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ABSTRACT: Live fire training is an essential component of infantry and Special Forces training. Recent 
developments in target technology have created a need for more sophisticated human behavior models that can drive 
the targets to behave in a realistic and challenging manner. Such behavior models enable the targets to exhibit 
convincing tactical behavior, as well as coordinating as a team to confront the trainee with a more formidable foe. 
This paper describes the current status of an ongoing project to augment disparate target types with sophisticated 
behavioral capabilities. The underlying CoJACK™ behavior engine enables the deployment of targets that behave 
realistically, react in a timely fashion, and exhibit sufficient variation to ensure that the trainees cannot predict how 
opponents will behave. The behavior models are developed using the VBS2 environment so that they can be validated 
in advance of target deployment on the targets. The technological approach is presented along with two illustrative 
scenarios. We conclude with a discussion of the lessons learnt and the way forward, including the development of 
autonomous target vehicles. 
 
 
1. Introduction 
 
The firing of live ammunition is a core part of infantry 
training. Indeed, Special Forces engage in live fire 
training on a daily basis to ensure that they are always 
at the peak of their capability. Lately, live fire training 
technology has expanded from simple static, pop-up or 
rail-based pop-up targets to indoor, projection-based 
systems, and more recently, fast moving, open range, 
mobile robotic targets. Each type of target supports 
particular aspects of live fire training. For example, 
static pop-up and rail-based targets are good for basic 
skills training. However, they are less effective for 
advanced training because target location is too 
predictable. 
 
With the advent of 3D, photorealistic virtual 
environments, projection-based systems have been 
developed that provide a more immersive experience in 
indoor, cinema ranges (Pair & Treskunov, 2006). 

Although providing significantly better immersion than 
pop-up targets, they are restricted to indoor 
environments, the image quality is limited (Darken & 
Jones, 2007), and 2D projections do not faithfully 
reproduce parallax effects; this means, for example, 
that a trainee cannot bring a concealed adversary into 
view by moving laterally. 
 
Over the last 20 years, the Australian Army has 
developed wheeled robotic targets, and the latest 
generation is being deployed on their live fire ranges. 
On flat, smooth surfaces (e.g., concrete) the targets are 
fast moving and maneuverable, and can be challenging 
to hit. However, they have limited autonomous 
capabilities, such as path finding, and can only exhibit 
simple behaviors such as scattering when one of the 
robots is hit. 
 
More advanced training scenarios require a much wider 
and more responsive behavioral repertoire than that 



provided by current robotic targets. Furthermore, 
greater variability in robot behavior is required to 
expose advanced warfighters to less predictable 
training scenarios. 
 
There is also a need to integrate the various target types 
into a coordinated whole controlled by a single Range 
Management System. This approach ensures that the 
targets fulfill their respective roles in the training 
scenario while exhibiting a level of behavioral realism 
commensurate with their physical capabilities. Squad 
tactics can be implemented by coordinating the targets, 
for example, using a pop-up to draw fire just before a 
mobile robotic target moves to the next cover position. 
Broader behavior modeling also enables the simulation 
of different levels of tactical capability, for example 
those pertaining to militia, insurgents or well-trained 
infantry. 
 
This paper reports on the current state of 
implementation of an ongoing project (the “AI 
Project”) with the Australian Defence Force to 
augment live fire targets with sophisticated tactics that 
provide warfighters with practical experience 
countering different types of adversary that exhibit 
variability in tactics and response. The system also 
includes a VBS2-based simulation environment 
allowing scenarios and tactics to be tested before 
deploying the robot targets. 
 
The target behaviors are implemented on the BDI  
(Beliefs, Desires, Intentions) cognitive architecture, 
CoJACK™ (Evertsz, Ritter, Busetta & Pedrotti, 2008; 
Ritter et al., 2012), which supports reactive and 
proactive decision-making in dynamic environments. 
CoJACK, is underpinned by a sub-symbolic layer that 
produces principled variation in reasoning. Variation is 
also produced by a moderator layer that simulates the 
effect of emotion and other non-rational factors on 
decision-making. 
 
This work represents a novel application of human 
behavior modeling to address the problems of flexible, 
autonomous control of multiple types of live fire target. 
The combination of sophisticated behavior models with 
live fire targets improves training effectiveness by 
facilitating the execution of advanced training 
scenarios while releasing the Range Manager to focus 
on the overall training goals rather than lower level 
target control, thereby reducing his workload. 
 
