
Agent Manual

JACK Intelligent Agents®
Agent Manual

AgentManual
Release5.3

2 10-June-05
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

Copyright
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

All rights reserved.

No part of this document may be reproduced, transferred, sold, or otherwise disposed of,
without the written permission of the owner.

US Government Restricted Rights
The JACK™ Modules and relevant Software Material have been developed entirely at private
expense and are accordingly provided with RESTRICTED RIGHTS. Use, duplication, or
disclosure by Government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of
DFARS 252.227-7013 or subparagraph (c)(1) and (2) of the Commercial Computer Software
Restricted Rights and 48 CFR 52.2270-19, as applicable.

Trademarks
All the trademarks mentioned in this document are the property of their respective owners.

Agent Manual
Release 5.3
10-June-05 3
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

Publisher Information

If you find any errors in this document or would like to suggest improvements, please let us
know.

Agent Oriented Software Pty. Ltd.

P.O. Box 639,

Carlton South, Victoria, 3053

AUSTRALIA

Phone: +61 3 9349 5055

Fax: +61 3 9349 5088

Web: http://www.agent-software.com

AgentManual
Release5.3

4 10-June-05
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

The JACK™ documentation set includes the following manuals and practicals:

Document Description

Agent Manual Describes the JACK programming language and
infrastructure.JACK canbeusedto developapplications
involving BDI agents.

Teams Manual Describes the JACK Teams programming language
extensions. JACK Teams can be used to develop
applications that involve coordinated activity among
teams of agents.

Development Environment

Manual

Describes how to use the JACK Development
Environment (JDE). The JDE is a graphical
development environment that can be used to develop
JACK agent and team-based applications.

JACOB Manual Describes how to use JACOB. JACOB is an object
modelling language that can be used for inter-process
transport and object initialisation.

WebBot Manual Describes how to use the JACK WebBot to develop
JACK enabled web applications.

Design Tool Manual Describes how to use the Design Tool to design and
build an application within the JACK Development
Environment.

Graphical Plan Editor Manual Describes how to use the Graphical Plan Editor to
develop graphical plans within the JACK Development
Environment.

JACK Sim Manual Describes how to use the JACK Sim framework for
building and running repeatable agent simulations.

Tracing and Logging Manual Describes the tracing and logging tools available with
JACK.

Agent Practicals A set of practicals designed to introduce the basic
concepts involved in JACK programming.

Teams Practicals A set of practicals designed to introduce the basic
concepts involved in Teams programming.

Agent Manual
Release 5.3
10-June-05 5
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

Table of Contents
1 Introduction . 13
1.1 Background .13
1.2 Agent Oriented Concepts. .13
1.2.1 What is an Agent? .14
1.2.2 Why program using Agents? .15
1.3 The Components of JACK .15
1.3.1 The JACK Agent Language .15
1.3.2 The JACK Agent Compiler .16
1.3.3 The JACK Agent Kernel .16
1.4 Developing a JACK Application .16
1.4.1 Setting up your Environment .16
1.4.2 Source Code Creation .17
1.4.3 Compilation .18
1.4.4 Running a JACK Application .18
1.4.5 Debugging a JACK Application .19

2 JACK Agent Language Overview . 21
2.1 The JACK Agent Language .21
2.1.1 Class, Interface and Method Extensions .21
2.1.2 Syntactic Extensions .22
2.1.3 Semantic Extensions .23
2.2 JACK Agent Language Summary .24
2.2.1 JACK Agent Language Classes .25
2.2.2 JACK Agent Language Declarations (#-Declarations)26
2.2.3 Reasoning Method Statements (@-Statements) .29
2.2.4 Base Members and Methods .30

Agent Members .30
Agent Methods .30
Event Members .32
Event Methods (for MessageEvents only) .32
Plan Members .32
Plan Methods .33
BeliefSet Methods .33
Capability Methods .34

3 Agents . 35
3.1 Introduction. .35
3.2 Agent Definition .35
3.3 Agents and Interfaces .36
3.4 Agent Declarations .36

AgentManual
Release5.3

6 10-June-05
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

#handles event EventType .37
#posts event EventType [reference] 38

#sends event EventType [reference] 39

#uses plan PlanName .40
#has capability CapabilityType reference .40

3.4.1 Beliefsets .41
Conceptual Model. .41
Beliefset Declarations. .41

3.4.2 Data stored in User-defined Data Structures .45
#private data DataType data_name(arg_list). 45

#agent data DataType data_name(arg_list). 46

#global data DataType data_name(arg_list) 47

3.4.3 Task Managers .47
#uses taskManager SimpleRRTaskManager(<steps>) 48

3.5 Agent Members and Methods .49
Agent Construction . 50

Agent Termination . 50

void postEvent(Event e) . 50

boolean postEventAndWait(Event e) 51

void send(String s, MessageEvent e) 51

void reply(MessageEvent q, MessageEvent r) 51

String name() . 52

Timer timer . 52

4 Capabilities . 53
4.1 Introduction. .53
4.2 Capability Definition .53
4.3 Capabilities and Interfaces .54
4.4 Capability Declarations. .55

#handles event EventType; 56

#handles external [event] EventType; 56

#posts event EventType reference;. 56

#posts external [event] EventType reference; 56

#sends event EventType reference; 57

#private data DataType data_name(arg_list); 57

#agent data DataType data_name(arg_list); 57

#global data DataType data_name(arg_list); 57

#exports data DataType data_name(arg_list); 57

#imports data DataType data_name(); 58

#uses plan PlanType; . 58

#has capability CapabilityType reference;. 58

4.5 Capability Members and Methods .58

Agent Manual
Release 5.3
10-June-05 7
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

Capability Construction .58
public void postEvent(Event e) 59

public Agent getAgent() . 59

protected void autorun() . 59

5 Events . 61
5.1 What are Events?. .61
5.2 Normal Events .62
5.2.1 How an Agent handles Normal Events. .62
5.2.2 Normal Events in the JACK Agent Language. .63

The Event Class .63
The MessageEvent Class .64
The TracedMessageEvent Class .65

5.3 BDI Events .65
5.3.1 How an Agent handles BDI Events .65

Meta-level Reasoning .66
Reconsidering Alternative Plans on Plan Failure66
Recalculating the Applicable Plan Set .66

5.3.2 The BDI Events in the JACK Agent Language .67
The BDIFactEvent Class .67
The BDIMessageEvent Class. .68
The BDITracedMessageEvent Class .70
The BDIGoalEvent Class .70
The InferenceGoalEvent Class .71
The PlanChoice Event Class .73

5.3.3 Customising BDI Behaviour with Behaviour Attributes.74
#set behavior Recover <value>; 75

#set behavior ApplicableSet <value>; 75

#set behavior ApplicableChoice <value>; 76

#set behavior ApplicableExclusion <value>; 76

#set behavior PlanBindings <value>; 77

#set behavior OnError <value>; 77

#set behavior PostPlanChoice <value>; 78

#set behavior PlanChoiceEvent MyPlanChoice();. 78

5.4 Automatic Events .79
5.5 Event Definition .80
5.6 Event Members and Methods .81

public Agent getAgent() . 82

public String from . 82

public String message . 83

public String mode . 83

Cursor replied() . 84

AgentManual
Release5.3

8 10-June-05
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

MessageEvent getReply() . 85

5.7 Event Declarations .86
#posted as methodName(parameters) 86

#uses data DataType data_name .88
#posted when (condition) optional_method_body88
#set transport format .89

5.8 Posting and Sending Events .89

6 Inter-agent Communications . 91
6.1 Introduction. .91
6.2 Local Communication. .91
6.3 Remote Communication. .91
6.3.1 DCI from the Command-line. .93
6.3.2 DCI Command Line Summary .94
6.3.3 DCI in Code .94

void create(String name, String desc) 94

void connect(String lname, String rname, String rdesc) . . . 94

void nameserver(String rdesc) 94

void setTimeout (int seconds) 95

boolean pingOk (String agent) 95

int ping (String agent) 95

boolean multiPingOk (String agent) 95

boolean multiPingOk (String agent, int timeout, int interval). . 95

int multiPing (String agent, int timeout, int interval). 95

7 Plans. 97
7.1 What is a Plan? .97
7.2 Finite State Machines. .98
7.3 Plan Definition .99
7.4 Plan Members and Methods .99

Agent getAgent() . 100

relevant(EventType) . 101

context() . 102

body() . 103

PlanInstanceInfo getInstanceInfo() 104

Cursor after(double t), afterMillis(long t) 104

Cursor elapsed(double t), elapsedMillis(long t) 105

7.5 Plan Declarations .105
#chooses for event Event1 Event2105
#handles event EventType reference .107
#posts event EventType reference. .108
#sends event MessageEventType reference .109

Agent Manual
Release 5.3
10-June-05 9
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

#uses data DataType reference .110
#reads data DataType reference .110
#modifies data DataType reference .111
#uses agent implementing Interface reference .112
#uses interface Interface reference .112
#reasoning method name(parameters) <body> .113
#reasoning method pass() <body> .115
#reasoning method fail() <body> .115

7.6 Reasoning Method Statements (@-Statements) .116
@wait_for(parameters) . 116

@wait_for(wait_condition) 118

@wait_for(wait_condition, sentinel_condition) 118

@wait_for(wait_condition, timeout) 119

@action(parameters) <body>. .119
@maintain(logical_condition, event) 120

@post(event) . 121

@reply(original_event, reply_event) 123

@send(agent_name, message_event) 124

@subtask(event) . 125

@sleep (timeout) . 127

@achieve(condition, goal_event) 127

@insist(condition, goal_event). 128

@test(test_condition, goal_event). 130

@determine(binding_condition, goal_event) 131

@parallel(parameters) <body> .133
Exception Handling within the Parallel Execution Model 136
The ParallelMonitor Class. .136

7.7 Cursors. .137
7.7.1 Time Cursors and Again Cursors .139
7.7.2 Change Cursors .143
7.7.3 Action Cursors and RepeatAction Cursors. .146
7.7.4 Beliefset Cursors .147
7.7.5 Enumeration Cursors .149
7.7.6 Array Cursors .150
7.8 Plan Programming Guide .151
7.8.1 Plan Definition Templates. .151

Normal Plan Template .152
Meta-level Plan Template .153

7.8.2 Functional Abstraction .154
7.8.3 Logical Statements. .154

Components of a Logical Statement .155

AgentManual
Release5.3

10 10-June-05
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

7.8.4 Logical Members .156
7.8.5 Composite Logical Expressions .159

8 Meta-Level Reasoning . 161
8.1 Applicable Set Generation .162
8.1.1 Handling the Event Type. .162
8.1.2 Relevance. .162
8.1.3 Applicability .163
8.1.4 Prominence .164
8.1.5 Precedence .165
8.2 The Applicable Plan Set .166
8.3 Choosing a Plan Instance .168

9 Beliefset Relations . 171
9.1 Introduction. .171
9.2 Beliefset Definition .172
9.2.1 Closed World Relations .173
9.2.2 Open World Relations .174
9.3 Beliefset Members and Methods .174

Beliefset Construction .174
void postEvent(Event e) . 177

void add(parameters) . 177

void remove(parameters) . 177

public int nFacts() . 178

9.4 Beliefset Declarations. .179
#key field FieldType field_name .179
#value field FieldType field_name .181
#indexed query methodName(parameters) 181

#linear query methodName(parameters) 183

#complex query name(parameters) <body> .184
#function query ReturnType name(params) <body>185
#posts event EventType handle .187
#propagates changes [EventType]. .188

9.5 Beliefset Callbacks .188
9.6 Manipulating Beliefset Relations .190
9.7 Beliefset Iteration .191
9.8 Extending the OpenWorld or ClosedWorld classes .192

10 Views . 195
10.1 Introduction. .195
10.2 View Definition .195
10.3 View Declarations. .195

#uses data Type ref .195

Agent Manual
Release 5.3
10-June-05 11
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

#complex query methodName(parameters)<statements>.196
#function query ReturnType methodName(params)<statements>.196
#posts event EventType [reference] 196

10.4 Usage. .196
Using a view to form a query spanning multiple beliefsets.197
Using a view to integrate an external process into JACK.198

Appendix A: JackBuild . 203
Description .203

Appendix B: Utility Classes . 207
Introduction. .207

aos.util.PathEntry . 207

aos.util.Properties . 208

aos.util.Redirector . 209

aos.util.ThreadPool . 209

aos.jack.util.thread.Semaphore 209

aos.jack.util.thread.TaskJunction 210

aos.jack.util.thread.Monitor 211

aos.jack.util.thread.TaskMonitoring 212

Appendix C: JACK Properties . 213
JACK Compiler Properties .213
JACK Runtime Environment Properties .214

Index. 215

AgentManual
Release5.3

12 10-June-05
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

Introduction

Agent Manual
Release 5.3
10-June-05 13
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

1 Introduction
1.1 Background
JACK IntelligentAgents®(JACK) is anAgent Oriented developmentenvironmentbuilt ontop
of and integrated with the Java programming language. It includes all components of the Java
development environment as well as offering specific extensions to implement agent
behaviour. JACK'srelationshipto Javais analogousto therelationshipbetweentheC++andC
languages.C wasdevelopedasaprocedurallanguageandsubsequentlyC++wasdevelopedto
provide programmers with object-oriented extensions to the existing language. Similarly,
JACK has been developed to provide agent-oriented extensions to the Java programming
language. JACK source code is first compiled into regular Java code before being executed.

In the same way that object-oriented programming introduces a number of key concepts that
influencetheentirelogicalandphysicalstructureof theresultingsoftwaresystem,sotoodoes
agent-oriented programming. In agent-oriented programming, a system is modelled in terms
of agents. These agents are autonomous reasoning entities capable of making pro-active
decisions while reacting to events in their environment.

1.2 Agent Oriented Concepts
Agent oriented programming is an advanced software modelling paradigm that arose from
research in distributed artificial intelligence. It addresses the need for software systems to
exhibit rational, human-like behaviour in their respective problem domains. Traditional
software systems make it difficult to model rational behaviour, and often programs written in
these systems experience limitations, especially when attempting to operate in real-time
environments.

Agent oriented programming is highly suited to many application areas, including distributed
business systems, command and control, intelligent appliances and simulation. Although still
young and under development, it has already shown particular promise in a variety of
distributed problem solving tasks such as fleet organisation, air traffic management and air
combat simulation. Because it offers such a modular and elegant solution to many of the
problems faced in reactive processing, agent-oriented programming is ideally suited to these
environments.

TheAgent Oriented model follows the same underlying principle asObject Oriented
programming – that reliable and scalable development can be enhanced by encapsulating the
desiredbehaviour in modularunitswhichcontainall thedefinitionsandstructuresrequiredfor
them to operate independently. Agents extend the concept of encapsulation to include a
representation of behaviour at a higher level than object-oriented approaches.

Introduction

AgentManual
Release5.3

14 10-June-05
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

1.2.1 What is an Ag ent?
The termagent is widely used to describe a range of software components, varying in
capability from procedural wizards, found in popular desktop applications, to information
agents that are used to automate information search and retrieval, and, finally, to intelligent
agents capable of reasoning in a well-defined way. The agents used in JACK areintelligent
agents. They model reasoning behaviour according to the theoreticalBelief DesireIntention
(BDI) model of artificial intelligence.

Following theBDI model,JACK intelligentagentsareautonomoussoftwarecomponentsthat
have explicit goals to achieve or events to handle (desires). To describe how they should
achieve these desires, BDI agents are programmed with a set of plans. Each plan describes
how to achieve a goal under varying circumstances. Set to work, the agent pursues its given
goals(desires), adoptingtheappropriateplans(intentions) accordingto its currentsetof data
(beliefs) about the state of the world. This combination of desires and beliefs initiating
context-sensitive intended behaviour is part of what characterises a BDI agent.

A JACK agent is a software component that can exhibit reasoning behaviour under both pro-
active (goal directed) and reactive (event driven) stimuli. Each agent has:

• a set of beliefs about the world (its data set),

• a set of events that it will respond to,

• a set of goals that it may desire to achieve (either at the request of an external agent, as a
consequence of an event, or when one or more of its beliefs change), and

• a set of plans that describe how it can handle the goals or events that may arise.

When an agent is instantiated in a system, it will wait until it is given a goal to achieve or
experiences an event that it must respond to. When such a goal or event arises, it determines
what course of action it will take. If the agent already believes that the goal or event has been
handled (as may happen when it is asked to do something that it believes has already been
achieved), it does nothing. Otherwise, it looks through its plans to find those that are relevant
to the request and applicable to the situation. If it has any problems executing this plan, it
looksfor othersthatmightapplyandkeepscycling throughits alternativesuntil it succeedsor
all alternatives are exhausted.

Thus,anagentcanbethoughtof asanalogousto apersonwith accessto aProceduresManual.
The Procedures Manual (set of plans) describes the steps that the agent should take when a
certain event arises or when it wants to achieve a certain outcome. At first glance, this may
seem like ordinary Expert System behaviour – with all the limitations that this implies.
However, the crucial difference in agent-oriented systems is that the agent is able to be
programmed to execute these plans just as a rational person would. In particular, it is able to
exhibit the following properties associated with rational behaviour:

Introduction

Agent Manual
Release 5.3
10-June-05 15
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

Goal-directed focus – the agent focuses on the objective and not the method chosen to
achieve it.

Real-time context sensitivity – the agent will keep track of which options are applicable at
each given moment, and make decisions about what to try and retry based on present
conditions.

Real-time validation of approach – the agent will ensure that a chosen course of action is
pursued only for as long as certain maintenance conditions continue to be true.

Concurrency – theagentsystemis multi-threaded.If new goalsandeventsarise,theagent
will be able to prioritise between them and multi-task as required.

1.2.2 Why pr ogram using Ag ents?
The capability of intelligent agents to autonomously perform simple tasks has aroused much
interest. The key characteristics that make them attractive are their:

• ability to act autonomously,

• high-level representation of behaviour – a level of abstraction above object-oriented
constructs,

• flexibility , combining pro-active and reactive behavioural characteristics,

• real-time performance,

• suitability for distributed applications, and

• ability to work co-operatively in teams.

JACK agentsarehighly suitedto thedevelopmentof timeandmission-criticalsystems,asthe
BDI approachprovidesfor theverificationandvalidationof themodel.Theagent'sgoalsmay
include keeping human users informed of what the agent is trying to achieve, what its current
intentions are, and what progress it has been able to make. Giving BDI agents pre-compiled
plans is a method of ensuring predictable behaviour under critical operational conditions, and
of ensuring performance.

1.3 The Components of J ACK

1.3.1 The JACK Ag ent Langua ge
The JACK Agent Language is the actual programming language used to describe an agent-
oriented software system. The JACK Agent Language is a super-set of Java – encompassing
the Java syntax while extending it with constructs to represent agent-oriented features.

Each of the Java extensions that are included in JACK, along with their expected usage and
semantic behaviour, are described in detail in the following chapters.

