied to a wide range of
problems, including fault diagnosis for Space Shuttle
missions (Georgeff & Ingrand, 1989). The BDI
paradigm was developed in response to a perceived
problem with existing AI approaches to the planning
problem. Agents are typically situated in a dynamic
environment and must constantly review their goals
and activities. They should also be aware of the
resource-bounded nature of their reasoning. Earlier
AI approaches to planning only addressed the offline
planning problem – how to achieve the goal given
infinite time and resources. They failed to address the
temporal pressures that apply when trying to achieve
goals within a fluctuating environment that presents a
multitude of interacting, conflicting and changing
opportunities.

From the perspective of a cognitive architecture, the
key programming constructs of JACK are:

• Events – are the central motivating factor in
agents. Events are generated in response to
external stimuli or as a result of internal agent
computation.

• Plans – are procedures that define how to
respond to events. When an event is generated,
JACK computes the set of plans that are
applicable to the event. These plans are subjected
to a process of deliberation, where the agent
selects the plan that will form its next intention.
Plans have a body that defines the steps to be
executed in response to the event. Non-
deterministic choice allows the agent to try
alternative plans to achieve the goal.

• Beliefsets – are used to represent the agent’s
declarative beliefs in a first order, tuple-based

relational form. Beliefsets are analogous to the
Working Memory (WM) of a production system.

• Intentions – are the currently active plan
instantiations, i.e. the plan instances that the
agent is committed to. Plans are abstract entities
that describe potential patterns of thought and
action. A plan becomes an intention when the
agent instantiates it with symbolic references to
concrete entities in the environment, and
commits to its execution.

JACK represents and executes tactics in a manner
that maps well to SMEs’ introspections about their
own reasoning processes. The tactics representation
includes a front-end that allows analysts to specify
tactics graphically at a high-level without having to
worry about low-level detail. The graphical
representation is extremely useful for visualising the
logical structure of tactics and for discussing them
with SMEs. Therefore, a key design goal for
CoJACK was to retain JACK’s high-level
representation and ease-of-use.

3.2 CoJACK Extends JACK with Timing, Errors,
and Moderators

CoJACK augments JACK with a set of cognitive
architectural constraints and parameters, as well as a
moderator layer. Based upon cognitive parameter
values, the architectural constraints add latency to the
current intention’s reasoning steps and to memory
access. CoJACK also affects the choice of beliefs
retrieved in response to a memory access attempt;
this includes effects such as failure to retrieve a
matching belief, retrieval of a belief that only
partially matches, and retrieval of an alternative
matching belief (i.e. not the one that JACK would
have chosen first). A similar mechanism affects the
selection of the next intention to execute. Thus the
agent can choose an unanticipated intention or even
fail to retrieve one of its current intentions. The
cognitive parameters can be moderated at runtime,
leading to further variation in behaviour. For
example, a caffeine moderator could be added that
decreases the time taken to perform reasoning steps,
leading to shorter response times.

3.3 Key CoJACK Assumptions and Features

The goal for CoJACK was to develop a cognitive
architecture that predicts the timings and errors in
human performance without compromising the
usability of the BDI representation. We start with the
assumption that humans share a common cognitive
architecture and physiology, and that variation results
from individual differences in knowledge and the

values of the architecture’s and physiology’s
parameters. CoJACK’s cognitive parameters are
taken from ACT-R and adapted for a BDI
architecture. ACT-R’s parameters have been
experimentally validated across a wide range of
tasks. We have found that they are an excellent
starting point for a new architecture such as
CoJACK. Cognition can be modulated by variations
in physiology (as represented by the moderator layer;
see next section).

One way to view cognitive architectures is to classify
them in terms of the constraints they impose upon
cognition models. Howes and Young (Howes &
Young, 1997) point out that cognitive architectures
consist of soft and hard constraints. Soft constraints
can be overridden whereas hard constraints enforce
particular properties on the models, with no way to
circumvent them within the architecture. From this
perspective, CoJACK is intended to provide hard
constraints (because they are provided automatically
to a JACK model), but because of the Java
implementation and the ability to extend JACK and
CoJACK, the constraints are somewhat soft. This
approach offers considerable flexibility because the
degree of cognitive modelling sophistication and
consequent behavioural variance can be altered to
suit the goals of the simulation study.