2. Background 
 
The most common approach to human behavior 
modeling in military applications is to use the scripting 
language provided by the synthetic environment, cf. 
JSAF (Ceranowicz & Torpey, 2005). This approach 
has proven inadequate for representing the variability 

inherent in real human behavior. Scripts tend to be 
inflexible and brittle, and trainees soon exploit their 
shortcomings, leading to diminished training value. 
Trainee exploitation of the inflexibility of scripted 
behavior also occurs with live fire training; for 
example, if the robots always scatter when one of their 
members is hit, the shooter can anticipate their reaction 
and be ready to pick them off. The shortcomings of 
scripted approaches to human behavior modeling have 
led to the exploration of more flexible representational 
paradigms, such as BDI, which is specifically designed 
for applications where the environment is constantly 
changing, requiring an adaptive mix of reactive and 
proactive behavior. 
 
2.1 BDI Agents 
 
The BDI paradigm (Wooldridge, 2000) stems from 
work on human practical reasoning by the philosopher 
Michael Bratman (Bratman, Israel & Pollack, 1988). In 
this view, rational agents have beliefs about the world, 
desires that they would like to achieve and intentions 
that they are committed to. This has proven to be an 
intuitive and powerful computational abstraction for 
describing, designing and implementing complex, 
intelligent systems. 
 
A typical BDI agent executes a control loop in which it 
updates its beliefs to reflect the current state of the 
world, deliberates about what to achieve next, finds a 
plan for doing so, and executes a step of that plan. Each 
time around this cycle, it reconsiders its options to 
reflect any changes in the environment, and can change 
tack if a more pressing need arises. 
 
This control structure allows BDI agents to deal with a 
rapidly changing environment without getting locked 
into a particular “train of thought” or sequence of 
actions. The first published application of the BDI 
paradigm to military simulation was in the air combat 
domain (Murray et al., 1995). 
 
Although the BDI paradigm is a very effective 
computational abstraction for representing intentional 
agents, it is silent with regard to the inherent variability 
of human behavior. The prediction of biases, timing 
and errors in human performance is the province of 
cognitive architectures. 
 
2.2 Cognitive Architectures 
 
Cognitive architectures, such as ACT-R (Anderson, 
2007), define the structural properties of the human 
cognitive system, that is, the information processing 
mechanisms that are invariant across tasks. These 
mechanisms predict the timing of, and errors in, human 
performance across a wide range of cognitive tasks. 
 



Although most applications of cognitive architectures 
occur in laboratory settings, there are a number of 
studies in military domains, including air combat 
tactics using Soar (Tambe et al., 1995), submarine 
decision-making using ACT-R (Fleetwood, Santoro & 
Severinghaus, 2007), and suicide bomber behavior 
using CoJACK (Evertsz, Pedrotti, Busetta, Acar & 
Ritter, 2009). 
 
2.3 Performance Moderators 
 
Whereas a cognitive architecture such as ACT-R or 
CoJACK predicts how performance varies as a result 
of sub-symbolic, cognitive parameters such as memory 
retrieval threshold and latency, human decision-making 
is also influenced by affective factors such as emotion. 
Even well trained military personnel can behave 
irrationally under extreme stress and consequently 
good military strategy seeks to manipulate the 
emotions of the adversary. The modeling of affect in 
military simulation has been explored and applied most 
widely in the work of Silverman (2004), using a 
Performance Moderator Function server that cognitive 
architectures can interface to. An alternative approach, 
taken by CoJACK, is to tightly integrate moderators 
within the cognitive architecture itself so that they 
directly affect the architecture’s cognitive parameters. 
The former approach offers greater interoperability, but 
the latter has the potential to be more computationally 
efficient which is important for real-time applications 
containing many cognitive entities. 
 
2.4 CoJACK 
 
CoJACK was selected as the project’s behavior 
modeling platform because it provides a cognitive 
architecture, moderators and is highly optimized, 
providing the rapid response required to control 
multiple targets in real time. We briefly describe 
CoJACK below; further detail can be found in previous 
publications (Evertsz et al., 2008; Ritter et al., 2012). 
 