Introduction

AgentManual
Release5.3

16 10-June-05
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

1.3.2 The JACK Agent Compiler
The JACK Agent Compiler pre-processes JACK Agent Language source files and converts
them into pure Java. This Java source code can then be compiled into Java virtual machine
code to run on the target system.

1.3.3 The JACK Agent Kernel
The JACK Agent Kernel is the runtime engine for programs written in the JACK Agent
Language. It provides a set of classes that give JACK Agent Language programs their agent-
oriented functionality. Most of these classes run behind the scenes and implement the
underlyinginfrastructureandfunctionalitythatagentsrequire,while othersareusedexplicitly
in JACK Agent Language programs, inherited from and supplemented with callbacks as
required to provide agents with their own unique functionality.

1.4 Developing a JACK Application
An integrated development environment known as the JACK Development Environment is
available for the development of JACK applications. Use of the JACK development
environment is described in a separate manual. Alternatively, JACK applications can be
developedfrom thecommandline usinganeditorof choiceandexplicitly invoking theJACK
Agent compiler.

If the latter choice is used, the environment will need to be set up. The following section
explainshow this is donefor themorecommonoperatingenvironments.Theinstructionsthat
follow assumethatall commandsareinvokedfrom acommandline. Thus,underWindowsor
NT, a DOS window will need to be created.

1.4.1 Setting up your Environment
Before a JACK application can be compiled and run, ensure that thePATH andCLASSPATH
variables are set correctly. PATH needs to be set so thatjava andjavac are accessible.
CLASSPATH needs to be set so thatjava andjavac can access the JACK class files and the
classes that are created.

The actual settings forPATH andCLASSPATH will depend upon where the java executables and
JACK classes have been installed. It is assumed that:

1. ThePATH variable is set correctly.

2. TheCLASSPATH variable has not been set. (If it has, it may need to be extended. This
procedure is operating system dependent.)

Introduction

Agent Manual
Release 5.3
10-June-05 17
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

• DOS / Windows / NT

In this example, it is assumed that the JACK classes are installed inC:\aos\lib. Within a
session theCLASSPATH can be set by typing:

 set CLASSPATH=C:\aos\lib\jack.jar;.

at a DOS prompt.

This should be added to theC:\AUTOEXEC.BAT file so that this setting is permanently
available. In Windows/DOS, this can be done usingSYSEDIT. In NT it can be changed via
<Control Panel> -> <System> -> <Environment>. Note that theCLASSPATH should be
specified in lower case.

• UNIX

In thisexample,it is assumedthattheJACK classesareinstalledin /aos/jack/lib. Within
a session, theCLASSPATH can then be set by typing:

 CLASSPATH=/aos/jack/lib/jack.jar:.
 export CLASSPATH

If usingcsh, to make the setting permanent, add:

 setenv CLASSPATH=/usr/local/aos/jack/lib/jack.jar:.

to the.cshrc file.

1.4.2 Sour ce Code Creation
ThiscanbeachievedeitherusingtheJACK developmentenvironment,or aneditorof choice.
When developing a JACK application, source code will be created for some or all of the
following entities:

• JACK event(s);

• JACK plan(s);

• JACK agent(s);

• JACK capability(s);

• JACK view(s);

• JACK beliefset(s);

plus a Java class that contains the applicationmain() function that is the entry point for the
Java virtual machine and any other Java file required by this application.

Thefiles thatarecreatedfor theseentitiesmusthave thesamebasenameastheentitydefined
in the file. They may have an extension designating the type of JACK entity contained, or
simply a.jack extension.

Introduction

AgentManual
Release5.3

18 10-June-05
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

Table 1-1: JACK file extensions

1.4.3 Compilation
Assumingthatall thesourcefilesarein yourcurrentdirectory, theapplicationcanbecompiled
by invokingJackBuild:

 java aos.main.JackBuild

This runs theJackBuild utility which in this invocation compiles all of the JACK source files
in the current directory into Java source. The Java compiler is then automatically invoked on
all Java source files in the current directory. JackBuild recognises JACK files by their file
name extensions as listed in the previous section.

Without arguments, theJackBuild utility assumes that all files in the directory belong to the
application. If the application is organised into subdirectories, it can be compiled by invoking
JackBuild from the parent directory as follows:

 java aos.main.JackBuild -r

The-r option recursively enters subdirectories to compile code.

Refer toAppendix A for more information aboutJackBuild.

1.4.4 Running a JACK Application
If oneassumesthatthemain() methodwasin afile calledTest.java, thecompilationprocess
will have produced a file calledTest.class. The application can then be run from the
directory containingTest.class by typing

 java Test

Extension Usage

.jack Any JACK object definition.

.agent JACK agent definition.

.cap JACK capability definition.

.plan JACK plan definition.

.event JACK event definition.

.bel JACK beliefset definition.

.view JACK view definition.

.java Java class or interface definition.

Introduction

Agent Manual
Release 5.3
10-June-05 19
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

Note: It is possibleto configureWindowssothatfileswith theextension.class arerunnable
by point-and-click.

Theprogrammercanspecifycommandline argumentsfor usewithin anapplication.Notethat
there are some command line arguments which are processed internally by JACK. In
particular, aDCI network from thecommandline canbesetup(this is discussedfurtherin the
chapter onInter-agent Communication). If such arguments are present, the method
aos.jack.Kernel.init() must be used to process these argumentsbefore any user specified
command line arguments are processed.init() extracts and processes command line
argumentsintendedfor JACK, thenreturnsamodifiedargumentlist containingtheremaining
user defined arguments. This list can then be accessed in the normal way, as shown in the
example below:

 public class Example
 {
 // The user supplies a single numeric command line argument
 // in addition to those which will be handled by JACK
 public static void main(String args[])
 {
 args = aos.jack.Kernel.init(args);

 int snum = Integer.parseInt(args[0]);
 :
 :
 }
 }

All the standard Java command options are available. Some JACK functionality such as the
interactiondiagramanddebuggingis configurablevia thesystempropertiesfile. The-D option
can be used in these circumstances to set properties. For more details on the interaction
diagram and debugging refer to theTracing and Logging Manual.

1.4.5 Debugging a JACK Application
There are a number of tools available to assist the developer during application development.
These range from graphical tracing tools to logging tools which provide a detailed trace of
system execution. These tracing and logging tools are described in theTracing and Logging
Manual.

Introduction

AgentManual
Release5.3

20 10-June-05
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

JACK Agent Language Overview

Agent Manual
Release 5.3
10-June-05 21
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

2 JACK Ag ent Langua ge Overview
2.1 The JACK Ag ent Langua ge
TheJACK AgentLanguageis built on topof Java.LikeC++, theJACK AgentLanguagedoes
morethanextendthefunctionalityof Java– it alsoprovidesaframework to supportanentirely
new programming paradigm. The JACK Agent Language is anAgent Oriented programming
language and is used for implementing Agent Oriented software systems.

The JACK Agent Language extends Java to support Agent Oriented programming:

• It defines new base classes, interfaces and methods.

• It providesextensionsto theJavasyntaxto supportnew agent-orientedclasses,definitions
and statements.

• It provides semantic extensions (runtime differences) to support the execution model
required by an agent-oriented software system.

All the language extensions are implemented as Java plug-ins. This makes the language as
extensible and flexible as possible. Flexibility is important in the JACK Agent Language
because it facilitates ongoing research into agent-oriented programming. Developers may, for
example, want to investigate how different beliefset implementations affect agent
performance.Becausethebeliefsetcomponentis suppliedasaplug-in,thiscanbealteredwith
minimal changes to the JACK development environment. All that is required is to replace the
beliefset implementation in the kernel package.

Each of the JACK Agent Language extensions is strictly typed. This minimises implicit type
casting and the opportunity for programmer error. Strict typing also allows for more efficient
program compilation by the JACK Agent Compiler.

2.1.1 Class, Interface and Method Extensions
The JACK Agent Language introduces five main class-level constructs. These constructs are:

Agent – The agent construct is used to define the behaviour of an intelligent software
agent. This includes capabilities an agent has, what type of messages and events it
responds to and which plans it will use to achieve its goals.

Capability – The capability construct allows the functional components that make up an
agentto beaggregatedandreused.A capabilitycanbemadeupof plans,events,beliefsets
andothercapabilitiesthattogetherserveto giveanagentcertainabilities. An agentcan,in
turn, be made up of a number of capabilities, each of which has a specific function
attributed to it.

JACK Agent Language Overview

AgentManual
Release5.3

22 10-June-05
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

BeliefSet – The beliefset construct represents agent beliefs using a generic relational
model. It has been specifically designed so that a beliefset can be queried usinglogical
members. Logical members are like normal data members, except that they follow the
rules of logic programming (as in programming languages like Prolog).

View – Theview constructallowsgeneralpurposequeriesto bemadeaboutanunderlying
data model. The data model may be implemented using multiple beliefsets or arbitrary
Java data structures.

Event – The event construct describes an occurrence in response to which the agent must
take action.

Plan – An agent's plans are analogous to functions. They are the instructions the agent
follows to try to achieve its goals and handle its designated events.

For a detailed description of each of these extensions, including the specific interfaces and
methods provided with them, refer to the appropriate chapters in this manual.

2.1.2 Syntactic Extensions
JACK Agent Language provides a number of variations and extensions to the standard Java
syntax. These extensions exist purely to support the syntactic and semantic differences
between object-oriented and agent-oriented programming.

An examplepieceof codewritten in theJACK AgentLanguageto implementanagentplanis
given below. The syntactic elements that are unique to JACK Agent Language have been
highlighted in bold. All other elements follow normal Java syntax.

plan MovementResponse extends Plan
 {

#handles event RobotMoveEvent moveResponse;
#uses agent implementing RobotInterface robot;

 static boolean relevant (RobotMoveQEvent ev)
 {
 return (ev.ID == RobotMoveQEvent.REPLY_SAFE ||
 ev.ID == RobotMoveQEvent.REPLY_DEAD);
 }

body()
 {
 if (moveResponse.ID==REPLAY_SAFE)
 {
 System.err.println("Robot Safe to Move");
 robot.updatePosition(moveResponse.Lane,
 moveResponse.Displacement);
 }
 else
 { // robot didn't make it
 System.err.println("Robot is Dead");

JACK Agent Language Overview

Agent Manual
Release 5.3
10-June-05 23
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

 robot.die();
 }
 }
 }

In this example, the plan being defined inherits its core functionality from the JACK Agent
Language class:Plan. It then identifies how the plan will be used through a number of JACK
Agent Languageplan declarations. JACK Agent Language declarations are each preceded
with a# symbol to distinguish them from Java syntax elements, for example#handles event
and#uses agent implementing.

The#handles event declaration identifies the goal or event to which this plan will respond.
The#uses agent implementing declaration constrains the agent(s) that can use this plan.
Only those agents that present the specified interface (RobotInterface) can include this plan.

Theblockof codein thisexamplecontainsonly regularJavacode.TheJACK AgentLanguage
however provides its own statements that can be used when required. These statements are
known asreasoning method statements, and are identified by a preceding @ character.
Reasoning methods specify operations that are only meaningful in agent-oriented
programming, such as posting an event or waiting until the agent acquires a particular belief.
They are called reasoning method statements because you can only use them in a reasoning
method belonging to a plan. These reasoning methods describe the reasoning and behaviour
that an agent undertakes when it executes an instance of that plan.

Hence, JACK Agent Language extends Java syntax at three levels:

the class definition level, providing a set of classes that agent-oriented constructs such as
agent, plans and events can inherit from;

the declaration level, providing a set of statements that identify relationships between the
classes mentioned above; and

the statement level, providing a set of statements that can operate on JACK Agent
Language-specific data structures.

For more information on the JACK Agent Language syntax extensions to Java, see the
following chapters.

2.1.3 Semantic Extensions
Because agent-oriented programming follows a different modelling paradigm to object-
oriented programming, there are significant differences in how programs written in each
language behave at runtime.

The JACK Agent Language extends the Java execution engine in the following ways:

JACK Agent Language Overview

AgentManual
Release5.3

24 10-June-05
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

• Multi-threading is built into the kernel and removed from programmer control. JACK
Agent Language programs should not be written with explicit multi-threading. This is
transparently provided by the JACK Agent Language.

• Execution follows the model of agents processing a set of plans and having access to a
number of beliefset relations. The agent executes these plans intasks to handle events
when they arise, consulting its beliefset relations where necessary. These plans may
initiate subtasks, which may in turn initiate their own subtasks if the agent requires a
sizeable and complex response.

• A new data structure called alogical member is introduced. Unlike normal members,
logical members have an unknown (unbound) value until this value has been determined.
Once determined, the value cannot change.

• The agent's beliefset can be queried using logical members by attempting tounify the
logical member with a desired result. If the query succeeds, the logical member contains
the desired value. If not, it remains unbound (unknown) and can be used later.

A detailed description on the semantic consequences of each new JACK Agent Language
construct can be found in the appropriate chapters of this manual (Agents, Capabilities,
Events, Plans, Beliefset Relations andViews).

2.2 JACK Ag ent Langua ge Summar y
The JACK Agent Language is closely related to Java and extends the regular Java syntax. It
allows the programmers to develop the components that are necessary to define BDI agents
and their behaviour. These functional units are:

Agents – which have methods and data members just like objects, but also contain
capabilities that an agent has, beliefset relations that they can use to store beliefs,
descriptions of events that they can handle and plans that they can use to handle them.

Capabilities – which serve to encapsulate and aggregate functional components of the
JACK AgentLanguagefor useby agents.Capabilitiescanincludeevents,plans,beliefsets
or even other capabilities.

Beliefsets – whichareusedto storebeliefsanddatathattheagenthasacquired.Agentscan
alsouseregularJavadatastructuresfor storinginformation,but anadvantageof abeliefset
is that it will generate events when particular changes are made. This can be used to
initiate further action within the agent and hence make it more responsive to its own
internal state. Also beliefsets can be queried using logical members.

Views – which provide a powerful way of modelling any data in a way easily manipulated
by JACK.

Events – which identify the circumstances and messages that it can respond to.

Plans – which are executed in response to these events.

JACK Agent Language Overview

Agent Manual
Release 5.3
10-June-05 25
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

Each of the events, plans and beliefsets used are implemented as Java classes. They inherit
certain fundamental properties from a base class and extend these base classes to meet their
own specific needs. The base classes are defined within the kernel and form the 'glue' that
holds a JACK agent-oriented program together. However, the JACK Agent Language is more
thanjustaspecificorganisationof Javaobjectsandinheritancestructures– it providesits own
extended syntax, which has no analogous representation in Java.

JACK Agent Language constructs can be categorised as follows:

• Classes (types)

• Declarations (#-declarations)

• Reasoning Method Statements (@-statements)

In addition, each of the JACK Agent Language classes supplies a number of normal Java
members and methods that can be made use of in JACK programs.

The constructs available in each of these categories are listed in the following sub-sections.

2.2.1 JACK Ag ent Langua ge Classes
These classes define functional units within JACK. The functional units are implemented as
Java classes, with their agent-oriented properties embedded within the class as private
methods. They also provide some base members and methods that JACK Agent Language
programmerscanuse.EachJACK AgentLanguagetypeandthebasemembersandmethodsit
provides are listed below:

Agent – which models the main reasoning entities in JACK.

Capability – whichaggregatesfunctionalcomponents(events,plans,beliefsetsandother
capabilities) for agents to make use of.

Event – whichmodelsoccurrencesandmessagesthattheseagentsmustbeableto respond
to. Events may arise externally from messages from other agents, or internally as a
consequence of one of the agent's own actions, or in response to one of its internal goals.

Plan – which models procedural descriptions of what an agent does to handle a given
event. All the action that an agent takes is prescribed and described by the agent's plans.

BeliefSet – which models an agent's knowledge as beliefs that follow either a closed
world (omniscient) or open world (with unknown) semantics. Beliefsets represent an
agent'sbeliefsasfirst orderrelationaltuples,andmaintaintheir consistentlogicalandkey
constraints.

Note that aView does not have a base class.

JACK Agent Language Overview

AgentManual
Release5.3

26 10-June-05
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

2.2.2 JACK Agent Language Declarations (#-Declarations)
JACK Agent Language#-declarations define agent-oriented properties of a JACK Agent
Language type, or relationships and dependencies that exist between JACK Agent Language
types. They are used to specify relationships between classes in a JACK program. For
example, JACK Agent Language declarations specify which plans an agent uses and which
event a plan handles.

The range of#-declarations available in JACK Agent Language are listed below:

#chooses for event – is used inplan definitions to identify a plan that allows the agent to
reason about which applicable plan instance it will execute for a given event occurrence. This
is in contrast to normal plans, which describe how the agent will respond to a given event
instance when that plan is selected. Because it provides the agent with the ability to reason
about how it will respond to (reason about) a given event, plans that contain a#chooses for
event declaration are known asmeta-level reasoning plans.

#complex query – is used inview and beliefset definitions to define a complex query.

#exports data – is used incapability definitions to declare that a user-defined data structure
or a JACK beliefset is exported from the capability so that it is accessible from its parent
capability. The export statement can also be used to make a user-defined data structure or
JACK beliefsetavailableat theagentlevel, andhenceaccessiblefrom othercapabilitiesin the
agent.

#function query – is used inview and beliefset definitions to define a function query.

#handles event – is used inagent definitions andplan definitions. In both cases, it identifies
aneventthatanagentor planhandles.Eventhandlingis declaredin theagentthatusesaplan
andtheplanitself.ThisallowsJACK to performtypecheckingandensurethattheagenthasat
least one plan to handle every event that it claims to handle, and conversely that an agent
doesn't have access to a plan that is beyond its stated event-handling responsibilities.

#handles external event – is used incapability definitions to declare that there are plans
within the capability that handle events of a given type.

#has capability – is used inagent definitions andcapability definitions. In anagent
definition, it gives the agent access to all of the functional components enclosed by the
capability. In acapability definition, it declares the use of an inner capability.

#imports data – is used incapability definitions to declare a user-defined data structure or
JACK beliefset that is to be used within the capability, but is brought in from the enclosing
capability or agent.

JACK Agent Language Overview

Agent Manual
Release 5.3
10-June-05 27
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

#indexed query / #linear query – are both used inbeliefset definitions to specify how a
relation can be queried. This declaration indicates which parameters it expects to be supplied
in the query and which parameters it will need to return (through binding logical members)
when the query succeeds.

#key field / #value field – are both used inbeliefset definitions to specify the fields that
belong to a relation.Key fields identify an object that the relation describes, whilevalue fields
identify attributes of that object.

#posted as – is used in anevent definition to define a posting method for that event. An
event'spostingmethodsareusedto constructinstancesof theeventwhentheeventneedsto be
posted. Multiple posting methods allow the event to be posted in different ways (even having
different parameters) in different circumstances.

#posts event – is used inagent definitions, capability definitions andplan definitions to
identify events that agent or plan is capable of posting. Neither an agent nor a plan can create
aninstanceof aneventunlessthey declarethatthey canpost(#posts event) or send(#sends
event) it. Whether an event is posted or sent depends on its type.