CoJACK addresses the following five key aspects of
cognition:

Limited access to procedural and declarative
memory – Working Memory (WM) refers to the
currently active subset of the human cognitive
system, in some sense, the contents of consciousness.
WM is the mechanism of human cognition that
maintains information during processing. It is limited
in capacity as evidenced by decreased performance in
tasks that require many temporary items to be held in
memory. Although the term WM is usually restricted
to declarative memory, it should also encompass the
dynamic aspects of procedural memory. CoJACK
incorporates WM access limits (termed errors of
omission) through an activation-level mechanism that
is similar to the ACT-R approach. In contrast to its
support for declarative memory, ACT-R does not
include a theory describing how recency and decay
apply to dynamic procedural memory. Unlike ACT-
R, this is a real issue for CoJACK because it
represents procedures as plans rather than
productions. A plan typically has a number of steps
and when a CoJACK agent forms an intention, that
intention is held in a dynamic memory buffer that
enables the agent to step through the procedure.
CoJACK can maintain a number of such intentions
(determined by sub-symbolic activation-level

equations), and switches its focus to the most active
intention. This allows it to work on a number of tasks
concurrently, much as a short-order cook manages
multiple dishes (Kirlik, 2006).

Error-prone retrieval from procedural and
declarative memory – In addition to failing to
access memory elements, errors can occur when the
wrong memory item is retrieved. A partial-matching
mechanism (Anderson & Lebiere, 1998) accounts
for some of these errors (termed errors of
commission). CoJACK adopts a similar approach.

Cognition takes time – One of the major limitations
of most AI-based models is that they fail to represent
the time taken to think and act. If, for example, the
granularity of the simulation is 1 second, a model
can, in theory, and often in practice, run through a
series of decision-making steps in 1 (simulated or
real) second that would take a human half an hour.
CoJACK addresses this problem by computing the
time of reasoning steps (based on its moderated
parameter set).

Limited focus of attention – Resource limitation is a
key property of human cognition. The allocation of
this limited computational resource is generally
referred to as attention. In CoJACK, the modelling
of attention takes account of the following:

How an agent deliberately focuses its attention in a
particular direction (e.g. focusing on an important
goal while ignoring distracting environmental
stimuli.)

How factors like caffeine or fatigue moderate an
agent’s attention.

How the properties of memory affect attention.
For example, WM elements have a limited life
span. If a WM element is essential to the current
task, the agent must counteract its natural decay
through some form of rehearsal. This rehearsal
process consumes attentional resources.

Cognition can be moderated – Human behaviour
can be modified (moderated) by a range of factors,
including temporal, environmental, physiological and
internal factors. Moderators can influence entity
behaviour directly – for example, caffeine typically
provides a 10% faster reaction time on a simple
reaction time task. Moderators can also influence
lower-level mechanisms that give rise to the changed
performance – for example, caffeine reduces reaction
time and increases the ability to focus, allowing
performance on a vigilance task to remain virtually
sustained at its original level instead of decreasing
over the span of an hour (for some subpopulations)
(Boff & Lincoln, 1988). By simulating the effects of

moderators on underlying mechanisms, it is possible
to predict behaviour variation that will occur for a
task that has not yet been studied closely. For
example, if the effects of caffeine on the low-level
aspects of cognition and the body are well
understood, but the effects of caffeine on, say, radar
operators had not been specifically studied, it would
be possible to provide at least initial predictions of
caffeine’s effects on the behaviour of radar operators
based on knowing their cognitive mechanisms and
the knowledge necessary to perform the task.

4. CoJACK Details

Because JACK was intended for use in resource-
limited environments (such as mobile autonomous
systems), it is lightweight and efficient. An important
goal for CoJACK was to provide an environment in
which the user can easily enable/disable the cognitive
architecture. When disabled, the agent runs as a
normal JACK agent. When enabled, the agent’s
behaviour is modulated by the cognitive architecture.
Therefore, it was important that CoJACK not modify
the syntax of JACK. Furthermore, the CoJACK
extensions were implemented so as to not affect the
performance of normal JACK models. This was
achieved by having the CoJACK extensions added at
compile time if enabled for the agent in question.

4.1 Sub-symbolic Properties

Models in CoJACK are largely built at the symbolic
level (specifying the plans, events and beliefs
handled by an agent). However, the final behaviour
of a CoJACK model depends on the sub-symbolic
properties of the architecture.

In CoJACK, beliefs and intentions are subject to sub-
symbolic effects. To unify their treatment, they are
collectively termed chunks in CoJACK. A belief is a
declarative memory chunk and intentions are
procedural memory chunks. From the point of view
of Working Memory (WM), a chunk is a single item1.