CoJACK is the result of a 5-year, UK Ministry of 
Defence1 effort to improve human behavior modeling 
and address perceived shortcomings in the usability of 
ACT-R and Soar (Newell, 1990). BDI languages 
represent behavioral constructs at a higher level of 
abstraction than production-rule based architectures 
like ACT-R and Soar. CoJACK extends the BDI 
language, JACK® (Winikoff, 2005), with the cognitive 
parameters of ACT-R and a moderator layer that 
supports the representation of emotional factors, such 
as fear, and physical factors such as fatigue. 
 

                                                             
1 The Improved Human Behaviour Representation (IHBR) 
Project (Ministry of Defence Project: RT/COM/3/006). 

CoJACK represents and executes tactics in a manner 
that Subject Matter Experts (SMEs) find easy to relate 
to, due to their representation at a higher level of 
abstraction. CoJACK’s tactics representation includes a 
front-end that allows analysts to specify tactics 
graphically at a high-level without having to worry 
about low-level detail. The graphical representation is 
amenable to inspection by SMEs and thereby supports 
verification and validation of behavior. 
 
CoJACK has been used to model tank commander 
behavior, rules of engagement (Evertsz, Ritter, Russell 
& Shepherdson, 2007), terrorism (Evertsz et al., 2009) 
and counterterrorism scenarios (Evertsz, Pedrotti & 
Glover, 2010), as well as the domain described in this 
paper. 
 
3. Technical Overview 
 
The goal of the project is to augment multiple live fire 
target types with sophisticated behavioral capabilities 
that increase training effectiveness and reduce the 
Range Manager’s workload. To this end, we developed 
an architecture in which CoJACK acts as a 
cognition/emotion server that receives perceptual input 
from sensors on the training range and sends 
behavioral action commands to the targets. The 
behavior models are developed and tested within a 
simulation environment (VBS2) before deployment on 
the training range. This section outlines the current 
status of the implementation. 
 
3.1 High Level System Architecture 
 
The overall system architecture is shown in Figure 1. 
The Behavior Engine comprises CoJACK and a 
JACKTeams™ extension supporting high-level 
specifications of coordinated target behavior. Percepts 
and actions are mediated through a domain-specific 
ontology that provides the Behavior Engine with an 
abstract representation of the available types of percept 
and action. The target-specific interfaces map between 
the percept/action ontology and the API (Application 
Programming Interface) of the target types. For 
example, the VBS2 interface currently uses ASI 
(Application Scripting Interface) to interact with 
VBS2. Each robotic target is represented as a BDI 
agent within the behavior engine. 
 

 
 

Behavior Engine

CoJACK™Percept/Action
Ontology

VBS2 Interface

Robot Interface

JACKTeams™

Static Target 
Interface



Figure 1 – System Architecture 
 
The ontology defines the target types and their salient 
properties. For example, the ontology will specify the 
maximum speed of a given type of robot target, and 
would also specify that a static target cannot move. 
This constrains the available behaviors for that target 
type in addition to the roles on a team that the target 
can fulfill. Although we are currently using an 
internally developed ontology language, we expect to 
move to a standards-based language, e.g., OWL2 (Web 
Ontology Language) DL, to accommodate a larger 
ontology. OWL DL allows merging of independently 
developed ontologies and automatic inference of 
attributes and relationships. 
 
The scenario definition file specifies the initial exercise 
setup, for example, the types of target, their location, 
team specifications and the initial goals of the target 
entities (Figure 2). This enables the Behavior Engine to 
select a plan of action that complies with the 
constraints of the given target type. Each of these 
scenario modifiers can be altered at runtime to vary the 
training in progress. 
 

 
 

Figure 2 – Behavior Engine Initialization 
 
New target types are under development, in particular 
an autonomous vehicle that may include a driver, 
commander and gunner working as a team. The 
modular architecture (Figure 1), and in particular the 
ontology, allows this to occur with minimal change to 
the rest of the system. 
 
3.2 Behavior Models 
 
Individual target behavior is expressed in CoJACK. 
JACKTeams handles inter-target coordination. A given 
CoJACK behavior model comprises: 
 

                                                             
2 http://www.w3.org/TR/owl-features/ 

• A specification of situations it can respond to 
(external events, internal goals, overall world 
state). 

• A description of the various ways of responding 
to a given situation (expressed as plans). 

• A knowledge base of what the entity knows 
(represented as a belief set). 