#posts external event – is used incapability definitions to declare that there are plans (or
Java code) within this capability that post events of a given type.

#posted when – is added to an event definition to specify the condition which must arise for
the event to be posted automatically.

#private data / #agent data / #global data – are used inagent definitions andcapability
definitions to identify a user-defined data structure or JACK beliefset that the agent can use to
storeinformation.A private data instanceis uniqueto eachagent,andhencecanbereador
modifiedby thatagentandthatagentonly. An agent data instanceis availableto all agentsof
agivenagenttype(i.e. instancesof thesameAgentclass).A global data instanceis available
to all agents in a given process. Agents should only modify the data that appears in their
private user-defined data structures or in their private JACK beliefsets.

#propagates changes – marks that a beliefset may be a source beliefset in a team belief
connection,andit providesanimplementationof theconnectiondynamics,sothatchangesto
the beliefset are propagated correctly. Belief propagation is only available when using JACK
Teams. Refer to theTeams manual for more details.

JACK Agent Language Overview

AgentManual
Release5.3

28 10-June-05
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

#reasoning method – is used inplan definitions to define methods that an agent may execute
whenit runsthisplan.Reasoningmethodsaredifferentfrom normalJavamethodsin thatthey
executeasfinite statemachines,andmaysucceedor fail, dependingonwhethertheagentcan
complete each statement that they contain. The top-level reasoning method is calledbody().
This is theonly reasoningmethodthatmustbepresentin all plansandis not precededby an#
symbol. Thebody() method can call other reasoning methods if they have been included
amongst the plan's#reasoning method declarations. It can also initiate the execution of other
tasks and subtasks by executing JACK Agent Language statements that post new events.
Examples of such statements are:@subtask, @maintain and@achieve.

#reasoning method pass / fail – is usedin plandefinitionsto identify processingthatshould
occur after an instance of the plan has either succeeded or failed. When either of these
methodsis presentin aplan,thatplan'sexecutiondoesnotendwhentheplanhassucceededor
failed. First, the relevantpass() or fail() method is executed.

#sends event – is usedin agentdefinitionsandplandefinitionsto identify messageeventsthat
the agent or plan is capable of sending to other agents. Neither an agent nor a plan can send a
messageeventto anotheragentunlessit includeacorresponding#sends event declarationfor
that class of message event.

#set behavior – is used in BDI event definitions to declare how an agent processes an
instanceof thiseventwhenit arises.Optionsthatcanbeconfiguredincludewhethertheagent
will re-try the event if an attempted plan fails and whether or not the agent can reason about
which plan it executes in response to the event.

#set transport – is used to signal which transport format is to be used for message events.

#uses agent implementing – is used inplan definitions to declare that any agent using these
plans must implement the required interface. Interfaces allow multiple agents to use a given
plan.

#uses data / #reads data / #modifies data – are used inplan definitions to identify user-
defined data structures and JACK beliefsets that the plan can access. If the plan reads a data
instance it should only perform queries on it. If the plan modifies a data instance, it can read
andmodify thedata.Similarly, if theplanusesadatainstance,it canreadandmodify thedata.

#uses data – is usedin view definitionsto declarethataview requiresdataof aspecifiedtype.
It can also be added toevent andplan definitions to provide access to a belief structure.

#uses interface – is used in plans to declare that one of the enclosing capabilities (or the
enclosing agent) implements the required interface. Note that this declaration supersedes
#uses agent implementing for most purposes.

#uses plan – is used inagent andcapability definitions to specify that an agent or capability
includes this plan in its set of available plans. This is a containment relationship.

JACK Agent Language Overview

Agent Manual
Release 5.3
10-June-05 29
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

#uses taskManager – is usedin agentdefinitionsto specifyhow anagentsharesits processing
capacity between active tasks. JACK provides a simple task manager, which persists with the
current task until completion, and a round robin task manager which allows each task to
execute a specified number of plan steps before switching to another waiting task.

2.2.3 Reasoning Method Statements (@-Statements)
Reasoning statements are JACK Agent Language specific statements that can only appear in
reasoning methods. They describe actions that the agent can perform to execute behaviour.
Steps such as posting events, sending messages to other agents or waiting until a particular
condition is true are expressed using reasoning method statements.

Each reasoning method statement is listed below.

@action – is a reasoning statement that can be used if there is a need to include a lengthy
computation within a plan.

@achieve – tells theagentto makeacertainconditiontrue.If theconditionis alreadytrue,the
agentdoesnothing,but if notaBDIGoalEvent will beposted.Typically, thiseventwill initiate
the execution of a plan to make the condition hold. The current plan is suspended while this
planis beingexecuted,andthe@achieve statementsucceedsor failsbasedonwhethertheplan
that is executed succeeds or fails.

@determine – tells the agent to find a binding for a logical condition that causes a
BDIGoalEvent to succeed. Typically, the logical condition will contain one or more beliefset
queries.For eachbindingthatthesequeriesreturn,theagentpostsaBDIGoalEvent. As soonas
one of theseBDIGoalEvents succeeds, the@determine statement succeeds. If all bindings are
tried and fail, the@determine statement fails.

@insist – tells the agent to ensure that a certain condition holds true. Like the@achieve
statement, the agent will do nothing if the condition is already true and will post a
BDIGoalEvent otherwise, but when theBDIGoalEvent has been handled, the agent re-tests the
conditionto ensurethatit holds.If theconditionholds,the@insist statementsucceeds,but if
not theBDIGoalEvent is posted again. The agent will keep testing the condition and posting
theBDIGoalEvent until the specified condition is satisfied or the event processing fails.

@maintain – is used in a reasoning method to specify that asubtask be performed. However,
while the agent is performing the subtask, it must ensure that a particular logical condition is
neverviolated.If thelogicalconditionis foundto befalsebetweenplansteps,thesubtaskwill
fail immediately. Other than specifying a maintenance condition, the@maintain statement
operates in exactly the same way as the@subtask statement (see below for details).

@parallel – allows concurrent sub-tasking of a set of statements within reasoning methods.
The@parallel statementsuspendsexecutionof thecallingplanwhile all enclosedstatements
are executed in parallel.

JACK Agent Language Overview

AgentManual
Release5.3

30 10-June-05
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

@post – postsanEvent or BDIFactEvent within anagent.This initiatesanothertaskexecution
within the agent. The event is posted using one of its posting methods and is handled
asynchronously by the current task execution thread.

@reply – sends a message event (MessageEvent or BDIMessageEvent) in response to another
messageeventthattheagenthasreceived.It is only availablein plansthatareexecutedwithin
a task initiated by the arrival of a message event. If the task execution was initiated by any
other kind of event, the@reply statement will fail.

@send – sends a message event to another agent. Unlike the@post method which posts an
eventinternally, aneventis sentto anotheragent(potentiallyrunningin anotherprocess).The
receiving agent then has the option of replying to the message. The sender has a mechanism
for checkingthata replyhasbeensent,andhasmethodsfor handlingreplieswhenthey arrive.

@sleep – suspends execution of the task for a given period of time.

@subtask – postsanEvent or BDIFactEvent , but insteadof handlingtheeventasynchronously
in a separate task, the agent handles it synchronously as part of the same task.

@test – tests a condition. If the condition is true, it returnstrue. If the condition is false, it
returnsfalse. If the condition is unknown, it posts aBDIGoalEvent to find out whether it is
true or false.

@wait_for – identifiesaconditionthattheagentshouldwait for. Theplancannotproceeduntil
this condition is true. The task is suspended, and waits until some other task performs an
action that makes the condition true. To prevent the agent from waiting indefinitely, a timeout
condition can also be specified.

2.2.4 Base Members and Methods
EachJACK AgentLanguageclassoffersanumberof publicmembersandmethodsthatcanbe
called in the user's programs. These base members and methods are listed below:

2.2.4.1 Agent Members

Timer timer – apublicagentmemberthatkeepsthetimer for thisagent.This timer is usedby
the plan methodselapsed() andafter(), and by the@sleep reasoning method statement.

2.2.4.2 Agent Methods

finish() – terminates the current agent instance. This is distinct from, and should not be
confusedwith, thestandardJavafinalize() callback(usedby thegarbagecollectorto allow
objects to take a final action before termination).

JACK Agent Language Overview

Agent Manual
Release 5.3
10-June-05 31
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

String name() – returnsthefull nameof agivenagentinstance.An agent'sfull nametakesthe
following form:local_name@portal_name, where:

• local_name is the name that identifies the agent at a givenportal on the remote agent
communications network. This is the name that was passed to the agent constructor
(super("agent_name") call).

• portal_name is the name of the portal that the agent listens on and uses to communicate
with other agents on the remote agent communication network.

void postEvent() – postsanevent.Theeventis handledasynchronously by aseparatetaskin
the agent. This method behaves in the same way as the@post reasoning method statement.
ThepostEvent() method allows Java code other than reasoning methods to initiate task
execution within an agent by posting an event.

boolean postEventAndWait() – also posts an event. The event must belong to an event class
thattheagenthasdeclaredit canpost(i.e.by identifying thisclassin oneof its #posts event

declarations). However, instead of posting the event asynchronously, the event is posted
synchronously (as though it has been posted by a@subtask statement, for example), to be
handledasa 'subtask'of thecalling thread.Thecurrentexecutionthreadstopswhatit is doing
while the event is handled and waits for the event to either succeed or fail.

An attempt to callpostEventAndWait() from a JACK thread (i.e. through a call chain
originatingin aplan)will becaughtby theJACK kernel, whichwill issueawarningmessage.
PostEventAndWait provides a means to post events synchronously from outside reasoning
method execution (i.e. from a Java thread).

void reply(MessageEvent query, MessageEvent reply) – replies to a message event that an
agent has received from another agent. It takes two message events as arguments:

• query, which is the message event to which the agent is responding; and

• reply, which is the message event that should be returned to the sender ofquery as the
agent's response.

An agent can reply to any message event that it receives. This method behaves identically to
the@reply statement in the JACK Agent Language. Likesend() andpostEvent() , this
method allows code outside plans to engage in inter-agent communication and to initiate task
execution within an agent.

void send(String to, MessageEvent message) – sends a message event to another agent. It
takesamessageeventandthe(full) nameof theagentto whichit shouldbesent.Partialnames
resolve to the same portal as the sender.

JACK Agent Language Overview

AgentManual
Release5.3

32 10-June-05
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

2.2.4.3 Event Members

String from – appearsin messageeventsonly, andenablesidentificationof theagentthatsent
the message carried by this message event.

String message – appears in message events only (MessageEvents andBDIMessageEvents),
and contains a message that will be passed to the application's Agent Interaction Diagram, so
that each instance of this event can be identified when it appears in the diagram. The Agent
Interaction Diagram in discussed in theTracing and Logging Manual.

String mode – appears inBDIGoalEvents only and identifies the type of JACK Agent
Language statement that posted the instance of this goal event (@achieve, @insist, @test or
@determine).

2.2.4.4 Event Methods (for MessageEvents only)

Cursor replied()– appearsin MessageEventsonly, andenablestheuserto determinewhether
the agent has received at least one reply to a given message event instance. It returns a
triggered cursor, which will test whether the given message event's reply queue is empty.
Because the cursor is triggered, it can be used in a@wait_for statement to wait for message
event replies to arrive.

MessageEvent getReply() – appears in message events only and allows the user to obtain a
reference to each message event that has been returned to the agent as a reply to a given
messageeventinstance.To beareply, amessageeventmusthavebeensentby thedestination
agent for the original message, using thereply() method, from within the task that the
destination agent was using to handle the original message event.

2.2.4.5 Plan Members

Agent agent – identifiestheagentthatthisplanbelongsto. Wheneveraninstanceof aplanis
created, this member is assigned a reference to the agent that created the plan instance.

Note: The preferred way to access the agent's methods and members is through the#uses

interface statement described in thePlans chapter.

JACK Agent Language Overview

Agent Manual
Release 5.3
10-June-05 33
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

2.2.4.6 Plan Methods

PlanInstanceInfo getInstanceInfo() – acallbackthathasbeensuppliedsothatagentscan
performmeta-level reasoning about plan instances. It provides a base class for recording
information about plan instances. This base class can be extended and accessed in plans that
perform meta-level reasoning. For example, one application may extend the
PlanInstanceInfo class so that it assigns aprecedence rating to each plan instance. This
precedence rating may simply be a constant, or it may be calculated in some way. The agent
can choose between its available plan instances on the basis of this precedence rating, taking
the highest precedence plan it has available as its first choice.

static boolean relevant() – usedto determineif aplanis relevantto theactualevent.When
the agent is looking for a plan to execute in response to an event, it executes the plan's
relevant() method to determine whether the given plan is relevant. A plan is relevant if, and
only if, it handlesthegiveneventandtheevent'sparametersmatchthepatternspecifiedin the
plan'srelevant() method. Since events are polymorphic, this can be used to weed out those
plans that can handle this event type, but not this particular instance of the event type. Unless
the event's parameters satisfy therelevant() method, the agent will deem the plan not
relevant to this event.

context() – used to determine if the plan should be executed in the current context. The
context specifies a logical condition that must be satisfied if the plan is to be applicable for
handling a given event in the current situation. Context often refers to values in an agents
knowledge base, which are its beliefs about the state of the world. When the agent needs to
handle an event, it looks for aplan instance that is applicable to this event. A plan instance is
applicable if it satisfies the plan's context. Typically, thecontext() method will include
logical members in beliefset queries. When an applicable instance of the plan is found, it
indicatesthatthequeryfounda tupleandboundthelogicalmember(s)to its value(s).If there
is more than one way to satisfy acontext() method's logical expression, there will be
multiple instances of the plan that are applicable. One applicable instance will be generated
for each set of bindings that satisfy thecontext() condition.

body() – the plan's main or 'top-level' reasoning method. It describes what it is that the agent
actually does when it executes an instance of this plan.

2.2.4.7 BeliefSet Methods

add() – adds new tuples to an agent's private beliefset, or modifies its existing tuples by
supplying updated information.

remove() – removes tuples from an agent's beliefset.

public int nFacts() – returns the number of facts (tuples) that are currently held in a given
beliefset. For Open World relations, this is the sum of both positive (true) and negative (false)
beliefs, while forClosed World relations this is only the number of positive (true) beliefs.

JACK Agent Language Overview

AgentManual
Release5.3

34 10-June-05
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

2.2.4.8 Capability Methods

void postEvent(Event e) – thepostEvent() methodis usedto posteventswithin capability
code. This method is actually just a convenience method that refers to
getAgent().postEvent().

Agent getAgent() – this method is called on a capability instance to return the containing
agent.

void autorun() – thismethodcanbeoverriddenin orderto providesomeinitialisationwhen
the capability is actually brought into being.

Agents

Agent Manual
Release 5.3
10-June-05 35
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

3 Agents
3.1 Intr oduction
The Agent class embodies all the functionality associated with a JACK intelligent agent. To
defineagents, extendthisclass,addingmembersandmethodsthatareapplicableto theagents
current application domain.

3.2 Agent Definition
Agent definitions take the form shown below:

agent AgentType extends Agent [implements Interface]
 {
 // JACK Agent Language statements specifying containment
 // relationships.
 // These are described in the following sub-sections.
 }

Each component of this definition is explained in the following table:

Table 3-1: Components of an Agent definition

Syntax Term Description

agent A JACK Agent Language keyword used to introduce
an Agent definition.

AgentType The name of your derivedAgent class (which can not
be further subclassed).

extends Agent Thispartof thestatementplaysthesameroleasin Java
– it indicatesthattheagentbeingdefinedinheritsfrom
a JACK Agent Language base class calledAgent. The
Agent base class implements all the underlying
methods that provide an agent's core functionality.

[implements Interface] This part of an agent definition is optional.
When present, it states that the agentimplements a
given Java interface. Java interfaces are like classes
that consist of method prototypes without code. When
an agent implements an interface, it provides code to
implement each of these methods.

Agents

AgentManual
Release5.3

36 10-June-05
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

3.3 Agents and Interfaces
The optionalimplements Interface component in an agent definition is important when it
comes to writing portable JACK Agent Language programs that allow for code re-use.
Interfaces provide a common ground between agents that allows them to share plans.

Whenanagentexecutesaplan,thisplanwill oftencall ordinaryJavamethods.It is important
to rememberthatwhenthisoccursthesemethodsmustbeincludedin theagentdefinition,not
the plan definition. Therefore, any agent that uses this plan must include the defined methods
or the plan will not be able to run properly.

This means that the JACK Agent Language places restrictions on which agents can use what
plans. So that this restriction can be observed in a modular way, the JACK Agent Language
allows these dependencies to be packaged up into a Java Interface. Any agent that wishes to
include this plan must declare that itimplements this interface. If an Agent class implements
the interface, it provides all the methods necessary to run the plan.

3.4 Agent Dec larations
An agent should fully describe the functionality it implements via JACK Agent Language
definitions. In general, this definition needs to include the following conceptual statements:

• BeliefSets and Views which the agent can use and refer to.

• Events (both internal and external) that the agent is prepared to handle.

• Plans that the agent can execute.

• Events the agent can postinternally (to be handled by other plans).

• Events the agent can sendexternally to other agents.

Thesedefinitionsarehandledby statementsthatoccurat thefield or memberlevel of anagent
definition.While thereis norestrictiononwherethey appearin Jackcode,by conventionthese
definitions appear before the definitions of any regular Java data members and methods that
the agent may contain.

Agents

Agent Manual
Release 5.3
10-June-05 37
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

An example agent template showing some of the declarations that can appear in an agent
appears below:

agent AgentType extends Agent [implements InterfaceName]
 {

 // Knowledge bases used by the agent are declared here.

#private data BeliefType belief_name(arg_list);

 // Events handled, posted and sent by the agent are
 // declared here.

#handles event EventType;
#posts event EventType reference;
#sends event EventType reference;

 // Plans used by the agent are declared here.
 // Order is important.

#uses plan PlanType;

 // Capabilities that the agent has are declared here.

#has capability CapabilityType reference;

 // other Data Member and Method definitions

 }

Each JACK Agent Language agent declaration is described in more detail in the following
sub-sections.

#handles event EventType

This statement identifies theevents that the agent will attempt to respond to if they arise. By
handlingtheevent,theagentclaimsto haveat leastoneplanavailablethatit canexecutewhen
this event arises. These plans may not be relevant to all forms of the event or applicable in all
circumstances, but the agent must know how to handle the event in at least some situations.

Because it is really claiming that the agent's plans can handle the event, the#handles event
agentdefinitionstatementis analogousto a functionprototype.It is anexplicit statementwith
which the runtime can check for completeness rather than functional necessity. However,
defining the events that an agent handles up front allows agents to be prototyped and helps
ensure that sound design practices are followed.

Includingthe#handles event definitionis alsoimportantto ensurethattaskprocessingtakes
place in the agent when the event occurs. If an agent receives an event that it does not handle,
a runtime warning is generated and the event is not processed. By claiming to handle the
event, the agent looks through its plans to find one that has a matching#handles event

statement. A suitable plan might not be found, but at least the agent looks to make sure.
Claiming to handle an event is like an employee claiming that a situation falls under their

Agents

AgentManual
Release5.3

38 10-June-05
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

responsibility: they take notice when it occurs and try to do something about it. Whether they
succeed or not is another matter.