Activation level is a key aspect of the sub-symbolic
properties of CoJACK. Chunks have an activation
level that changes over time as the chunk is used.
This activation level is one of the main influences on
the likelihood that a chunk will be retrieved, and how
long that retrieval will take. Given a set of competing
chunks (i.e. ones that match the retrieval

1 Even if an intention has, say, 50 steps, it will be
treated as a single WM item. Thus, if the modeler
creates a plan with 50 steps, it signifies that the plan
is “compiled” and therefore its WM burden is low.

specification), CoJACK will select the most activated
chunk, subject to the chunk being above the retrieval
threshold. Recall that CoJACK events govern the
agent’s computational flow (i.e. internal and external
events produce intentions which then drive
behaviour). When an event is processed, it acts as an
activation source for chunks. Event activation can be
moderated to support goals with varying “salience”
(e.g. “Stay alive” might have a higher activation than
the goal “Watch TV”). This provides a
straightforward method for the developer to focus the
agent’s attention on pertinent events (e.g. those that
are threatening to the agent).

CoJACK has over 30 cognitive parameters that
govern a wide range of sub-symbolic properties
including: chunk activation, the time taken to retrieve
or modify memory elements, and various noise
factors. Individual differences between agents can be
represented by supplying differing initialisation
parameter values. Moderators can also further affect
these cognitive parameters at runtime, for example, a
“fatigue” moderator can be added that increases the
time taken to retrieve or modify memory elements.

4.2 Moderator Representation

Each moderator is represented as a mathematical
function denoting its input/output mapping.
Moderators can also have internal reservoirs and
decay functions that determine how the reservoir
level varies over time (e.g. to model the rate caffeine
is excreted). Composite moderators can be created
that represent the interaction between one or more
moderators (e.g. the interaction between caffeine and
alcohol, and how that affects reaction time). The
inputs to a moderator can be (i) events from the
simulation environment, (ii) internal events (e.g. the
timing and amount of caffeine dosage where the
simulation environment does not provide such data),
and (iii) outputs from other moderators.

4.3 CoJACK in Synthetic Environments

Figure 1 is a conceptual model of how a CoJACK
agent fits into an SE. Tactics are represented using
JACK’s standard graphical BDI representation, but
their performance is modulated by the underlying
CoJACK architecture. Thus, whereas a JACK agent
could instantly memorise a lengthy Rules of
Engagement card, a CoJACK agent would exhibit
Working Memory limitations. The figure shows two
moderators: fatigue and caffeine. These reside in the
Moderator Layer and feed into the cognitive
architecture’s parameter set, leading to moderated
cognition (e.g. hampered memory retrieval in the
case of fatigue). The CoJACK agent has an

embodiment that represents aspects of its physical
body. Sensory and physiological information from
this embodiment feeds into the moderators (e.g.
caffeine intake tops up the reservoir in the caffeine
moderator). The agent embodiment overlaps to some
extent with the embodiment in the SAF itself. This
boundary is shown as a dotted line because extent of
this overlap varies depending on the SAF in question.
The SAF provides sensory information (perception)
and effects the actions specified by the agent.
Additionally, the agent embodiment can take non-
sensory input from the SAF (e.g. thermal energy
based on the ambient temperature).

Figure 1. CoJACK in a Synthetic Environment.

5. Case Study of CoJACK’s Variability

To explore these agent behaviours, we have been
exercising them in dTank, a simple tank game that
can be used as a lightweight synthetic environment
(Ritter et al., 2007). Designed to compare agent
architectures (Sun, Councill, Fan, Ritter & Yen,
2004), dTank has been used to examine how situation
awareness might play out in a synthetic environment.
Ritter et al. (2007) showed that situation awareness
matters. Their report used two types of tank, a basic
opponent tank and a tank with adjustable response
delay. Their report showed that as response delay
increased (in this case, from 0 to 3s), performance
decreased and that the time range of expected effects
of situation awareness on performance is supported
by the simulation.

Here, we have created three 20 x 20 km maps for
general comparisons using Sherman tanks. We are
also working on an ambush scenario with a different

map. The first terrain is a simple plain board. It
functions as a base case and is useful in
troubleshooting and debugging. The second and third
simulate tank battles between German and British
forces in World War II The battle of Medenine took
place on a primarily open plain surrounded by hills
(Figure 2, upper image). We chose this battle
because an analysis of the details of how the battle
was fought is available (Poncelin de Raucourt, 1997).
The third terrain (Figure 2, lower image) is based on
the battle of El-Alamein. This terrain contains
primarily open ground with a few low hills. It is
interesting because it is also a famous tank battle and
provides a more complex domain due to the centre
hills.

Figure 2. The maps used in the analyses.