• Underlying cognitive parameters that affect how 
the model runs, leading to predictions of 
“thinking time” and errors that can occur. This is 
the fundamental way that cognitive variation 
occurs in CoJACK models. 

• Moderators representing factors such as fear and 
morale, and a specification of how those 
moderators affect cognitive parameters and 
decision-making. 

 
Procedural reasoning is represented in terms of plans. 
These can be graphical, as shown in the example in 
Figure 3, and this helps with validation by SMEs. 
 

 
 

Figure 3 – Plan to Take Cover 
 
The graphical plan, Take Cover (Figure 3), applies 
when a Taking Fire percept is received. It finds the 
nearest cover and, if taking very heavy fire, adopts a 
zigzag pattern before performing the action Move to 
cover. 
 
3.3 Perception and Action 
 
The various target types, including those simulated in 
VBS2, communicate with the system via relatively 
high-level percept and action descriptors. The Behavior 
Engine does not have access to raw visual data or fine 
level motor control of the targets. This is typical in 
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virtual environments, such as VBS2, but also applies to 
robots in general. In the case of robots, the robot is sent 
high-level commands, such as Change Heading, and it 
is left to the robot’s control software to map this high 
level command to coordinated triggering of its low-
level actuators. 
 
3.4 VBS2 Trial Environment 
 
A very important aspect of the system is the ability to 
develop and test behavior models in a simulation 
environment in advance of deployment on hardware 
targets. This not only helps with model validation, but 
also facilitates model development and debugging, and 
allows the utility of new target types to be evaluated in 
advance of their acquisition. It also enables trainees to 
refine their decision-making skills before facing the 
actual robots on the range. 
 
The Percept/Action ontology insulates the behavior 
models from the majority of the specifics of VBS2. 
Having said that, VBS2’s own AI can sometimes 
interfere with the commands sent by the Behavior 
Engine, even if the VBS2 AI has been disabled. For 
example, if a VBS2 actor is wounded and the Behavior 
Engine commands it to move, it will drop to the ground 
and start crawling. Nevertheless, in the vast majority of 
cases, the VBS2 actors can be controlled sufficiently 
well to evaluate the behavior models. 
 
VBS2 provides a wide range of high-level percepts and 
actions, including location, orientation, speed and path 
finding. It also includes static pop-up target models. 
 
3.5 Mobile Robot Interface 
 
Two types of mobile target are currently being used for 
live fire training, 2-wheeled and 4-wheeled, with the 
latter suited to rougher terrain. Both are controlled via 
the same Robot Interface. The Robot Interface provides 
access to high-level robot actions such as Move To 
Position within some tolerance and at a particular 
speed, Change Heading within some tolerance, and 
Stop. The Robot Interface responds with whether the 
command was executed, and returns its current status, 
for example if the robot’s body has been lowered to 
signify that it has been killed. Transient percepts are 
also provided, including position and velocity updates, 
and a notification if the robot’s hit sensor detects that it 
has been shot. 
 
3.6 Static Target Interface 
 
The Static Target Interface not only controls the static 
pop-up targets, it also provides a target amalgamation 
function (this functionality is mirrored in the VBS2 
Target Interface). Target amalgamation treats a group 
of targets as a single virtual entity. For example, when 

the Behavior Engine sends a command for a virtual 
entity to move forwards, this gets reified as a 
consecutive sequence of up/down state changes of the 
pop-up targets that lie between the start and end 
positions of the virtual entity. From the trainee’s 
perspective, it looks as if a single entity pops up, then 
crouches down and moves (concealed) to the next 
position before popping up again, and so on, until it 
reaches its final position. Entity retreat is expressed by 
reversing the sequence. 
 
The Static Target Interface also manages the speed of 
pop-up sequencing to match the movement rate 
specified by the Behavior Engine. 
 
3.7 Teamed Behavior 
 
Modeling team behavior is an essential requirement in 
military domains – coordination amongst unit members 
is key to success. The usual approach to team modeling 
is to script coordination at the level of individual team 
members so that the team behavior emerges from the 
interaction of the individual team members. This 
approach is unsatisfactory because individual and team 
tactics become intertwined, making them difficult to 
modify. 
 