When an agent definition includes a statement of the following form:

#handles event EventType;

The agent claims that when an event ofEventType occurs, it has a plan to handle it. This plan
should be declared with the#uses plan declaration. How this event is processed depends on
whether it is a BDI event or a normal event.Behaviour Attribute settings can also influence
how events are handled and particularly what happens on plan failure.

Referto theEvents chapterfor moredetailsonhow differenteventtypesarehandledandhow
this behaviour can be customised.

#posts event EventType [reference]

Thisstatementdescribesanevent thattheagentcanpost.Postinganeventmeansthatanagent
creates an instance of the event and posts it internally (i.e. sends the event to itself).

The#posts event declaration identifies those events that the agent postsexplicitly, not those
thatarisefrom actionsof otheragentsor indirectly from theagent'sown actionsor changesin
internal state. Therefore, it is usually used to declare that the agent posts events of the types
Event, BDIFactEvent andBDIGoalEvent. For moreinformationontheseeventclasses,referto
theEvents chapter.

When an agent claims that it posts an event, this event will only arise if it is explicitly
generated in one of the agent's methods.

An agent definition contains a statement of this form to indicate that the agent has reasoning
methods or code that explicitly causes an event of this type to arise.

Each term in the previous definition is described in the following table:

Table 3-2: Terms in a#posts event declaration

Term Meaning

#posts event Identifies that the agent can post events of the given
type. The event is always posted internally, and hence
needs to be handled by the agent's own plans.

EventType Identifies the type of event to be posted.

[reference] When present, JACK creates an agent member called
reference which can be used to create events of
EventType using its posting methods.

Agents

Agent Manual
Release 5.3
10-June-05 39
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

When an agent posts an event, it does so by calling the methodpostEvent() as shown below:

postEvent (event)

The event being posted must be constructed using one of the event's posting methods. This is
described in the section on posting / sending events in theEvents chapter.

Eventspostedin thiswayarehandledinternally by theagent.No otheragentis affectedby the
posting process. Hence, they are like 'thoughts' or 'ideas' that the agent has. The agent
essentially tells itself that this event has occurred and needs to be dealt with.

Agents can also send external events to be handled by other agents. These events are called
message events and are described in theEvents chapter.

#sends event EventType [reference]

This declares that the agent is able to send a message event to another agent. Message events
are events that extend either of the following event classes:

• MessageEvent

• BDIMessageEvent

For more information on these event classes, refer to theEvents chapter.

Thisdeclarationidentifieseventsthattheagentsendsexternally. It is analogousto the#posts
event statement in all respects other than the fact that the event arises in a different agent to
the one that sends it.

When an agent includes a declaration of this type, it indicates that the agent has reasoning
methods or code that can send an event ofEventType to other agents. The following table
describes each term in this definition:

Table 3-3: Terms in a#sends event declaration

Term Meaning

#sends event Thisagenthasmethodsor codethatcansendeventsto
other agents. The event is always sent to a different
agentandhenceneedsto behandledwithin thatagent's
own task execution structure.

EventType Identifies the type of event to be posted.

[reference] When present, JACK creates an agent member called
reference which can be used to create events of
EventType using its posting methods.

Agents

AgentManual
Release5.3

40 10-June-05
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

When a method belonging to an agent definition needs to send a message event to another
agent, it does so by executing the following statement:

send (agentName, event)

send() is abasemethodprovidedby theAgentclass.It is almostidenticalto thepostEvent()
method except that it takes the name of the target agent as the first argument. This is the full
name that the agent is known by on the JACK runtime network. The event being posted must
be constructed using one of the event's posting methods. This is described in the section on
posting/sending events in theEvents chapter.

To obtain the name of an agent, use the Agent base methodname(). This method returns the
agent's name as aString. Note that the name returned is the full name of the agent which
takestheform agent@portal . If aportalnameis notsupplied,thesend() methodappendsan
@ symbol,followedby theportalnameof thesendingagent.Thiscancausesomeambiguityif
thereis morethanoneprocessin thecurrentapplication,soit is advisableto alwayssupplythe
full name of an agent.

#uses plan PlanName

This statement identifies theplans that an agent can execute to handle events. An agent can
only execute instances of a plan if it declares that it uses this plan with a#uses plan

declaration. If a plan is defined, but no agent uses it, that plan will never be executed.

Whenanagentdefinitionincludesa#uses plan declaration,all instancesof thisagentthatare
created have access to the given plan. This plan is said to form part of that agent'splan set.

Note: Ordering of#uses plan statements in the body of an agent (or included capabilities) is
important. For normal event handling, plans are tested for relevance and applicability in the
order in which they are declared. For BDI event handling, after a candidate plan set is
assembled,theplandeclaredfirst in theagentwill bechosenfirst in theabsenceof meta-level
reasoning or planrank being set.

If an agent claims to handle an event, the agent should use a plan that also handles that event.
If this is not the case, a warning will be generated when you start up the application. The
warning is issued because if an agent has no plan to handle a given event, it cannot strictly
claim that it is capable of handling that event.

#has capability CapabilityType reference

Thecapabilityconceptbringsstructureto thefunctionalelementsof agents.Theuserdeclares
an agent to have selected capabilities by using the#has capability declaration statement.
Eachdeclarationthenrequiresbothacapabilitytypenameandareferencenamethatidentifies
the particular instance of the capability.

Agents

Agent Manual
Release 5.3
10-June-05 41
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

If, for instance,Painting is aCapability type, an agent might include the following
declaration:

#has capability Painting painting;

The declaration makes the agent capable of whatever thePainting capability brings, that is,
the agent is given access to all of the functional components enclosed by the capability. The
referencenamepainting allowsagentcodeto referinto thecapabilityinstance.An agentmay
have more than one instance of the one capability type.

3.4.1 Beliefsets

3.4.1.1 Conceptual Model

In JACK, beliefs are modelled as beliefset relations which take the following form:

relationName(key1,key2, ..., data1,data2, ...)

Thatis, eachrelationis identifiedby anameandcontainsany numberof fields.Someof these
fields arekey fields, uniquely identifying thekind of object that this relation describes, and
others arevalue fields, identifying theattributes of this object that need to be recorded.

Eachobjectdescribedby abeliefsetrelationis representedasa tuple. A tupleis aninstanceof
therelationwherethefieldsrepresentthekey fieldsandvaluefieldsof aparticularobject.For
example, one may choose to model a bank account with the following beliefset relation:

 bankAccount(account number, name, balance, credit rating)

A particular bank account would then be described as a tuple, such as

 bankAccount(10019875, "Fred Jones", 101.95,"A1");

3.4.1.2 Beliefset Declarations

JACK beliefset declarations within an agent take the following general form;

#{private|agent|global} data BeliefType belief_name (arg_list)

which declares that a beliefset of typeBeliefType is to be contained within the agent. Each
declaration is described below.

#private data BeliefType belief_name(arg_list)

When an agent definition includes a statement of this form, it declares a named data that is
private to the agent. Agents of this class haveprivate access to the beliefset relation
belief_name (or to a user-defined data structure as described in the next section). Private
access means that the agent has its own copy of the relation, which it can read and modify
independent of all other agents, even those of the same agent class.

Agents

AgentManual
Release5.3

42 10-June-05
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

Each parameter in the previous definition is described in the following table:

Table 3-4: Terms in a#private JACK beliefset declaration

When a beliefset relationis private, all the relation's tuples are unique to that agent. If the
agent adds or removes tuple information, this is only reflected in its own belief state. Any
other agent with access to a relation of the same name will not have its own set of tuples
affected. Hence, any changes made to an agent's private relations have no effect on the belief
state of other agents.

Private relations are the only beliefset relations where the agent can add, modify or remove
tuples: agent and global relations are read-only. It should be noted that:

• An agent canquery a private relation's tuples using the relation'squery method.

• An agent canmodify a private relation's tuples using the relation'sadd() andremove()
base methods.

Refer to theBeliefset Relations chapter for further details.

Term Meaning

#private data A JACK Agent Language field-level construct, which
specifiesthatagentsof thisclasshaveprivateaccessto
the beliefset relation.

BeliefType The type of beliefset relation that the agent will use.
The beliefset type is analogous to the Agent class, and
extends one of the underlying JACK Agent Language
types.
The beliefset type defines the general properties of the
relation such as:

• the number and type of fields it has;

• the relation's key; and

• the relation's query method.

belief_name Used to identify the instance of the relation that the
agent is using.

arg_list An optional argument. When present, it specifies
argumentsto bepassedto theconstructoreachtimean
instance of this beliefset relation is created.
For more information on beliefset constructors and
how to use them, see the section entitledBeliefSet
Construction.

Agents

Agent Manual
Release 5.3
10-June-05 43
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

#agent data BeliefType belief_name(arg_list)

When an agent definition includes a statement of this form, it declares a named data that is
shared among all agents of this type in the same process. Agents of this class haveagent

accessto thebeliefsetrelationbelief_name (or to auser-defineddatastructureasdescribedin
the next section). Although it is not enforced,agent access means that the agent should have
shared read-only access to the relation with other agents of the same class.

Each term from the previous definition is described in the following table:

Table 3-5: Terms in a#agent beliefset declaration

As access to agent beliefsets is intended to be read-only, the beliefset should be populated by
readingdatafrom afile aspartof thebeliefsetconstructor. Detailsonhow thiscanbeachieved
appear in theBeliefSet Construction section.

Term Meaning

#agent data A JACK Agent Language field-level construct, which
specifies that agents of this class have shared access to
thebeliefsetrelation,but only with otheragentsof this
class.

BeliefType The type of beliefset relation that the agent will use.
The beliefset type is analogous to the Agent class, and
extends one of the underlying JACK Agent Language
types.
The beliefset type defines the general properties of the
relation such as:

• the number and type of fields it has;

• the relation's key; and

• the relation's query method.

belief_name Used to identify the instance of the relation that the
agent is using.

arg_list An optional argument. When present, it specifies
argumentsto bepassedto theconstructoreachtimean
instance of this beliefset relation is created.
For more information on beliefset constructors and
how to use them, see the section entitledBeliefSet
Construction.

Agents

AgentManual
Release5.3

44 10-June-05
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

The first instance of an agent class that uses an agent beliefset causes the beliefset to be
constructed. Each subsequent instance of that agent class is simply allowed access to the
beliefset.

An agent canquery an agent beliefset using the relation'squery method.

Refer to theBeliefset Relations chapter for further details.

#global data BeliefType belief_name(arg_list)

When an agent definition includes a statement of this form, it declares a named data that is
shared among all the agents in the same process. This means that all the agents in the process
haveglobal accessto thebeliefsetrelationbelief_name (or to auserdefineddatastructureas
described in the next section). Although it is not enforced, global access means that the agent
should have shared read-only access to the relation with all other agents in the same process.

Note: A JACK application can consist of one or moreprocesses. However, by default (and
unless otherwise specified) an application consists of a single process.

Each term in the previous definition is explained in the following table:

Table 3-6: Terms in a#global beliefset declaration

Term Meaning

#global data A JACK Agent Language field-level construct, which
specifies that the agent shares this relation with all
other agents in the process.

BeliefType The type of beliefset relation that the agent will use.
The beliefset type is analogous to the Agent class, and
extends one of the underlying JACK Agent Language
types.
The beliefset type defines the general properties of the
relation such as:

• the number and type of fields it has;

• the relation's key; and

• the relation's query method.

belief_name Used to identify the instance of the relation that the
agent is using.

arg_list An optional argument. When present, it specifies
argumentsto bepassedto theconstructoreachtimean
instance of this beliefset relation is created.

Agents

Agent Manual
Release 5.3
10-June-05 45
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

As access to a global beliefset is intended to be read-only, the beliefset should be populated
by reading data from a file as part of the beliefset constructor.

The first instance of an agent class that uses a global beliefset causes the beliefset to be
constructed. Each subsequent instance of an agent class that uses the same global beliefset is
simply allowed access to the beliefset.

An agent canquery a global beliefset using the relation's query methods.

Refer to theBeliefset Relations chapter for further details.

3.4.2 Data stored in User -defined Data Structures
Agent beliefs or normal Java objects can be stored in JACK beliefset relations or in user-
defined data structures as agent data members. User-defined data structure members are
declared in the agent in an analogous way to JACK beliefset relations by using the#private
data, #agent data or #global data statements as described below. The agent's plans gain
access to the user-defined data object using the#uses data declaration described in the
chapter on plans, and like JACK beliefsets, user-defined data structures can be exported,
imported or declared private to capabilities as discussed in theCapabilities chapter.

In addition, a plan can gain access to its enclosing agent as a Java object, (and thus to the
agent's data members) by using the#uses interface or the#uses agent implementing
statements described in thePlans chapter.

JACK declarations for user-defined data structures within an agent take the following general
form:

#{private|agent|global} data DataType data_name(arg_list)

which declares that a Java object of typeDataType is to be contained within the agent. Each
declaration is described below:

#private data DataType data_name(arg_list)

When an agent definition includes a statement of this form, it declares a named data that is
private to the agent. Agents of this class have private access todata_name.

Private access means that the agent has its own copy of the data object, which it can read and
modify independently of all other agents, even those of the same agent class.

Agents

AgentManual
Release5.3

46 10-June-05
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

Each item in the previous definition is described in the following table:

Table 3-7: Terms in a#private user-defined data structure declaration

#agent data DataType data_name(arg_list)

When an agent definition includes a statement of this form, it declares a named data that is
shared among all agents of this type in the same process. Agents of this class haveagent

access to the Java objectdata_name of typeDataType. Although it is not enforced,agent
access means that the agent should have shared, read-only access to the data object
(data_name) with other agents of the same class.

Each item in the previous definition is described in the following table:

Table 3-8: Terms in a#agent user-defined data structure declaration

As accessto theobjectis intendedto beread-only, thedataobjectshouldbeinitialisedwhenit
is constructed. The first instance of an agent class that uses the object will cause the object to
be constructed. Each subsequent instance of that agent class is then allowed to access the
object.

Term Meaning

#private data Specifiesthatagentsof thisclasshaveprivateaccessto
the data.

DataType Theuser-defined data structure.

data_name The name used to identify the instance of the user-
defined data structure that the agent is using.

arg_list An optional argument. When present, it specifies
argumentsto bepassedto theconstructoreachtimean
instance of this data structure is created.

Term Meaning

#agent data Specifiesthatagentsof thisclasshavesharedaccessto
the data, but only with agents of the same class.

DataType Theuser-defined data structure.

data_name The name used to identify the instance of the user-
defined data structure that the agent is using.

arg_list An optional argument. When present, it specifies
argumentsto bepassedto theconstructoreachtimean
instance of this data structure is created.

Agents

Agent Manual
Release 5.3
10-June-05 47
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

#global data DataType data_name(arg_list)

When an agent definition includes a statement of this form, it declares a named data that is
shared among all agents in the process. Although it is not enforced,global access means that
theagenthassharedread-onlyaccessto thedataobjectdata_name with all otheragentsin the
same process.

Each term in the previous definition is described in the following table:

Table 3-9: Terms in a#global user-defined data structure declaration

As access to global data is intended to be read-only, the object should be initialised when it is
constructed.Thefirst instanceof anagentclassthatusestheglobaldataobjectcausesthedata
objectto beconstructed.Eachsubsequentinstanceof anagentclassthatusesthesameglobal
object is allowed to access the data object.

3.4.3 Task Mana gers
Taskmanagersgovernhow anagenthandlesconcurrentexecutionwhenthey havecommitted
to more than one task execution.

By default, JACK uses theSimpleTaskManager. TheSimpleTaskManager tells the agent to
persist with its currently active task until one of the following situations occurs:

• it encounters a@wait_for statement (and the task blocks);

• it encounters a@sleep statement (and the task blocks); or

• it completes (either succeeding or failing).

Regardless of the number of tasks that are outstanding, the agent will continue with a single
task until one of the above conditions occurs.

Term Meaning

#global data Specifiesthatagentsof thisclasshavesharedaccessto
the data, with all other agents in the process.

DataType Theuser-defined data structure.

data_name The name used to identify the instance of the user-
defined data structure that the agent is using.

arg_list An optional argument. When present, it specifies
argumentsto bepassedto theconstructoreachtimean
instance of this data structure is created.

Agents

AgentManual
Release5.3

48 10-June-05
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

As soonasoneof theaboveconditionsoccurs,thetaskis removedfrom thetaskqueueandthe
agent moves on to the next applicable task. If the task is completed, it is removed completely
from thetaskqueue.If thetaskencountereda@wait_for or @sleep, thetaskis returnedto the
end of the task queue only when the statement is completed.

If a plan step of the active task takes a long time to complete, or an infinite-loop arises, the
agent will not switch to another task.

In most applications, theSimpleTaskManager is sufficient. However, if the agent has tasks
involving intensive processing that may need to be preempted by shorter, more urgent tasks,
the task manager described below may be preferable.

#uses taskManager SimpleRRTaskManager(<steps>)

This statement declares that the "round robin" task manager is to be used in place of the
SimpleTaskManager. This task manager offers a more "balanced" approach to managing the
tasks that are currently active within an agent. Instead of persisting with the currently active
task until it either pauses or is complete, the agent rotates its efforts between all tasks that are
currently active.

Each active task is kept in around robin queue and is allocated a number of plan steps that it
can run. A plan step is meant to represent an atomic action within a plan. In some cases, this
correspondsto asinglestatement(suchasthe@send statement).However, many JACK Agent
Language statements actually involve more than one plan step (such as the@wait_for, where
multiple plan steps are used to test each condition). When a plan statement covers more than
oneplanstep,thisstatementcanbesuspendedafterany givenplanstep.Whentheroundrobin
task manager lets the task run again, the statement is able to resume where it left off.

If a plan calls a normal Java method, that entire method executes as a single plan step. This is
because the round robin task manager does not know at which point it can suspend the task
while it is executing non-reasoning method code.

The number of plan steps allocated to each task is governed by thesteps argument (an
unsigned long) suppliedto the#uses taskManager declaration.Whenspecifyingthenumber
of plan steps, take care to choose a value that is appropriate to the application domain.
Choosing a small value minimises the chances of a single task locking out all others,
maximising the agent's responsiveness to new events. However, the smaller a value, the more
of an agent's processing time is devoted to context switching, reducing the agent's overall
efficiency. A goodvaluefor thenumberof planstepsis somewherein thehundreds(100-200),
depending on the response and throughput characteristics required.

If the task terminates or pauses (by reaching a@sleep or @wait_for statement) before its
number of plan steps has been reached, the agent behaves as it would with the
SimpleTaskManager. However, if it reaches its requisite number of plan steps before this
happens, the active task is moved to the end of the task queue, and the task at the head of the

Agents

Agent Manual
Release 5.3
10-June-05 49
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

queueis activated.Therefore,all activetasksaregivenanopportunityto run,andthedangerof
one CPU-intensive, long-running task hampering the agent's overall performance is reduced.