To provide a fair comparison, the basic dTank tactics
for each commander were taken from the simple
default knowledge used to create previous tanks
(Ritter et al., 2007). The basic subtasks are shown in
Figure 3. This knowledge makes the commander
capable of moving forward, turning, turret rotation,
targeting and firing. This strategy relies on directed
target search. After it has identified a target, the tank
begins attacking. There remains some discussion
about how uniformly this knowledge has been
implemented in the tank commanders we present
here, which we will have to take up after further
analyses. When comparing architectures, the
knowledge equivalence across models is important.

Figure 3. The default knowledge in the tank

commanders.

We have only recently connected all these
components, and are starting to examine the wealth
of data dTank generates. The dTank system provides
measures of: time to end of scenario, xy locations,
number of shots and actions, variance in shots and
actions, time between actions, number of kills and
variance across runs and across tanks. From these
measures, we can compute % of tanks destroyed, and
efficiency of shooting. We also can examine change
in performance across time for the more sophisticated
tank commanders.

To start to illustrate the performance of CoJACK, we
first ran Smart Java commanders against each other.
These results are shown in Table 1a. They show that
the tanks were fairly successful at shooting, and that
the Java tanks were more predictable (smaller SD)
than the CoJACK tanks (Table 1b). Figure 4 shows
how the two of the tank commanders move (Java and
CoJACK), based on an idea given to us by Sue Kase.
The CoJACK tanks show less variance in their
movement path and more intelligence. The Java
commander has a more random path (and was killed
sooner).

We are continuing to explore how these tanks
performed, and what measures are of greatest
interest. As we automate this drawing process we
believe that we will see that the Java commanders
have more variance in movement, and less variance
in performance, and that CoJACK commanders have
more variance in movement than the JACK
commanders.

Table 1. Results for teams of 4 v 4 on empty 50 x
50 tile map on 1 Km2 map, 10 runs. Standard

deviations in parentheses. Other results include
neither or both teams destroyed.

(a) Smart Java vs. Smart Java (4 v 4)

Team Wins Other Tanks
destroyed

Successful
Shots

Shots

Red 3 2 32 (0.92) 138 (1.81) 156 (1.43)

Blue 5 2 34 (1.07) 147 (2.58) 150 (2.67)

(b) CoJACK vs. CoJACK.(4 v 4)

Team Wins Other Tanks
destroyed

Successfu
l Shots

Shots

Red 2 0 19 (1.35) 110 (6.88) 241 (6.74)

Blue 8 0 34 (1.45) 187 (6.43) 253 (3.06)

Figure 4. Tank movement patterns, CoJACK

(top), and Smart Java (bottom, detail expanded on
bottom right).

6. Discussion

CoJACK appears to be useful. It generates variable
performance in a synthetic environment tied to
theories of cognition and implemented with the
usability of an agent architecture. It shows that
theoretically grounded moderated behaviour in an
agent architecture is possible, and that the generated
behaviour can be interesting and productive. It, like
other cognitive architectures, will need to be used
more widely and more broadly before we fully
understand it, but it is a promising architecture. It
offers another platform for implementing the results
of Silverman’s review of moderators (Silverman,
2004).

We have also learned some things about variation.
Variation in cognition does not necessarily lead to
variation in behaviour, and we have seen that
variation from the environment may lead to variation
in a fixed agent, increasing the apparent range of
performance. We have seen the need to include
equivalent amounts of knowledge for fair
comparisons, and also the need for running dTank in
batch mode to generate summaries of behaviour.

At this point in time, we have the agent architecture
(CoJACK), the agents (the knowledge noted above
and the Java implementations for comparison), the
environment (dTank), and some of the measures of
interest. We are developing further measures of
interest, further agents, better support from the
environment, and better agent architectures. We will
be exploring the moderators already implemented but
not tested. We are now ready to study the effects of
variability directly.

7. Acknowledgements

This work was supported by the UK MOD's
Analysis, Experimentation and Simulation corporate
research programme (Project No: RT/COM/3/006).
We thank Colin Sheppard for useful discussions
about CoJACK. Bil Lewis, along with Damodar
Bhandikar, and Jeremiah Hiam, have helped develop
this version of dTank. Comments and computations
from Jon Morgan helped improve this presentation.

8. References

Anderson, J. R. (2007). How can the human mind
exist in the physical universe?. New York, NY:
Oxford University Press.

Anderson, J. R., & Lebiere, C. (1998). The atomic
components of thought. Mahwah, NJ: Lawrence
Erlbaum.

Bach, J. (2007). Principles of synthetic intelligence:
Building blocks for an architecture of motivated
cogntion. New York, NY: Oxford University Press.