JACKTeams (Jarvis, Jarvis & Jain, 2007) is an 
extension of the BDI paradigm that separates team 
tactics from individual ones. A team is modeled as a 
separate reasoning entity with coordinated activity 
defined at the level of the team. This generic team-
based capability provides a flexible basis upon which a 
wide variety of teaming algorithms can be 
implemented. 
 
At runtime, the team is formed by assigning individual 
targets to relevant team roles. A team definition 
specifies which roles must be filled, i.e. what 
capabilities the entities must have to fill the role. Team 
formation is triggered automatically as part of the team 
instance construction. Role fillers (which can be either 
individuals or sub-teams) can be detached and attached 
at runtime, thereby supporting dynamic team formation 
and re-formation. This is important when a target is 
neutralized and its role needs to be filled by another 
entity, for example if the neutralized target was the 
team leader. 
 
Team execution includes a propagation step that 
handles dissemination of information up and down the 
team hierarchy. The team has access to propagated 
information that is derived from the knowledge of its 
sub-teams. JACKTeams includes filters that determine 
if and when the propagation should occur, and which 
subset should be propagated to the encompassing team. 
Similarly, sub-teams can inherit a synthesized subset of 
the knowledge of the containing team. 



 
 
3.8 Range Manager Interface 
 
Increased autonomy is an essential prerequisite for 
reducing Range Manager workload during high tempo 
exercises because it requires a lot of attention to control 
the targets individually. Nevertheless, exercises do not 
always play out as expected – human participants will 
react differently from exercise to exercise, depending 
on experience and other factors. Consequently, it is 
vital that the Range Manager retains control of target 
behavior to take advantage of unexpected pedagogical 
opportunities or to prevent any unsafe incidents 
occurring. 
 
To this end, a tablet-based GUI has been developed 
that enables the Range Manager to issue behavior 
overrides. These are specified at a high level, for 
example, “retreat” or “move to cover” rather than 
“move to point X,Y”. Behavior overrides include: 
 
• assign a new goal to a target or target team (e.g., 

attack), 
• command a target or target team to adopt a 

specified tactic (e.g., assault using bounding 
overwatch), and 

• alter moderator levels for a target or group of 
targets (e.g., their morale level). 

 
The Range Manager Interface forms one part of the 
overall Range Management System, currently under 
development. The first phase of this Range 
Management System has been tested extensively under 
live fire conditions, demonstrated to stakeholders and 
successfully passed acceptance testing. 
 
 
4. Illustrative Scenarios 
 
This section outlines a couple of example training 
scenarios using pop-up and mobile robot targets. 
Because the actual tactics and scenarios are classified, 
we have fabricated examples using information 
available in the public domain (Larsen, 2005). 
Although these fabricated examples cannot be used to 
infer the actual tactics and scenarios used in the 
project, they have similar properties and can be taken 
to be indicative of the types of tactics/scenarios 
implemented. 
 
4.1 Frontal Assault – Militia 
 
In a frontal assault, the targets (whether robots or 
sequenced pop-ups) move towards the location of the 
trainees, firing their weapons. Currently, robot weapon 
firing is implemented via the sound of machine gun fire 
emanating from speakers on the robots. The Range 

Manager makes a judgment call as to whether a trainee 
could have been hit by one of the robots. However, 
laser based “shoot back” systems and instrumented 
systems can be incorporated on the targets to provide a 
more objective means of assessment. 
 
The speed of the attack and use of cover depends on 
the interaction between robot morale and fear levels. 
Loosely, very high morale masks fear and leads the 
robots to attack rapidly, making minimal use of cover. 
A state of high fear and low morale leads the robots to 
move more tentatively, making frequent use of cover 
and remaining concealed for longer periods of time. 
Fear rises and morale drops if robot team members are 
being “killed”, and the robots may decide to panic and 
retreat if their morale drops very low due to high 
losses. The Range Manager can manipulate the morale 
and fear levels through the GUI to increase or decrease 
the level of pressure on the trainees. 
 
Militia models represent relatively untrained and 
inexperienced fighters. Inter-robot coordination is poor 
and the tactics are simplistic and relatively ineffective 
(as compared to trained insurgents and infantry). 
Rogue behaviors can be included, for example, having 
one robot stand its ground under heavy fire when one 
would expect it to retreat. This simulates the behavior 
of an over-zealous militiaman who is prepared to 
sacrifice himself to inflict losses on the enemy. Other 
variations in individual parameters lead to behaviors 
such as zigzagging during the attack, or accelerating 
and decelerating unpredictably. 
 