3.5 Agent Member s and Methods
Oncetherequiredsetof #-declarationshasbeenaddedto anagent'sdefinition,theevent, plan
andbeliefset components that the agent requires will need to be identified. Each of these
components contains its own data members and methods. The remaining step in completing
the agent definition is to specify the agent's data members and methods.

An agent's data members and methods are defined using normal Java. After all, agents are
fundamentallyimplementedasJavaclasses,sothefull Javafunctionalityis available.Theuser
may want to define data structures for the agent to use that are different from the beliefset
construct provided, and you may want to include methods to post events when certain
situations arise. You will certainly want to define constructors and destructors so that
individualagentscanbecreatedanddestroyed.Notethatat leastoneconstructorfor theagent
must be defined.

Whendefininganagent'smethods,theusermaywishto usesomeof thebasemethodsthatthe
Agent class provides. Since all agents extend theAgent class, these methods are always
available. Typically, they implement useful low level functionality such as:

• constructing an agent instance;

• terminating an agent;

• posting an event (only those identified using a#posts event or #sends event
declaration);

• sending messages to other agents;

• replying to messages from other agents;

• specifying whichtimer the agent will use; and

• determining the agent's name on the JACK network.

Agents also have a data member that allows you to specify theTimer (clock) that the agent
uses to measure the passage of time.

Furthermore, if any of the agent's plans require it to implement a particular interface, all the
methods specified by this interface must be included among the agent's methods and be fully
implemented.

Note: PersonalisedAgent sub-classes can be defined by extending from otherAgent classes
that have been defined. It is not necessary to extend directly from the baseAgent class.

Agents

AgentManual
Release5.3

50 10-June-05
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

Agent Construction

To construct an agent, follow the convention for constructors used in Java. An example of
agent construction is shown below:

agent ExampleAgent extends Agent
 {
 // #-statements
 // data members

 ExampleAgent (String name)
 {
 super(name);
 ...
 }
 }

Agent Termination

To terminate an agent, use the Agent base method finish(). When this method is executed, all
event processing within the agent terminates immediately and the agent is removed from the
JACK runtime network. Actual removal of the agent and the freeing of its allocated memory is
left to the Java garbage collector.

void postEvent(Event e)

The postEvent() method is used by the agent to post a new event. It can be used to post all
types of events.

The prototype for this method is shown below:

 public void postEvent (Event event_name);

where event_name is the name of the event to be posted. Note that to use this method:

• the event being posted must have already been constructed; and

• this event must have been included among the events that this agent can handle (by means
of a #handles event declaration)

An agent executes a separate task to handle posted events. Hence, the postEvent() method
does not return a result, even if the agent cannot handle the event (e.g. if none of its plans are
relevant or applicable).

The event is handled asynchronously by the agent. Note that this is also true if the event posted
is a goal event. Normally goal events are handled synchronously in separate subtasks but when
posted using this method, they are treated and handled asynchronously as normal events.

Message events should not be posted in this way. If they are, they will appear as internal events
and the from member will be set to null.

Agents

Agent Manual
Release 5.3
10-June-05 51
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

boolean postEventAndWait(Event e)

This base method is similar to thepostEvent() method, except that instead of posting the
event asynchronously, it is postedsynchronously. The agent still executes the event as a
separate task, but the calling method must wait until this task has been completed before
continuing. The prototype for this method is shown below:

 public boolean postEventAndWait(Event event_name);

Themethodreturnsabooleanresultdependingonwhetherthetask thattheagentperformsto
handle the event succeeds (true) or fails (false).

Note: Unlikemostotheragentmethods,thismethodmustnotbecalledfrom any of anagents
tasks.It canonly beusedfrom methodsusedby normalJavaprogramsthatareintegratedwith
the JACK application.

void send(String s, MessageEvent e)

This method is used to send messages (MessageEvents or BDIMessageEvents to other agents.
The prototype for this method is given below:

 public void send (String name, MessageEvent message)

It takes two arguments:

• thename of the destination agent, and

• aMessageEvent to send to this agent.

Theagentnamecaneitherbein short(agent) or full (agent@portal) form. Theshortnameis
simply the name that was specified in the constructor of the agent. If a short agent name is
passed,themessageeventwill only reachtheagentif it is runningwithin thesameprocessas
the agent that sends the message. If a fully-qualified name is passed, on the other hand, the
message will reach the destination agent if it is running anywhere on the same DCI network.

void reply(MessageEvent q, MessageEvent r)

Thismethodis usedto sendmessages(MessageEventsor BDIMessageEvents) backto anagent
from which a previous message originated.

If the agent has received a message and performed a task in response to this message, one of
thestepsin theplanthatrespondsto thismessagemaybeto sendanothermessagebackto the
originating agent in the form of a reply. This may be to confirm that the task has been
completed.

The prototype for this method is given below:

 public void reply (MessageEvent query, MessageEvent response)

Agents

AgentManual
Release5.3

52 10-June-05
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

Unlike thesend() method, thereply() method does not require specification of the
destinationagentasanexplicit inputargument.This is becausetheagentalreadyknowswhich
agent sent the original message. The sender's address is specified in the original message
event'sfrom member.

String name()

Thismethodis usedto retrievetheagent'sfull name, whichincludesits processportalname.It
returns the name as aString.

The name returned consists of two components:

• the agent's name as it is known locally within the process; and

• the portal name assigned to the current process.

For example,supposeanagentcalledkermit is runningin aprocesswhichhasbeenassigned
a portal namesesameStreet. The name returned by this method would be
kermit@sesameStreet.

Timer timer

This data member specifies which timer (clock the agent will use to measure the passage of
time. JACK includes a number of differentTimer classes to give programmers more control
over how agents respond to the passage of time in a program.

The definition of this member is given below:

Timer timer;

TheTimer class is JACK specific. Timers can be categorised as: the real-time clock
(measuringthepassageof timeaswouldanormalsystemclock); dilatedclocks(enablingthe
agent to manipulate time with effect, such as fast forward, slow motion and pause); and
simulation clocks (enabling manual ticking and even greater control than that offered by
dilated clocks).

Capabilities

Agent Manual
Release 5.3
10-June-05 53
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

4 Capabilities
4.1 Intr oduction
Thecapability conceptis ameansof structuringreasoningelementsof agentsinto clustersthat
implement selected reasoning capabilities. This technique simplifies agent system design,
allows code reuse, and encapsulation of agent functionality.

Capabilities represent functional aspects of an agent that can be plugged in as required. This
capability as component approach allows an agent system architect to build up a library of
capabilities over time. These components can then be used to add selected functionality to an
agent.

Additionally, capabilities can be structured so that a number of sub-capabilities can be
combined to provide complex functionality in a parent capability. This capability can in turn
be added to an agent to give it the desired functionality.

Capabilities are built in a similar fashion to simple agents – constructing them is merely a
matter of declaring the JACK Agent Language elements required. Events, beliefsets, plans,
Java code and other capabilities can all be combined to make a capability.

In this section, the capability concept is described, and capability declarations are explained.
Eachof thespecific#-declarations,membersandmethodspertainingto capabilitiesis listedin
following sub-sections.

4.2 Capability Definition
A capability is defined similarly to other type-level concepts as a code block by the keyword
capability. A capability definition takes the form shown below:

capability CapabilityType extends Capability
 [implements Interface]
 {
 // JACK Agent Language Statements specifying
 // the functionality associated with this
 // capability.
 }

Each component of this definition is explained in the following table:

Capabilities

AgentManual
Release5.3

54 10-June-05
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

Table 4-1: Components of a Capability definition

In thebodyof eachcapability, events,beliefsets,plansandothercapabilitiesthatpertainto the
functionality provided by the given capability are declared. Java entities (i.e. methods and
members) may be declared in capabilities as in a class. Each capability is instantiated with
each agent that contains the corresponding#has capability declaration.

The JACK #-declaration statements used for agents are all available for use in capabilities,
except those that refer to task managers. In addition, there are new declarations that allow
specifying events and beliefsets as shared with an enclosing capability.

4.3 Capabilities and Interfaces
Theoptionalimplements Interface componentin acapabilitydefinitionis importantwhenit
comes to writing portable JACK programs that allow for code re-use. Interfaces provide a
mechanism for agents and capabilities to share plans.

Whenanagentexecutesaplan,thisplanwill oftencall ordinaryJavamethods.It is important
to rememberthatwhenthisoccurs,thesemethodsmustbeavailableto theplanthroughhaving
beendeclaredin theagentor oneof thecapabilitiesthatit uses.Therefore,any capabilitythat
uses this plan must include the defined methods, or the plan will not be able to run properly.

Syntax Term Description

capability A JACK Agent Language keyword used to introduce a
capability definition.

CapabilityType The name of the derivedCapability class.

extends Capability Thispartof thestatementplaysthesameroleasin Java
– it indicates that the capability being defined inherits
from a JACK Agent Language base class called
Capability. TheCapability baseclassimplementsall
theunderlyingmethodsthatprovideacapability'score
functionality.

[implements Interface] This part of a capability definition is optional. When
present, it states that a capabilityimplements a given
Java interface. Java interfaces are classes that consist
of method prototypes without code. When a capability
implementsaninterface,it providescodeto implement
each of these methods.

Capabilities

Agent Manual
Release 5.3
10-June-05 55
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

The JACK Agent Language allows you to package up these dependencies into a Java
Interface. Any capabilitythatwishesto includethisplanmustdeclarethatit implements this
interface. If acapabilityimplementstheinterface, it providesall themethodsnecessaryto run
the plan.

4.4 Capability Dec larations
A capability should fully describe the functionality it implements via JACK Agent Language
declarations. In general, a capability definition will require declarations for the following:

• BeliefSets and Views which the capability can use and refer to;

• Events (both internal and external) that the capability handles;

• Plans that the capability can execute;

• Events that the capability can post internally (to be handled by other plans); and

• Events that the capability sends externally to other agents.

These declarations are provided by statements that occur at the field or member level of a
capability definition. By convention, these statements should appear before the definitions of
any regular Java data members and methods that the capability may contain.

An example capability template showing some of the declarations that can appear in a
capability appears below:

capability CapabilityType extends Capability
 [implements InterfaceName]
 {

 // Knowledge bases used by the capability are declared here.

#private data BeliefType belief_name (arg_list);
#exports data BeliefType belief_name (arg_list);
#imports data BeliefType belief_name ();

 // Plans used by the capability are declared here.
 // Order is important.

#uses plan PlanType;

 // Events posted, sent and handled are declared here.

#handles event EventType;
#handles external [event] EventType;
#posts event EventType reference;
#posts external [event] EventType reference;
#sends event EventType reference;

 // Sub-capabilities are declared here.

#has capability CapabilityType reference;

 // other Data Member and Method definitions
 }

Capabilities

AgentManual
Release5.3

56 10-June-05
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

EachJACK AgentLanguagecapabilitydeclarationis describedin moredetailin thefollowing
sub-sections.

#handles event EventType;

As for agents, the#handles event statement declares that there are planswithin this
capability that handle events of the given type. The declaration also implies that these events
arelocal to the capability and its sub-capabilities, which means that the connection between
posting and handling does not cross the boundary between this capability and its enclosing
capability. In other words, events of typeEventType that are posted externally to this
capability are not handled within this capability, and the events of typeEventType that are
posted within the capability are not visible for the enclosing capability. However, the
declarationdoesnotmaketheeventtype'invisible' for innercapabilities;rather, this is decided
in their definitions.

#handles external [event] EventType;

The#handles external statement declares that there are plans within this capability that
handleeventsof thegiventype,andthatthis typeis sharedwith theenclosingcapability. This
means that event posting and handlingdoes cross the capability boundary upwards. That is,
theexternal keyword declares that the event in question may be handled by the parent
capability or any of its sub-capabilities that declare that they handle this external event, and
thesecapabilities'plans,if any, contributeto theplansetassembledto handlethisevent.Note
that the keywordevent is optional.

#posts event EventType reference;

The#posts event statement declares that there are plans or code within this capability that
post events of the given type. The declaration also indicates that these events are local to the
capability, which means that the connection between posting and handling does not cross the
boundary between this capability and its enclosing capability. A reference name is needed
only if the event is to be posted from Java code within the capability.

#posts external [event] EventType reference;

The#posts external statementdeclaresthatthereareplansor codewithin thiscapabilitythat
post events of the given type, and that this event type is shared with the enclosing capability.
All plans from all capabilities that handle this shared event then compete to handle it. Note
that the keywordevent is optional.

Capabilities

Agent Manual
Release 5.3
10-June-05 57
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

#sends event EventType reference;

The#sends event statement declares that there are plans or code within this capability that
sendeventsof thegiventype.It is importantto notethateventsarereceivedatagentlevel (the
addressable entity), which means events cannot be explicitly directed into a capability of
another agent.

#private data DataType data_name(arg_list);

The#private data statementdeclaresthataJavaobjector aJACK beliefsetof typeDataType
is local to the capability, and is accessible only from within the capability and its sub-
capabilities. Note that the statement results in the instantiation of the beliefset or object using
the specified constructor.

#agent data DataType data_name(arg_list);

When a capability definition includes a statement of this form, it declares a named data,
data_name of typeDataType. The named data is shared among all agents in the same process
that have the same type as the agent in which the capability instance is created. If the same
capability type is used by two different agent types, there will be a different instance of the
named data created for each of the agent types. Although it is not enforced,agent access
should be shared, read-only access. As access toagent data is intended to be read-only, the
beliefset or object should be initialised when it is constructed. The first instance of an agent
class that uses the beliefset or data object, causes it to be constructed.

#global data DataType data_name(arg_list);

When a capability definition includes a statement of this form, it declares a named data,
data_name. Thenameddatais sharedamongall theagentsin thesameprocess.Althoughit is
not enforced,agent access should be shared, read-only access. As access toglobal data is
intended to be read-only, the beliefset or object should be initialised when it is constructed.
The first instance of an agent class that uses the beliefset or data object, causes it to be
constructed.

#exports data DataType data_name(arg_list);

The#exports data statementdeclaresthataJavaobjector aJACK beliefsetof typeDataType
is exported from the capability so that it is accessible from its parent capability. The export
statement can also be used to make a data object or beliefset available at agent level, and
accessible from other capabilities within the agent level. Note that the statement results in the
instantiation of the beliefset or object using the specified constructor.

Capabilities

AgentManual
Release5.3

58 10-June-05
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

#imports data DataType data_name();

The#imports data statement declares that a Java data object or JACK beliefset of type
DataType is shared with this capability and its enclosing agent or capability. Note thatno
instantiation occurs as a result of this statement.

#uses plan PlanType;

The#uses plan statementdeclaresthatthiscapabilityusesplansof thegiventype.Theusage
is unique for the capability in the sense that even if the same plan type is used in another
capability, the plan instances extending from each use are wholly distinct. This means that
even if they are used in a way so as to share a handled event (e.g. used by two 'sibling'
capabilities where the handled event is external in both), the usages within the different
capabilities generate their own plan instances independently.

#has capability CapabilityType reference;

The#has capability statement declares use of an inner capability. Note that the reference
name is required. The inner capability is then accessible through the reference name.

4.5 Capability Members and Methods
The remaining step in completing the capability definition is to specify the capability's data
membersandmethods.Whendefiningacapability'smethods,it is possibleto usesomeof the
basemethodsthattheCapability classprovides.Sinceall capabilitiesextendtheCapability
class, these methods are always available. If any of the capability's plans require it to
implement a particular interface, all the methods specified by this interface must be included
among the capability's methods and be fully implemented.

Note: Capability sub-classescanbedefinedby extendingfrom otherCapability classes,not
just from the baseCapability class.

Once the desired set of#-declarations has been added to a capability's definition, theevent,
plan, beliefset andcapability components that the capability requires need to be defined.
Each of these components contains their own data members and methods.

Capability Construction
While capabilitiesarenotexplicitly constructedby theuser, they arebroughtinto beingwhen
the enclosing agent is constructed. They can be initialised by overriding theautorun()
method, described below.

Capabilities

Agent Manual
Release 5.3
10-June-05 59
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

Capabilities do not have a name in the same sense that agents do, but can be referred to
throughthechainof referencenamesusedin the#has capability statements.This reference
name can be retrieved by calling thetoString() method on theCapability instance in
question.

 The reference name starts with the agent name, and thereafter the names used for traversing
down thecapabilitystructureto theinstancein question,whereeachnameis separatedwith ':'.
Thus, a capability name likebob@builders:tiling:bathroom_tiling says that this is the
capability instancebathroom_tiling of the capability instancetiling of the agent instance
bob at portal instancebuilders.

JACK AgentLanguageentities(i.e.plans,eventsandbeliefsets)thatbelongto capabilitiesare
each instantiated in slightly different ways. These differences mean that it is not always
possible to determine the name of the capability to which the entities belong. For example,
whenaplanis instantiated,it is associatedwith anenclosingNameSpace object,which is either
aCapability object or anAgent. This object is accessible through the publicPlan member
__ns. Event andbeliefset instances are not explicitly associated with the enclosing
capability instance. This means that a plan cannot query an event or beliefset instance about
which capability they belong to.

public void postEvent(Event e)

ThepostEvent() methodis usedto posteventswithin capabilitycode.Thismethodis actually
just a convenient method that refers togetAgent().postEvent().

See the discussion of thepostEvent() method in theAgents section for more details.

public Agent getAgent()

The method is called on a capability instance to return the containing agent, which is
generically typed.

protected void autorun()

Theautorun() method is invoked before the agent is fully constructed. The invocation is at
the end of the construction of the capability after all its sub-capabilities have been fully
constructed. Theautorun method can be overridden in order to provide some initialisation
when the capability is constructed.

Capabilities

AgentManual
Release5.3

60 10-June-05
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

Events

Agent Manual
Release 5.3
10-June-05 61
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

5 Events
5.1 What are Events?
Eventsmotivateanagentto takeaction.Thereareanumberof eventtypesin JACK, eachwith
different uses. These different event types help model:

Internal stimuli – events that an agent sends to itself, usually as a result of executing
reasoning methods in plans that an agent has. These internal events are integral to the
ongoing execution of an agent and the reasoning that it undertakes.

External stimuli – such as messages from other agents, or percepts that an agent receives
from its environment.

Motivations – that the agent may have, such as goals that the agent is committed to
achieving.

Events are the origin of all activity within an agent-oriented system. In the absence of events
anagentsitsidle.Wheneveraneventoccurs,anagentinitiatesataskto handleit. Thistaskcan
be thought of as a thread of activity within the agent. The task causes the agent to choose
between the plans it has available, executing a selected plan or plan set (depending on the
event processing model chosen) until it succeeds or fails.

If plan execution succeeds, the event that initiated it is said to have succeeded. If plan
execution fails, there are two options. Under normal event handling, the event is said to have
failed after the first instance of plan failure.

Under BDI event handling, a number of plans can be selected for execution and these are
attempted in turn, in order to try to achieve successful plan execution. If the set of chosen
plans is exhausted, the event is said to have failed.