Bartl, C., & Dörner, D. (1998). PSI: A theory of the
integration of cognition, emotion and motivation.
F. E. Ritter, & R. M. Young (Eds.), Proceedings of
the 2nd European Conference on Cognitive
Modelling, 66-73.

Boff, K. R., & Lincoln, J. E. (1988). Engineering
data compendium: Human perception and
performance. OH: AAMRL, Wright-Patterson
AFB.

Booher, H. R., & Minninger, J. (2003). Human
systems integration in army systems acquisition. In
H. R. Booher (Ed.), Handbook of human systems

integration. (pp.663-98). Hoboken, NJ: John
Wiley.

Bratman, M. E. (1987). Intention, plans, and
practical reasoning. Cambridge, MA (USA):
Harvard University Press.

Busetta, P., Rönnquist, R., Hodgson, A., & Lucas, A.
(1999). JACK intelligent agents - components for
intelligent agents in JAVA. Agentlink News Letter,
2(Jan.), www.agent-software.com/white-paper.pdf.

Georgeff, M. P., & Ingrand, F. F. (1989). Monitoring
and control of spacecraft systems using procedural
reasoning. Proceedings of the Space Operations
Automation and Robotics Workshop,

Gratch, J., & Marsella, S. (2004). A domain-
independent framework for modeling emotion.
Journal of Cognitive Systems Research, 5(4), 269-
306.

Howes, A., & Young, R. M. (1997). The role of
cognitive architecture in modeling the user: Soar's
learning mechanism. Human-Computer
Interaction, 12, 311-343.

Hudlicka, E., & Pfautz, J. (2002). Proceedings of the
eleventh conference on computer generated forces
and behavioral representation. Architecture and
representation requirements for modeling effects of
behavior moderators, 9-20. 02-CGF-085.

Jones, R. M., Laird, J. E., Nielsen, P. E., Coulter, K.
J., Kenny, P., & Koss, F. V. (1999). Automated
intelligent pilots for combat flight simulation. AI
Magazine, 20(1), 27-41.

Kirlik, A. (2006). Abstracting situated action:
Implications for cognitive modeling and interface
design. A. Kirlik (Ed.), Adaptive perspectives on
human-technology interaction, 212-224.

Lebiere, C., Biefeld, E., Archer, R., Archer, S.,
Allender, L., & Kelley, T. D. (2002). Proceedings
of the advanced technologies simulation
conference. IMPRINT/ACT-R: Integration of a task
network modeling architecture with a cognitive
architecture and its application to human error
modeling,

Norling, E., & Ritter, F. E. (2004). A parameter set to
support psychologically plausible variability in
agent-based human modelling. The Third
International Joint Conference on Autonomous
Agents and Multi Agent Systems (AAMAS04), 758-
765.

Pew, R. W., & Mavor, A. S. (1998). Modeling human
and organizational behavior: Application to
military simulations. Washington, DC: National
Academy Press. books.nap.edu/catalog/6173.html.

Pew, R. W., & Mavor, A. S. (2007). Human-System
integration in the system development process: A

new look. (R. W. Pew & A. S. Mavor, Eds.).
Washington, DC: National Academy Press.

Poncelin de Raucourt, V. P. M. (1997). The
reconstruction of part of the battle of medenine.
Unpublished MSc thesis. Shrivenham, The Royal
Military College of Science.

Silverman, B. G. (2004). Human performance
simulation. In J. W. Ness, D. R. Ritzer, & V. Tepe
(Eds.), The science and simulation of human
performance. (pp.469-98). Amsterdam: Elsevier.

Sun, S., Councill, I. G., Fan, X., Ritter, F. E., & Yen,
J. (2004). Proceedings of the sixth international
conference on cognitive modeling. Comparing
teamwork modeling in an empirical approach,
388-389.

 Author Biographies

RICK EVERTSZ is a cognitive scientist at AOS
Group. He is currently working on the incorporation
of cognitive and affective constraints into BDI
agents.

FRANK RITTER is on the faculty of the College of
IST, an interdisciplinary academic unit at Penn State
to study how people process information using
technology. He edits the Oxford Series on Cognitive
Models and Architectures and is an editorial board
member of Human Factors and AISBQ.

PAOLO BUSETTA is a senior software architect at
AOS Group. He has worked on numerous agent-
based systems for research as well as military and
commercial applications.

MATTEO PEDROTTI is a software architect at
AOS Group, working on GUI design, and tracing and
monitoring tools for agent architectures.

JENNIFER BITTNER is a graduate student in
Cognitive Psychology and a research assistant in the
College of IST at Penn State. She has a BA in
Mathematics with a minor in Psychology from Penn
State. Her current research examines face perception.