4.2 Bounding Overwatch – Insurgents 
 
This is a more sophisticated form of frontal assault and 
is employed by teams of fighters with more training. In 
this team tactic, one fire team provides fire support 
while the other (the “bounding element”) advances. 
The fire support team then advances once the other 
team has reached cover and has begun firing. The two 
teams are usually laterally separated relative to the 
enemy. 
 
A number of variations are possible. If morale is very 
high, the bounding element may forego available 
concealment. Errors in plan execution, due to particular 
values of cognitive parameters, can cause the bounding 
element to stray into the line of fire of the fire support 
team. 
 
5. Discussion and Conclusions 
 
This paper introduces a method of integrating and 
augmenting live fire targets with sophisticated tactical 
behaviors. The resulting enhanced targets offer more 
realistic training while reducing the Range Manager’s 
workload and saving on range support manpower. 



 
The evaluation of the current implementation is at an 
early stage; nevertheless some preliminary conclusions 
can be drawn: 
• CoJACK-driven robot behavior provides a 

significant enhancement over the previously 
scripted approach. 

• Variation in the values of CoJACK’s cognitive 
parameters provides a richer training experience 
because the robots do not behave in exactly the 
same way every time. 

• Providing the Range Manager with a 
straightforward means of overriding robot 
behavior is a key feature of the system. The 
default mode is for the robots to behave 
autonomously, but at times it is essential for the 
Range Manager to redirect their behavior during 
an exercise. 

 
Although a wide range of adversarial behaviors can be 
implemented and used to control live fire targets, some 
are infeasible due to current limitations in robot 
capabilities. For example, the robots cannot detect near 
misses, nor do they know the exact location of the 
trainees, even if they are in view. These limitations are 
being addressed as part of Special Operations 
Command, a five-year plan for improved target 
capability and integrated range management. 
 
Behavior expression can sometimes be compromised 
by the robots’ inbuilt, low-level behaviors such as 
needing to circle when they become uncertain of their 
position. Similarly, VBS2 can sometimes execute 
actions independently of the commands sent from the 
Behavior Engine. This problem is not unique to VBS2 
and needs to be addressed if behavior models are to be 
faithfully expressed by the platform models they are 
driving. 
 
We are also investigating the application of Cognitive 
Tutor Authoring Tools to teach Point of Aim 
determination for hitting moving targets  
 
5.1 Addition of Autonomous Vehicle Targets 
 
As an extension to the current robots, which represent 
human actors, both adversaries and civilians, there is a 
requirement for autonomous vehicle targets that are 
suitable for heavy weapons training, sniper training, 
convoy ambush training and demonstrations. An 
autonomous vehicle target that is capable of 
withstanding heaving weapons fire will be a valuable 
addition to the already existing target systems and 
consequently will enhance the realism and complexity 
of training scenarios and demonstrations. 
 
The design and integration of sensor systems, control 
systems, drive systems and vehicle platforms require 

careful consideration of the specific purpose of the 
target system and vulnerabilities of the components 
because the target systems are likely to sustain damage 
during employment. Many of the components are 
available off the shelf, as automated vehicles exist in 
various forms in various applications such as heavy 
haul trucks in mining operations. 
 
Future development of the autonomous vehicle target 
offers the potential to include CoJACK-based actors in 
the vehicle. For example, an unarmored SUV 4x4 
might include a driver, rear gunner and a commander, 
working as a team. This will present the trainees with 
the option to disable the vehicle or focus on the driver 
and/or the gunner, thus reinforcing the requirement for 
split-second decision-making. 
 
5.3 Summary 
 
This paper presents a novel application of human 
behavior modeling to provide flexible, autonomous 
control of multiple types of live fire target. The 
approach integrates disparate target types into 
coordinated teams that exhibit group tactics. 
 
The use of the moderated cognitive architecture, 
CoJACK, provides real time performance and 
principled variation in target behavior, with 
JACKTeams providing an important group behavior 
capability. This approach supports the implementation 
of more advanced training scenarios. 
 
The system reduces Range Manager workload and 
provides the basis for an overarching Range 
Management System that will control all the target 
types in an integrated manner and substantially reduce 
range support workload and costs. 
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