Both cases are regarded as successful event handling.

Thereareanumberof eventclassesin theJACK AgentLanguage,eachrepresentingdifferent
types of motivation to act. Additionally, there are event types available that facilitate analysis
and debugging of inter-agent communication. In general, these events fall into two broad
categories:

• Normal events, and

• BDI events.

Events

AgentManual
Release5.3

62 10-June-05
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

5.2 Normal Events
Normal events in JACK are analogous to events in conventional event-driven programming.
That is, they represent transitory occurrences that initiate a single, immediate response from
an agent.

For example,supposethatanagentis beingprogrammedto playsoccer. If theagentreceivesa
messagefrom thesimulationenvironmenttelling it wheretheball is everysecond,thiswould
be modelled as a normal event. It represents an occurrence that must be acted upon
immediately or not at all. If the agent decides to do something (execute a plan instance) and
that plan instance fails, it would not make sense to reconsider an alternative because the
information that the agent is acting on is now out of date.

5.2.1 How an Agent handles Normal Events
When a normal event is received by an agent, the agent initiates atask to handle it. This task
involvestheagentselectingandexecutingthefirst planthatis bothrelevant andapplicable to
this event. These tests for relevance and applicability are performed on plans in the order that
the#uses plan statements occur in the agent or capability code.

A plan isrelevant to a given event if it has a#handles event declaration that matches the
event, and itsrelevant() method succeeds when executed.

Note: If no plans are found that are relevant to a particular event, the event processing task
fails and the system returns to a state where it is ready to process any other incoming events.

The agent then checks if the relevant plan isapplicable in the current circumstance. It does
this by executing thecontext() method of the plan. If thecontext() method succeeds, it is
chosen as the plan that the agent will execute in response to the incoming event. If the
context() method fails, the agent examines the next relevant plan.

Simplecontext() methods return either true or false, meaning that a single instance of the
plan is either applicable or not applicable. However, more complex context() methods may
includecursor expressions andinvolvebindingof logicalvariables.Theseexpressionsattempt
to unify a given expression with tuples in one or more beliefset relations. For every tuple that
matches, the logical variables are bound. Each such match causes a separate plan instance to
be generated.

In thecaseof normaleventprocessingthefirst suchplaninstanceis chosenastheplanthatthe
agent will execute in response to the incoming event.

Eachnormaleventis implementedasaJACK AgentLanguageclass.Eacheventhasanumber
of base members and methods to provide access to their functionality and data. Each of these
base classes can be extended and unique members and methods added to events.

Events

Agent Manual
Release 5.3
10-June-05 63
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

5.2.2 Normal Events in the J ACK Ag ent Langua ge
The JACK Agent Language normal event classes are listed below and are described in the
following sub-sections:

Table 5-1: JACK normal event classes

5.2.2.1 The Event Class

The base class for all events in JACK is theEvent class. This class implements all the core
event functionality required by the JACK runtime environment. A normalEvent is only ever
generated by processing that occurs within an agent.

Eventsarealwaysposted explicitly by statementswithin agentcode.To sayanagentpostsan
event means that an event is constructed and added to the agents own event queue to await
processing. If an agent is idle, no code is being executed and an agent cannot post any events.
In this case, an agent can only take action if an external (i.e.MessageEvent) arrives.

Events are posted:

• when an agent executes a@post statement from within a plan;

• whenanagentexecuteseitherthepostEvent() or postEventAndWait() basemethodfrom
agent code; and

• whenanagentmodifiesabeliefsetrelationfor whichabeliefsetmodificationcallbackhas
been defined.

In each case, an instance of the event is posted using one of the event'sposting methods. The
posting method acts as the event's constructor, creating an instance of the event and making it
available to the agent's task manager.

Event Type Description

Event Base class for all events in JACK. Posted and
processedinside an agent to invoke plans, that may in
turn post further events.

MessageEvent MessageEvents are received by agents from external
sources– usuallyotheragents.Thesearenormallysent
from one agent to another to facilitate inter-agent
communication.

Events

AgentManual
Release5.3

64 10-June-05
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

5.2.2.2 The MessageEvent Class

MessageEventsrepresenteventsthatareusedto communicatewith otheragents.Wheneveran
agent needs to send a question, command or message to another agent, this information is
packaged and sent as aMessageEvent. Instead of representing an internal occurrence that
initiates activity within the agent,MessageEvents represent anexternal occurrence that
initiates activity within the agent.

MessageEvents can also be used as a mechanism to allow an agent to experience or perceive
the environment in which it is executing. That is, anything affecting the agent that does not
originate from the agent's own internal processing should be sent to the agent as a
MessageEvent.

MessageEvents often represent transient requests that the agent may want to act upon. For
example, if an agent is programmed to play a game such as soccer in a simulation
environment, the environment may send the agentMessageEvents periodically to tell it where
the ball is. Clearly, this is a message that is relevant and applicable only at the moment that it
arrives. It serves to inform the agent about an external situation that may concern it. If the
agentis amid-fielderandit is sufficiently close,it mayinvokeaplanto attemptto interceptthe
ball. If it is not close enough it may try to cover a designated opponent. Alternatively, if the
agent is a goal-keeper, it may attempt to move itself between the ball and the goal.

In eachcase,theagentis takingactionon informationthatis applicable only at the moment at
which it arrives. The agent must decide what to do with the information immediately, and
once a course of action is chosen the information is discarded.

MessageEvents are sent to other agents:

• when an agent executes a@send statement from within a plan; or

• when an agent executes itssend() base method.

Note: Agentsshouldonly executethesend() methodin codeoutsideareasoningmethod.The
@send statement is meant to be used to send message events to other agents from within a
reasoning method.

In order for agents running in different processes to send and receive message events, the
JACK runtime environment must provide a communication infrastructure with message
routing capabilities. This is done using the JACK DCI network. The JACK DCI network
enablestheestablishmentof portalsbetweenprocesses,throughwhichagentmessagescanbe
directed as needed. Refer to theInter-agent Communications chapter for further details.

Note: All data fields within aMessageEvent must be serializable.

Events

Agent Manual
Release 5.3
10-June-05 65
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

5.2.2.3 The TracedMessageEvent Class

TheTracedMessageEvent class contains information which enables inter-agent
communication to be effectively displayed via an Agent Interaction Diagram (refer to the
Tracing and Logging Manual for more details on the Agent Interaction Diagram). This
information is now available within the message event classes; consequently,
TracedMessageEvent was deprecated in JACK version 3.5.

5.3 BDI Events
Belief-Desire-Intention (BDI) events represent a different class of event to theEvent and
MessageEvent described in the previous section.

Oneof theimportantaspectsof theBDI reasoningmodelataconceptuallevel is thatit models
goal-directed behaviour in agents, rather than plan-directed behaviour. That is, an agent
commits to the desired outcome, not the method chosen to achieve it. While normal events
representtransientinformationthattheagentreactsto (suchasthechangingof adial reading,
or the location of a ball), BDI events allow an agent to pursue long term goals.

When using the BDI reasoning model, an agent does not simply react to incoming
information, but sets itself a goal which it then tries to achieve. Rather than distracting an
agent from its goal, incoming events are added to an agents knowledge base and can subtly
influence its behaviour.

5.3.1 How an Ag ent handles BDI Events
The key difference between normal events and BDI events is how an agent selects plans for
execution. With normal events, the agent selects the first applicable plan instance for a given
event and executes that plan instance only.

The handling of BDI events is more complex and powerful. An agent can assemble a plan set
for a given event, apply sophisticated heuristics for plan choice and act intelligently on plan
failure. At least one of the following characteristics applies to each type of BDI event under
the BDI model:

• Meta-level reasoning – a technique for writing plans about how to select plans. This can
helpin refiningplanselectionto allow for selectionof themostappropriateplanin agiven
situation.

• Reconsidering alternative plans on plan failure– if a course of action (plan) fails, this
technique allows an agent system to consider other courses of action to achieve the goal
that has been set.

• Recalculating the applicable plan set – it is possible when acting on plan failure to
assemble a new plan set which excludes any failed plans.

Events

AgentManual
Release5.3

66 10-June-05
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

Additionally, it is possible to further control BDI behaviour by settingbehaviour attributes.
These attributes are described later in this chapter.

5.3.1.1 Meta-level Reasoning

When handling a BDI event, meta-level reasoning allows precise control over how an agent
choosesaplanfor executionfrom thesetof applicableplans.Wheneverthereis morethanone
applicableplaninstancefor agivenBDI event,aPlanChoice eventis postedwithin theagent.
By choosing to handle this event, an agent can implement meta-level reasoning.

If themeta-level reasoningplanfailsanddoesnot selectaplanfor execution,thedefault plan
selection method is invoked. This is discussed in more detail in the chapter on meta-level
reasoning.

5.3.1.2 Reconsidering Alternative Plans on Plan F ailure

When handling BDI events, an agent will not always assume that failure of a chosen plan
instance means the goal cannot be achieved. Instead, it may reconsider other applicable plans
and try one of them instead.

It is this property that allows agents to avoid many of the pitfalls of more primitive reasoning
models. Rather than having 'one shot' at achieving a goal, an agent can try a number of
approaches to solving the problem by attempting any number of applicable plans.

5.3.1.3 Recalculating the Applicab le Plan Set

This property controls how an agent takes into account the passage of time and changing
circumstances when choosing alternative plan instances to handle a BDI event after the
previous selected plan has failed. An agent may select an alternative plan in one of the
following ways:

• keeptrackof theplaninstancesthatwereinitially applicableandselectanothermemberof
this set; or

• recomputewhichplaninstancesareapplicableandselectonefrom thenew set,excluding
plan instances that have already failed.

If circumstances and the agent's beliefs haven't changed, both approaches are equivalent.
However, if theapplicableplaninstancesdependontheagent'scurrentsetof beliefsandthese
beliefs have changed, the recomputed set of applicable plans may be different from the
originalset.This is especiallyrelevantif theagentis usingtheSimpleRRTaskManager, or if the
failed plan itself changed one or more beliefset tuples that affect the context calculations of
other relevant plans.

Events

Agent Manual
Release 5.3
10-June-05 67
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

5.3.2 The BDI Events in the JACK Agent Language
The JACK Agent Language event classes are listed below and are described in the following
sub-sections:

Table 5-2: BDI event classes

5.3.2.1 The BDIFactEvent Class

BDIFactEvents represent internal events that arise due to the agent's own internal processing.

The main difference between aBDIFactEvent and a normalEvent is that when there is more
thanoneapplicableplaninstancefor agivenBDIFactEvent, theagentis ableto performmeta-
level reasoningto determinewhichinstanceit shouldexecute.A PlanChoice eventis postedto
trigger this meta-level reasoning, and if the agent has a plan that can handle it, it will execute
this plan to determine which applicable plan instance it should execute.

Once the agent has chosen a plan instance to handle aBDIFactEvent, it will commit to this
plan.

Event Type Description

BDIFactEvent Base class for all BDI Events in JACK. Only posted
internally by an agent for its own use, but allows meta-
level reasoning to occur for plan selection.

BDIMessageEvent BDIMessageEventsarereceivedbyagentsfromexternal
sources– usuallyotheragents.Thesearenormallysent
from one agent to another to facilitate inter-agent
communication. Meta-level reasoning can be
performed for plan selection on receipt of this event
type.

BDIGoalEvent A BDIGoalEvent represents an objective that an agent
wishes to achieve. Meta-level reasoning, alternative
plan selection and plan set recalculation are all
available for this event type.

InferenceGoalEvent An InferenceGoalEvent usesRuleBehavior, which
extendsBDIBehavior byprocessingall applicableplans
(rather than only one of them).

PlanChoice Posted when there is more than one plan to choose
from andoptionallyhandledby theagentto implement
meta-level reasoning.

Events

AgentManual
Release5.3

68 10-June-05
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

If theplaninstancesucceeds,theBDIFactEvent succeedsandreturnsto theplanthatgenerated
it.

If the plan instance fails, the default behaviour is that theBDIFactEvent fails and returns
control to the plan that generated theBDIFactEvent.

BDIFactEvents are usually posted under the following circumstances:

• when the agent executes a@post statement from within a plan,

• when the agent executes either thepostEvent() or postEventAndWait() base method
from agent code outside plan execution, or

• whentheagentmodifiesabeliefsetrelationfor whichabeliefsetmodificationcallback has
been defined.

For more information on beliefset modification callbacks, refer to theBeliefset Relations
chapter.

In each case, an instance of the event is posted using one of the event'sposting methods. The
posting method acts as the event's constructor, creating an instance of the event and making it
available to the agent's task manager.

The BDI event processing properties supported byBDIFactEvents by default are summarised
in the following table:

Table 5-3: Default BDI event processing properties, supported byBDIFactEvents

5.3.2.2 The BDIMessageEvent Class

BDIMessageEvents are the same as normalMessageEvents but with BDI extensions. They
allow theagentmorescopewhenreasoningabouthow it shouldrespondto amessagereceived
from another agent or process.

LikeBDIFactEvents, BDIMessageEventsallow theagentto performmeta-level reasoningwhen
morethanoneplaninstanceis applicable.This letstheagentchoosewhichof its availableset
of responses is most appropriate according to given criteria.

BDI Event Property Supported by Default

Allows meta-level reasoning. Yes.

Allows reconsideration of alternative plans. No.

Recalculates the applicable plan set when
reconsidering alternatives.

No.

Events

Agent Manual
Release 5.3
10-June-05 69
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

For example, suppose an agent programmed to play as a soccer goal keeper in a soccer
simulation has three plans that are applicable when defending a penalty – jump to the left,
jumpto theright andstayin thecentre.Whenapenaltyis called(arriving asamessageevent)
all three of these plans would be applicable.

If themessageeventis of classMessageEvent, theagentcanonly selectthefirst plandeclared
in the agent or capability. However, if the message event is aBDIMessageEvent, the agent has
theoptionof performingmeta-level reasoningto determinewhichplanis best.Thismeta-level
reasoning may take into account various statistics from the game and past successes of each
approach, then make the selection accordingly.

Oncetheagenthaschosenaplaninstanceto handleaBDIMessageEvent, it will committo this
plan.If theplaninstancesucceeds,theBDIMessageEvent succeedsandreturnsto theplanthat
generated it.

If the plan instance fails, the default behaviour is that theBDIMessageEvent fails and returns
control to the plan that generated theBDIMessageEvent.

This default behaviour can be overridden by adding either of the following to a
BDIMessageEvent subclass:

#set behavior Recover repost;
or

#use behavior BDIGoalBehavior();

BDIMessageEvents can be sent by agents or by other Java processes running within a JACK
application. LikeMessageEvents, they are sent under the following circumstances:

• when an agent executes a@send statement from within a plan; or

• when an agent executes itssend() base method.

Note: Agents should only execute thesend() method from code outside a reasoning method.
This is becausethe@send statementis meantto beusedto postmessageeventsto otheragents
from within a reasoning method.

In order for agents running in different processes to send and receive message events, the
JACK runtime environment must provide a communication infrastructure with message
routing capabilities. This is done using the JACK DCI network. The JACK DCI network
enablestheestablishmentof portalsbetweenprocesses,throughwhichagentmessagescanbe
directed as needed. Refer to theInter-agent Communications chapter for further details.

The BDI event processing properties supported byBDIMessageEvents by default are
summarised in the following table:

Events

AgentManual
Release5.3

70 10-June-05
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

Table 5-4: Default BDI event processing properties, supported byBDIMessageEvents

LikeMessageEvents,BDIMessageEvents have amessage member and can be displayed on an
Agent Interaction Diagram. Refer to theTracing and Logging Manual for more details on the
Agent Interaction Diagram.

Note: All data fields within aBDIMessageEvent must be serializable.

5.3.2.3 The BDITracedMessageEvent Class

TheBDITracedMessageEvent class contains information which enables inter-agent
communication to be effectively displayed via an Agent Interaction Diagram (refer to the
Tracing and Logging Manual for details on the Agent Interaction Diagram. This information
is now available within the message event classes and consequently the
BDITracedMessageEvent was deprecated in JACK version 3.5.

5.3.2.4 The BDIGoalEvent Class

BDIGoalEvents are unlike the other BDI events described so far. TheBDIFactEvent, and
BDIMessageEvent extended existing normal events with some of the BDI reasoning
capabilities. TheBDIGoalEvent, however, is exclusive to the BDI model of agent reasoning.
Unlike the other BDI events, it offers all the BDI features by default.

TheBDIGoalEvent represents agoal or objective that an agent wishes to achieve. Therefore,
insteadof representingreactivebehaviour, BDIGoalEventsrepresentpro-activebehaviour in an
agent.WhenanagentpostsandhandlesaBDIGoalEvent, it is adoptingagoal.It will thenuse
all thereasoningpowersat its disposal– theability to discardandreconsiderplans,theability
to reassess which plans are applicable and the ability to choose between the plans that are
applicable, in order to satisfy that goal.

An exampleof thismightbeapilot agentadoptingagoalto landanaeroplane.Thiswouldbe
postedinternallyasaBDIGoalEvent. This thenbecomesanobjectivethattheagentcommitsto
achieving, andtheagentshouldtry everyapplicableplanuntil onesucceeds,andonly giveup
and fail when no more applicable plan instances remain to be tried.

BDI Event Property Supported by Default

Allows meta-level reasoning. Yes.

Allows reconsideration of alternative plans. No.

Recalculates the applicable plan set when
reconsidering alternatives.

No.

Events

Agent Manual
Release 5.3
10-June-05 71
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

BDIGoalEvents usually arise within an agent as a result of executing specific JACK Agent
Language statements in a reasoning method. These statements represent the agent posting the
goalfor itself, or choosingto undertakeataskto satisfythegoal.Whenanagentadoptsagoal,
it can do so with the following objectives in mind:

• achieve the goal,

• insist that the goal is achieved, by double-checking that the goal has been met when the
agent finished the task,

• test whether the goal can be achieved, or

• determine a situation in which the goal can be achieved.

Each of these objectives is specified by a separate reasoning method statement (@achieve,
@insist, @test and@determine). These reasoning methods are described fully in thePlans
section.

BDIGoalEvents canalsobepostedandsub-tasked– they donotarisesolelyfrom thereasoning
method statements@achieve, @insist, @test and@determine. However, if they do not arise
from one of these statements, the mode (discussed in the section onEvent members) will be
set to null.

The BDI event processing properties supported byBDIGoalEvents by default are summarised
in the following table:

Table 5-5: Default BDI event processing properties, supported byBDIGoalEvents

5.3.2.5 The InferenceGoalEvent Class

An InferenceGoalEvent usesRuleBehavior, which extendsBDIBehavior by processing all
applicable plans (rather than only one of them). The behaviour is the same asBDIBehavior,
except for the following:

• When a plan succeeds, instead of completing the event, the plan is added to the 'tried set'
(called 'failed set' forBDIBehavior), and the next applicable plan is processed.

• When a plan fails, the event ignores this and continues with the next plan. This aspect is
tunable by means of a behaviour attribute as follows:

BDI Event Property Supported by Default

Allows meta-level reasoning. Yes.

Allows re-consideration of alternative plans. Yes.

Re-calculates the applicable plan set when
reconsidering alternatives.

Yes.

Events

AgentManual
Release5.3

72 10-June-05
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

– to fail the event with the first failing plan, use

#set behavior RuleFailure fail;

– to fail the event if any of the plans fail, but only after all the applicable plans have been
processed, use

#set behavior RuleFailure delay;

– to ignore plan failure (i.e. the event always succeeds) use

#set behavior RuleFailure ignore;

The default behaviour is to ignore plan failure (i.e. the event always succeeds). The
RuleFailure attribute only applies to events that useRuleBehavior (e.g.
InferenceGoalEvents).

Thebehaviour of anInferenceGoalEvent is thesameasBDIBehavior in termsof forming the
applicable set and in terms of meta-level plan choice (although in this case, all plans will be
processed). AnInferenceGoalEvent can be fine tuned in the same way as other BDI events,
usingthebehaviour attributes.Behaviour attributesarediscussedin detaillaterin thischapter.
The defaultBDIBehavior attribute settings are as follows:

Recover = repost ; //this attribute cannot be changed
ApplicableSet = once ;
ApplicableChoice = first ;
ApplicableExclusion = failed ;
PlanBindings = all ;
OnError = propagate ;
PostPlanChoice = never ;

The defaultRuleBehavior attribute setting is:

RuleFailure = ignore ;

Note that anInferenceGoalEvent can only be posted. To achieve the same behaviour when
sending an event between agents, the#use behavior RuleBehavior; declaration is added to
an event which has extended a normal message event. For example:

 public event ExampleEvent extends MessageEvent
 {

#use behavior RuleBehavior();

#posted as postingMethod()
 {
 }
 }

Note: The applicable plan set only includes the highest ranking plans – not all the plans that
arerelevantandwithin context. As InferenceGoalEvents (andeventsthatuseRuleBehavior)
only calculate the applicable set once, they will only activate the highest ranking plans.

Events

Agent Manual
Release 5.3
10-June-05 73
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

5.3.2.6 The PlanChoice Event Class

PlanChoice events are a separate class of event altogether, but they are included with BDI
eventsbecausethey representthemechanismwherebyanagentperformsmeta-level reasoning
about the handling of BDI events.

Unlike theothereventclassesin theJACK AgentLanguage,auserwouldnotexplicitly posta
PlanChoice event by executing a method or a reasoning method statement in a plan. Instead,
PlanChoice events are posted internally by an agent whenever:

• an instance of a BDI event arises within the agent, and

• there is more than one applicable plan instance available to the agent to handle this event.

When this happens, the agent is given an opportunity to choose which of the applicable plan
instancesit will execute.Thetaskto handlethisPlanChoice eventproceedslikeany othertask
execution in JACK. The agent looks for plan instances that are relevant to thisPlanChoice
event and applicable under the current circumstances, selects one and then executes it. The
plan should examine the set of applicable plans and select one for the agent to try.

Because an agent handles aPlanChoice event in the same way that it handles a normal event,
the processing ofPlanChoice events is referred to asmeta-level reasoning. It represents
reasoning (task execution) that an agent undertakes not to do work, but to decide what is the
best approach to doing work.

Plansthatareusedfor meta-level reasoning,asopposedto handlingnormalor BDI events,are
distinguished by the following JACK Agent Language declarations:

#handles event PlanChoice event_handle;
#chooses for event event1 event2 ... ;
#chooses for event ... ;

The plan's#handles event declaration identifies it as one that handlesPlanChoice events.
SincePlanChoice eventscannotbedeclared,theevent_handle componentwill beassigneda
referenceto any PlanChoice eventthatarises.Therefore,plansthatincludea#handles event

PlanChoice event_handle; declarationwill handleall PlanChoice eventsthatarisewithin the
agent unless further methods for discrimination are supplied.

This discrimination is provided by the#chooses for event declaration. The#chooses for
event declaration identifies the events for which the plan's meta-level reasoning is relevant.
Therefore, if a meta-level reasoning plan includes one or more#chooses for event
declarations, the plan will only be relevant for a givenPlanChoice event if thatPlanChoice
event was caused by one of the listed events. That is, the agent will only use this meta-level
planto choosebetweenmultipleplaninstancesif thoseplaninstancesareall applicableto the
listed event.

More information on these declarations is supplied in thePlans section.

Events

AgentManual
Release5.3

74 10-June-05
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

5.3.3 Customising BDI Behaviour with Behaviour Attributes
Each BDI event type has a default behaviour that determines what happens with respect to
plan reconsideration, plan set recalculation and meta-level reasoning. This default behaviour
can be modified by setting thebehaviour attributes of the event.

The#set behavior declaration is used in BDI event definitions to define how an agent
processes an instance of this event when it arises. Options that can be configured include
things such as whether the agent will retry the event if an attempted plan fails and whether or
not the agent can reason about which plan it executes in response to the event.

Not all BDI eventsoffer all thesepropertiesby default.However, eachpropertyis presentwith
oneor moreBDI event.Furthermore,the#set behavior declarationcanbeusedto customise
the properties of BDI events in each particular application.

Changes to behaviour attributes for BDI Events take two basic forms, as follows;

#set behavior attribute value;
#set behavior attribute Type (arg_list);

Thefirst form is themostcommonandis usedto setthebehaviour of existingBDI events.The
second form is used to define custom plan choice events to use for meta-reasoning with the
event being defined. Both types are described in the sections that follow.

Notethattheexactbehaviour generatedby settingaparticularbehaviour attributecandepend
on the setting of another behaviour attribute. For example, the behaviour generated by the
Recover attribute is linked to the setting of theApplicableSet attribute.

With their default values of:

#set behavior Recover repost;
#set behavior ApplicableSet new;

an event will be reposted on plan failure and the applicable set will be recomputed anew (i.e.
possibly with different bindings). Another applicable plan will then be tried (any plan
instances already tried and failed will be discarded). However, if theApplicableSet attribute
had a value ofonce, the applicable set would not be recomputed before another plan was
selected.

Events

Agent Manual
Release 5.3
10-June-05 75
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

#set behavior Recover <value>;

Thisattributecanbeaddedto aBDI eventto definehow planprocessingshouldactuponplan
failure. Possible values are listed in the following table:

Table 5-6: Possible values for theRecover attribute

Note: repost is the defaultRecover value used byBDIGoalEvent andInferenceGoalEvent,
while never is the default forBDIFactEvent, BDIMessageEvent andBDITracedMessageEvent.

#set behavior ApplicableSet <value>;

Thisattributecanbeaddedto aBDI eventto definehow to form theapplicablesetduringplan
processing, and in particular with respect to recovering:

Table 5-7: Possible values for theApplicableSet attribute

Value Effect

repost The event should be reposted on failure, or more
precisely, anotherapplicableplanshouldbetried.If no
new applicable plan is found, the event processing
fails. [DEFAULT]

never Event processing should fail rather than recover from
plan failure.

always The event should always be reposted, even when no
new applicable plan is found.

Value Effect

new Theapplicablesetshouldbecomputedanew aftereach
plan failure. [DEFAULT]

once The applicable set is to be computed only once. On
event failure, the next applicable plan is selected from
the set computed initially for the event.

repeat The applicable set is computed initially, and then
reinstated when exhausted. This is designed to work
with theRecover always attributeandallowspersistent
checkingof plansin acomputedsetuntil onesucceeds.

Events

AgentManual
Release5.3

76 10-June-05
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

#set behavior ApplicableChoice <value>;

Thisattributecanbeaddedto aBDI eventto definehow anapplicableplanshouldbechosen.
This setting is overridden by any meta-level reasoning that is in place:

Table 5-8: Possible values for theApplicableChoice attribute

#set behavior ApplicableExclusion <value>;

This attribute can be added to a BDI event to define how plans are excluded from the
applicable set:

Table 5-9: Possible values for theApplicableExclusion attribute

Thetwo default values are;

#set behavior ApplicableExclusion failed;
#set behavior ApplicableExclusion rank;

Note: If the ApplicableExclusion attributes are set tonone, thereset plan exclusion
propertiesareeffectively resetfor thisevent.After resettingthisproperty, eitherthefailed or
therank property can be selectively added to further refine plan set exclusion characteristics.

Value Effect

first The first plan instance generated by the#uses plan

declaration in the body of the agent or capability is
chosen. [DEFAULT]

random A plan is chosen from the applicable set at random.

Value Effect

failed Plansthathave failedareexcludedfrom theapplicable
plan set. [DEFAULT]

none Planfailureis forgottenimmediately, sothatplansthat
have failed previously can be added to the applicable
plan set (if they are still applicable).

rank All Plan instances with lesser
PlanInstanceInfo.getRank() values are excluded
from the applicable plan set. [DEFAULT]

Events

Agent Manual
Release 5.3
10-June-05 77
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

#set behavior PlanBindings <value>;

Thisattributecanbeaddedto aBDI eventto definehow to processplancontext for generating
multiple plans instances:

Table 5-10: Possible values for thePlanBindings attribute

#set behavior OnError <value>;

This attribute can be added to a BDI event to define how to deal with exceptions from plans:

Table 5-11: Possible values for theOnError attribute

Value Effect

all Generate all applicable plan instances before plan
choice. [DEFAULT]

single Generate one applicable and not failed instance (if
possible).

first Try thecontext once for arelevant plan type. If that
fails, or if the first plan instance has been tried before
and failed, no new plan instance is generated.

Value Effect

propagate Propagatetheerrorupthetaskstackto wheretheevent
was subtasked. [DEFAULT]

fail Capture the error but fail the event processing.

repost Treat the error as plan failure.

Events

AgentManual
Release5.3

78 10-June-05
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

#set behavior PostPlanChoice <value>;

This attribute can be added to a BDI event to define under which circumstances the
PlanChoice event should be posted:

Table 5-12: Possible values for thePostPlanChoice attribute

SettingPostPlanChoice to never resets all settings for this attribute. All required attributes
can then be added.

Note: Severalof theabovevaluesmaybeneededto selectthedesirednuance.For example,if
you like a plan choice for one or more applicable plan instances, the declaration would be as
follows:

#set behavior PostPlanChoice one_applicable;
#set behavior PostPlanChoice multiple_applicable;

#set behavior PlanChoiceEvent MyPlanChoice();

This attribute can be added to a BDI event to declare that the event type being defined should
useMyPlanChoice which is constructed inline. The classMyPlanChoice needs to be defined
and it needs to extend classPlanChoice.

Value Effect

never Never post aPlanChoice event for the event being
defined.

always Always post aPlanChoice event.

one_applicable Post aPlanChoice event if there is only one plan
instance in the applicable plan set.

multiple_applicable Post aPlanChoice event if there are two or more plan
instances in the applicable plan set. [DEFAULT]

no_applicable Post aPlanChoice event if there are no plan instances
in the applicable plan set i.e. it's empty.

one_plan Post aPlanChoice event if there is one relevant plan.

multiple_plan Post aPlanChoice event if there are two or more
relevant plans.

no_plan Post aPlanChoice event if there are no relevant plans.

Events

Agent Manual
Release 5.3
10-June-05 79
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

5.4 Automatic Events
 The objective ofautomatic events is to provide a mechanism for an agent to automatically
post particular events when certain belief states arise. Automatic events use:

1. A #uses data statement.Thisstatementis addedto aneventdefinitionto provideaccessto
the agent's belief structures.

2. A #posted when definition. This definition is added to an event definition to specify the
conditionwhichmustarisefor theeventto beautomaticallypostedandoptionally, abody
which will be used as the posting method if and when the condition should arise.

When an agent or capability declares that it handles an event which has a#posted when
definition,it will automaticallyhave thenecessarybeliefmonitoringactivated.Thedetailsare
described in the section on the#posted when declaration.

The use of the#uses data and#posted when statements to achieve automatic belief
monitoring is illustrated in the following example:

event Example extends Event
 {

#uses data ReactorVessels rv;
logical String $vessel;
logical int $x;
#posted when (rv.get($vessel,$x) && $x.as_int() > 300) {

 // Any event initialisation goes here
 }
 }

Theblockafterthe#posted when conditionis optional.If therearenoeventfieldsthatneedto
be initialized when the event is actually posted, it can be omitted as shown below:

#posted when (rv.get($vessel,$x) && $x.as_int() > 300);

The condition is evaluated once initially, and subsequently whenever a change occurs that
might affect the condition. If the condition evaluates to true, the event is posted with the
logical variables bound as they were in the condition. If there are multiple bindings, a
separately bound event will normally be posted for each possible binding. The exception
occurs when an event with that particular binding has already been posted to signify the
condition becoming true and the condition with that binding has not become false in the
meantime.

Suppose that in the above example,rv initially contained the following tuples:

 ("vessel1",400) and
 ("vessel2",500)

then two separate events would be posted; one with$x = 400 and one with$x = 500.

However, if rv initially contained no facts and the fact

 ("vessel1",400)

Events

AgentManual
Release5.3

80 10-June-05
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

was asserted, an event would be posted with$vessel = "vessel1" and$x = 400. If

 ("vessel2",500)

was then asserted, another event would be posted with$vessel = "vessel2" and$x = 500.
However, notethatanothereventwith $vessel = "vessel1"and$x = 400would not beposted
because the condition (with$x = 400) is still true and had never been false in the intervening
period.

If theconditionwasmorecomplicated(e.g.involvedmorethanonebeliefset)andtheaddition
of one fact meant that multiple bindings became true, multiple events would be posted.

5.5 Event Definition
JACK Agent Language events not only support the concepts described in the last section, but
alsoprovidetypesafetywithin agentdefinitions.This is becausebothagentsandplansneedto
declare the events that they handle and the message events that they send. As with function
prototypes,thisensuresthatany typemismatchesin anevent'sparameterscanbedetectedand
flagged during compilation.

Event definitions follow one of the formats given below:

event EventType extends Event
 {
 // JACK Agent Language statements specifying
 // the event's structure and how the event is
 // posted within the agent.
 }

event EventType extends MessageEvent
 {
 // JACK Agent Language statements specifying
 // the event's structure and how the event is
 // posted to other agents.
 }

event EventType extends BDIFactEvent
 {
 // JACK Agent Language statements specifying
 // the event's structure and how the event is
 // posted within the agent.
 }

event EventType extends BDIMessageEvent
 {
 // JACK Agent Language statements specifying
 // the event's structure and how the event is
 // posted to other agents.
 }

Events

Agent Manual
Release 5.3
10-June-05 81
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

event EventType extends BDIGoalEvent
 {
 // JACK Agent Language statements specifying
 // the goal's structure and how the goal is
 // posted within the agent.
 }

event EventType extends InferenceGoalEvent
 {
 // JACK Agent Language statements specifying
 // the goal's structure and how the goal is
 // posted within the agent.
 }

event EventType extends PlanChoice
 {
 // JACK Agent Language statements specifying the
 // PlanChoice event structure.
 // Note: you are unlikely to want to declare your own
 // PlanChoice events. You would only do this if you
 // want to extend the meta-level reasoning capabilities
 // supplied with JACK.
 }

Each part of these definition statements is explained in the following table:

Table 5-13: Event component definitions

5.6 Event Members and Methods
The event classes described earlier in this chapter include a number of base members and
methods. These members and methods are described in the following subsections. In each
case, the event classes that contain these members and methods are identified.

Syntax Term Description

event JACK Agent Language keyword that
identifies the statement as an event
definition. It must always be used to
define events.

EventType The name that the event will have. The
name of an event is analogous to the
name of a class in Java.

extends Event

extends MessageEvent

extends BDIFactEvent

extends BDIMessageEvent

extends BDIGoalEvent

extends InferenceGoalEvent

The same as in normal Java. Each event
class defined inherits its underlying
properties from a base class. This base
class may be:Event , MessageEvent ,
BDIGoalEvent or InferenceGoalEvent .

Events

AgentManual
Release5.3

82 10-June-05
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

public Agent getAgent()

ThegetAgent() method returns theAgent that instantiated the event or in other words, the
agent which is processing the event.

public String from

Thefrom memberdescribesthelocationof theagentthatoriginally postedtheevent.Thiswill
refer to a different agent than the one returned bygetAgent() unless the agent posted a
message to itself. This member is only available in message events used for inter-agent
communication, according to the following table:

Table 5-14: Availability of thefrom member

Whenever a message event is sent from one agent to another, the name and address of the
agent that sent it is automatically assigned to this member. This address is a string that
represents both the agent's name and theportal at which it is running on the DCI network.
Refer to theInter-agent Communications chapter for further details.

Agents that receive a message event can query thefrom member to determine where the
message came from. If they want to send a response, they can do so using the@reply
statement in a reasoning method, or thereply() method in ordinary code. Both of these
constructs automatically extract thefrom member from the supplied event that originated the
interaction.

Becauseall messageeventsextendfrom theMessageEvent eventclass,everydefinedmessage
event class will include this member.

Event Type Member Available

Event No.

MessageEvent Yes.

BDIFactEvent No.

BDIMessageEvent Yes.

BDIGoalEvent No.

InferenceGoalEvent No.

Events

Agent Manual
Release 5.3
10-June-05 83
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

public String message

This member is available only in message events, as shown in the following table:

Table 5-15: Availability of themessage member

Themessage member is provided for message events so that they can be traced using the
Agent Interaction Diagram (if this JACK option is enabled). Whenever writing a posting
method for a message event, aString may be assigned to this member. If so, this text will be
propagated to the Agent Interaction Diagram, allowing easy identification of the instance of
this message event. Refer to theTracing and Logging Manual for details on the Agent
Interaction Diagram.

public String mode

This member is available inBDIGoalEvents only, as illustrated in the following table:

Table 5-16: Availability of themode member

Event Type Member Available

Event No.

MessageEvent Yes.

BDIFactEvent No.

BDIMessageEvent Yes.

BDIGoalEvent No.

InferenceGoalEvent No.

Event Type Member Available

Event No.

MessageEvent No.

BDIFactEvent No.

BDIMessageEvent No.

BDIGoalEvent Yes.

InferenceGoalEvent No.

Events

AgentManual
Release5.3

84 10-June-05
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

This member holds aString that represents the statement used to post a given instance of a
BDIGoalEvent. By accessing this method, an agent can determine why it is handling a given
BDIGoalEvent instance. This information is stored in themode member only when@achieve,
@determine, @insist or @test are used to post theBDIGoalEvent. If it did not arise from one
of these statements, the mode will be set tonull.

For example, suppose an agent that drives a networking system needs to derive information
aboutthestateof thenetwork beforeattemptingto establishanew connection.Whenit wants
to connect to a new system, it first posts aBDIGoalEvent using a@test statement. Assuming
the connection is successful, the agent would post aBDIGoalEvent using the@achieve
statement.

The plan that handles this event can query the event'smode member to determine if the agent
wants the connection tested or whether a connection should be established. In each instance
thestrings"test"and"achieve" wouldbestoredin themode memberrespectively. In eachcase,
the plan's processing would need to be different.

The strings for eachBDIGoalEvent posting mode are given in the following table:

Table 5-17: Posting modes

Cursor replied()

This method indicates whether the agent has received any replies to a given message event. It
returns a triggered cursor, which will test whether the given message event's reply queue is
empty.

A messageeventcanhaveany numberof pendingreplies.A reply is alsoamessageevent,but
it must have been sent using areply() method or an@reply statement.

If the agent has received at least one reply to theMessageEvent that you call this method on,
the cursor statement will returntrue when tested.

If the agent has yet to receive a reply to theMessageEvent that this method was called on, the
cursor statement will returnfalse when tested.

BDIGoalEvent Posted by mode

@achieve achieve

@insist insist

@test test

@determine determine

Events

Agent Manual
Release 5.3
10-June-05 85
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

Becausethecursoris triggered,it canbeusedin a@wait_for statementto maketheagentwait
for replies before continuing with a given task. Doing this provides the option of
implementing synchronous inter-agent messaging, rather than the default asynchronous
method. After sending a message event to another agent, a reasoning method can make the
task wait on the returned triggered cursor, effectively blocking it until such a reply arrives.

This method is only provided on message events as shown in the following table:

Table 5-18: Availability of replied method

MessageEvent getReply()

This method complements thereplied() method described above. It allows retrieval of a
reference to aMessageEvent that has been sent as a reply to theMessageEvent that it is called
on.

When this method is called, it returns the first reply in the reply queue, removing it from the
queue at the same time. If there are no message events in the reply queue, it throws anError.
This method is only provided on message events as per the following table:

Table 5-19: Availability of thegetReply method

Event Type Method Available

Event No.

MessageEvent Yes.

BDIFactEvent No.

BDIMessageEvent Yes.

BDIGoalEvent No.

InferenceGoalEvent No.

Event Type Method Available

Event No.

MessageEvent Yes.

BDIFactEvent No.

BDIMessageEvent Yes.

BDIGoalEvent No.

InferenceGoal No.

Events

AgentManual
Release5.3

86 10-June-05
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

5.7 Event Declarations
Events have a small number of JACK Agent Language specific constructs at the field or
member level. These constructs are described in the following subsections.

#posted as methodName(parameters)

This is one of the event'sposting methods. A posting method describes how the event can be
constructed and posted or sent.

An event'spostingmethodmustbeusedwheneveraninstanceof theeventneedsto becreated.
This is normally when agent or beliefset code executes thepost() method, or a plan uses the
@post or @subtask statements. The posting method describes everything that the agent needs
to do to construct an instance of the event.

A posting method declaration is as follows:

#posted as methodName (parameters)
{
 // Method Body
}

Each part of this declaration is described in the following table:

Table 5-20: Posting method declaration components

Component Meaning

#posted as Indicates that an event's posting method is being
defined. All posting method definitions must be
identified in this way.

MethodName The name by which the posting method is identified.
When the agent posts an event, it uses this name to
identify the posting method to be used.

(parameters) Identifies the number and type of parameters that this
posting method requires in order to construct and post
the event.

Method Body Java code that is used to construct the event.

Events

Agent Manual
Release 5.3
10-June-05 87
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

An example event definition including a posting method is given below:

 // An example event definition to be used with a
 // prospecting agent. The agent models a prospector who
 // travels around looking for treasure. This event is
 // posted whenever some treasure is found (presumably so
 // that the agent will execute a plan to retrieve it).

event FoundTreasureEvent extends Event
 {
 int latitude;
 int longitude;
 int value;

#posted as foundTreasure (int lat, int ltd, int val)
 {
 latitude = lat;
 longitude = ltd;
 value = value;
 }
 }

In this example, the posting method's name isfoundTreasure. Whenever the agent believes it
has found some treasure while executing its own methods, it can use thefoundTreasure
posting method to create aFoundTreasureEvent which it can post or send to initiate a
response.

ThefoundTreasure posting method requires three arguments if the event is to be posted
successfully. These are the treasure's latitude, longitude and value. All that the posting
method's body does is populate the event's data members with this information so that it will
be included in the posted event.

An event may have as many posting methods as you want. You may use different posting
methods when instances of the event should take a different form under different
circumstances. In particular, you may want to implement multiple posting methods using the
idea of apolymorphic class which allows you to use the same posting method name while
defining different versions of the posting method for different arguments.

For example,supposeanagentthatkeepstrackof aracingleaderboardgetsmessagessentto it
by anotheragentwhenevereachracercompletesa lap.Thismessagemaytaketwo forms:one
when the racers have completed a lap during the race, and another when the racers have
completedthefinal lap. In eachcase,themessagemayconvey differentinformationaboutthe
racer. The agents can use the same message event for each situation, but a different posting
method to propagate the event instance with the required information in each case.

Just as you can extend the baseEvent classes you can also extend your own event definitions.
Youmaychooseto definegenericeventtypesandthenextendthemto morespecificcases.For
example, a genericFoundTreasureEvent might be used as the base class for a
FoundDiamondEvent and aFoundGoldEvent). When you choose to do this, you should only
define posting methods for the outermost (leaf) event classes.

Events

AgentManual
Release5.3

88 10-June-05
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

You may wish to extend your own event classes if, for example, you require:

• improved efficiency in terms of plan selection (the events are more specific),

• different behaviours (using#set behavior),

• additional members.

#uses data DataType data_name

 The#uses data statement in an event definition has the following form:

#uses data DataType data_name;

where theDataType anddata_name match the data or beliefset declaration in the enclosing
capability or agent. This statement is added to an event definition to provide access to the
enclosing capability or agent's belief structures.

#posted when (condition) optional_method_body

 The#posted when statement has the following form:

#posted when (condition) { body }

where thecondition is a logical condition of the same form as a condition for a@wait_for

statement. In particular, it must be a triggered condition, i.e. include conjuncts that are
triggered, such as beliefset cursors etc.

Note that theelapsed() andafter() methods are plan methods and thus not available for
events– if thereis a requirementfor issuingaregularrecurrenteventstream,theuseof aplan
is recommended.

Thebodyaftertheconditionis optionalandconsistsof any initialisationthatshouldbedoneif
and when the event is posted. The body is the same as that of a normal posting method
declaredusing#posted as. If noinitialisationis needed,theentirebody(includingthebraces)
may be omitted.

If an event definition includes a#posted when statement, the compiler deals with logical
variables in the event by providing a logical environment in which to evaluate the condition,
and later providing new logical environments and bound variables for the automatic events
being posted.

An event definition may include several#posted when and any number of#posted as
statements just like any other event. The former will then issue automatic events according to
their conditions, and the latter would be used exactly as before.

Events

Agent Manual
Release 5.3
10-June-05 89
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

#set transport format

The #set transport statement is used to signal which transport format is to be used for
message events. It has the following form:

#set transport format

whereformat is eitherjacob or java. Sincerelease4.1,thedefault formatis jacob. Although
jacob is generally more efficient for transport, there are some things thatjacob does not
support(e.g.arrays).In suchcases,java formatshouldbespecifiedusingthe#set transport

declaration,

If the #set transport statement is used to specifyjava format, the event is compiled to use
Java serialization.

jacob format provides support for transport in binary, text or XML style. The default style
with jacob format is binary. It is possible to specify the style processwide by setting the
propertyJACOB.OutputType to one of(ascii,binary,xml).

5.8 Posting and Sending Events
In JACK, posting methods create instances of the events to be posted or sent. These instances
are then provided as arguments to the reasoning statements or methods which are responsible
for their posting or sending (e.g.post(), send(), @post ...). The event's posting methods are
accessedthroughtheeventreferenceprovidedin the#sends eventor #posts eventdeclaration.
Note that there is only one#sends or #posts event declaration for a given event type in any
agent or plan. Event instances are created in an agent or plan by using the event's posting
method(s). The process is illustrated below.

#sends event MessageEventType mef;
 :
 :
 // create event
 MessageEventType me = mef.postingMethod1(arg1, arg2);

 // send the event
send(destination1, me);

 // create and send another event
send(destination2, mef.postingMethod2(arg3, arg4, arg5));

 :
 :

Events

AgentManual
Release5.3

90 10-June-05
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

Inter-agent Communications

Agent Manual
Release 5.3
10-June-05 91
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

6 Inter -agent Comm unications
6.1 Intr oduction
JACK provides a runtime networking environment on which different agent processes can
operate.Agentscanaddressmessages(MessageEvents,andBDIMessageEvents) to oneanother
by specifying the name of the destination agent and, if applicable, its portal and host. The
JACK runtime network then takes care of routing this message to its desired destination.

6.2 Local Comm unication
Not all agents need to run in independent JACK processes. Often more than one agent will
sharethesameprocess.Whenthis is thecase,theroutingof messagesbetweenthemis trivial.
All that the source agent needs to know is the destination agent's name to send the message
accordingly.

For agents to communicate with one another, the following requirements must be met:

• The agents must know one another's name.

Strictly, this is only required by the agent that sends the message event, because when
messageeventsarrive they containthenameof thesendingagentin thefrom datamember.

• The source agent needs to be able to send a message event.

This is achieved by including a#sends event declaration in the agent's definition for the
required class of message event. Note that the message event must also have been defined.

The source agent must then include code to send the message event. It can do this by
calling thesend method from code outside a reasoning method, or the@send statement
from within a reasoning method.

• The destination agent needs to be able to handle this message event.

This is achieved by including a#handles event declaration for this message event in the
destination agent's agent definition. To handle this event correctly, the destination agent
mustalsoincludeat leastoneplanwith thesame#handles event declaration,anddeclare
that it uses this plan via a#uses plan declaration.

6.3 Remote Comm unication
When agents are running in separate processes, The JACK communications layer needs to be
used to allow these agents to communicate. This communications layer is known as the DCI
network.

Inter-agent Communications

AgentManual
Release5.3

92 10-June-05
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

TheDCI network is layeredin suchaway thatdifferentunderlyingtransportmechanismscan
be accommodated. By default, JACK uses the UDP transport protocol which is available on
existing TCP/IP networks. This protocol is fast but connectionless and it does not guarantee
delivery, so JACK provides a thin layer over UDP which provides reliable peer-to-peer
communications.

Note: No call to any networking code is made unless a connection is actually requested or
made possible (by specifying an explicit port number for the local portal). This means that
machines with no networking installed will still be able to use JACK locally.

When agents in remote processes need to be able to communicate, the processes need to be
told how to communicatewith oneanother. Eachprocesshasits own portal andtheseconnect
to eachotherto provideacommunicationslink for theagentsin eachprocess.A pairof portals
canbeconnectedexplicitly, or aname-servercanbeusedsothatportalscanconnectonthefly
as needed.

Thefull nameof anagenttakestheform agent@portal, whereagent refersto thenamegiven
to anagentoncreationandportal refersto thenamedportalassignedto theprocessin which
the agent is running. The process may be running on a remote host or the local machine. To
avoid ambiguity, it is recommended that the full name of an agent be used at all times when
sending messages.

Theeasiestwayto setupaDCI network is to designateoneof theprocessesasaname-server.
This simply means that whenever an agent tries to send a message to an agent at an unknown
portal, the agent will query the name-server to try to locate the portal. If the name-server
knows about the unknown portal, a connection to it is silently established. Otherwise, the
message will be undeliverable and the send request will fail.

If there is no designated name-server, all connections must be explicitly requested. Any
explicit connection request must be made by one (and only one) of the two processes
comprising each connection.

Processes automatically keep their name-server(s) informed of new connections that they
make. When a process makes an initial connection to a name-server, the name-server will
updateits list of known addresses.Thiscanbeusedto implementarobustnetwork containing
two or more name-servers so that no information is lost if one name-server goes down and
subsequently comes up again.

If a process exits for any reason, it can be restarted and communication will resume from the
restart time. Any messages sent while the process was not running will be lost.

Inter-agentCommunications

Agent Manual
Release 5.3
10-June-05 93
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

6.3.1 DCI from the Command-line
Portals, name-servers and connections can be established on the command line, provided that
a call has been made to the JACK initialisation method:

aos.jack.Kernel.init(String[] args)

The simplest example is connecting two processes so that agents in each of them can
communicate with each other. Suppose one of them is calledSpeaker and the other is called
Listener. To connect them using a name-server, the two processes would be run as follows:

 java Listener "-dci.new:listener=xxxx"
 java Speaker "-dci.new:speaker" "-dci.ns:xxxx"

The first process creates a portal calledlistener bound to UDP portxxxx.

The second process creates a portal calledspeaker. It did not specify a particular port so a
random port will be allocated for it. It also specifies a name-server, so it will connect to the
name-server portal immediately.

Note: If the processes were running on different machines, the UDP port could have been
specifiedashost:xxxx insteadof justxxxx. Whenever thehostis omittedin thisway, thelocal
host is assumed.

To connect the two processes using an explicit connection, the two processes would be run as
follows:

 java Listener "-dci.new:listener=xxxx"
 java Speaker "-dci.new:speaker" "-dci.con:speaker->listener=xxxx"

As in the name-server example, thelistener portal did not bother to choose a specific UDP
port because there was no need. However, thelistener portal had to specify a particular port
so thatspeaker would know where to connect to.

Note: When connecting explicitly in this way, only one of the processes initiates the
connection. Once connected, the communications path is bidirectional and completely
symmetrical. Any unsuccessful connection attempts will timeout in 30 seconds by default.

An application can create a portal without the use of the-dci.new command line option. By
default theportalassociatedwith anapplicationhasname%portal, hostlocalhost, andaport
number that is the next available port. However, if the Java propertiesjack.portal.name,
jack.portal.host or jack.portal.port are set, then these values will be used instead. This
means that if the portal is being created solely for tracing purposes, (refer to theTracing and
Logging Manual), thenthereis noneedto includeaninit(args) call in themain() methodof
the application.

Inter-agent Communications

AgentManual
Release5.3

94 10-June-05
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

6.3.2 DCI Command Line Summary

Table 6-1: DCI command line summary

6.3.3 DCI in Code
The above DCI command line functionality can also be achieved in the JACK code through
the following static methods in the classaos.jack.jak.core.Dci.

void create(String name, String desc)

Thecreate methodcorrespondsto the-dci.new commandline argument.Thismethodneeds
to be called before the first agent is created.name is the name of the portal, anddesc is the
description string that follows the '=' sign on a command line.

void connect(String lname, String rname, String rdesc)

Theconnect method corresponds to the-dci.con:P1->P2=host:port command line
argument. This method can be called at any time to establish a connection.lname is the local
portal's name,rname is the remote portal's name, andrdesc is the description string that
follows the '=' sign on the command line.

void nameserver(String rdesc)

Thenameserver methodcorrespondsto the-dci.ns:host:port commandline argument.This
methodcanbecalledatany timeto establishanew, additionalnameserver to use.rdesc is the
name server specification string that follows the "-dci.ns:" on the command line.

Argument Purpose

-dci.new:A=host:port Creates a new portal calledA for this process. The
host andport are optional.

-dci.ns:host:port The given location (host andport) is designated as a
name-server. Thehost part is optional.

-dci.con:A->B=host:port The local portal namedA requests a connection to the
portal namedB which can be found at the given
location (host andport). Thehost part is optional.

-dci.timeout=seconds This changes the default connection timeout from 15
seconds to the specified value. Use a timeout of 0 to
wait indefinitely.

Inter-agentCommunications

Agent Manual
Release 5.3
10-June-05 95
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

void setTimeout (int seconds)

ThesetTimeout method corresponds to the-dci.timeout command line argument. This
methodcanbecalledatany time to changethetimeoutperiodfor thenext connectionrequest.

Note that all of the above methods exceptsetTimeout() throw aDciException.

In addition,thefollowing staticmethodsareavailableto determinewhetheraparticularagent
is running and accessible on the DCI network.

boolean pingOk (String agent)

This form of thepingmethodperformsonepingonly anddoesnotattemptany connection.It
doesnotdistinguishbetweendifferenttypesof failureandsimply returns'true'onsuccessand
'false' on any kind of failure.

int ping (String agent)

This form of the ping method performs one ping only and does not attempt any connection.
This method times-out after 30 seconds. The possible return values are described in the table
at the end of this section.

boolean multiPingOk (String agent)

With this version ofmultiPingOk, if the given portal is not connected but a nameserver is
present,thenaconnectionattemptis madebeforetheping is attempted.Oneping is attempted
and if it is unsuccessful, more pings are attempted at intervals of 1 second for a total waiting
period of 30 seconds. It returns 'true' or 'false' for success or failure.

boolean multiPingOk (String agent, int timeout, int interval)

This version ofmultiPingOk is likemultiPingOk(String) but it allows the timeout and
interval to be specified.

int multiPing (String agent, int timeout, int interval)

This version ofmultiPingOk is likemultiPingOk(String) but it allows the timeout and
interval to bespecifiedplusit returnsthesamevaluesasping(String) whicharedescribedin
the table at the end of this section.

Inter-agent Communications

AgentManual
Release5.3

96 10-June-05
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

The possible return values from the methods returningint are described in the following
table:

Table 6-2: Return values fromping andmultiPing

These values are defined inaos.dci.Portal.

Return value Meaning

Dci.PING_NOT_READY There is no portal present in the current process.

Dci.PING_UNKNOWN_PORTAL The given portal is not connected.

Dci.PING_UNKNOWN_NAME The given name is not known at the given portal.

Dci.PING_OK The given name at the given portal responded.

Plans

Agent Manual
Release 5.3
10-June-05 97
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

7 Plans
7.1 What is a Plan?
ThePlan class describes a sequence of actions that an agent can take when an event occurs.
Whenever an event is posted and an agent adopts a task to handle it, the first thing the agent
does is try to find a plan to handle the event.

Planscanbethoughtof aspagesfrom aproceduresmanual,or evenasbeinglikemethodsand
functions from more conventional programming languages. They describe, in explicit detail,
exactly what an agent should do when a given event occurs. Equipped with a set of plans, an
agenthasasetof skills andproceduralknowledgethatit candraw uponasrequired.Whenthe
event that a plan addresses occurs, the agent can execute this plan to handle it.

Each plan is capable of handling a single event. The event it can handle is identified by the
plan's#handles event declaration. When an instance of a given event arises, the agent may
execute one of the plans that declare they handle this event.

An agent may further discriminate between plans that declare they handle an event by
determining whether a plan isrelevant. It does this by executing therelevant() method of
each plan. If plans do not specify arelevant() method, they are relevant for all instances of
thatevent.Whenpresent,therelevant() methodletsaplanspecifyexactlywhich instanceof
a given event it is relevant for.

Once the relevant plan(s) have been identified, the agent determines which of these are
applicable. It does this by executing the plans'context() method. The context method is a
JACK Agent Languagelogical expression that can bind the values of the plan'slogical
members. For every possible set of bindings, a separate applicable instance of the plan is
generated.

Whentheagenthasfoundall applicableinstancesof eachrelevantplan,it selectsoneof these
to execute.If theeventis aBDI event,thismaycauseaPlanChoice eventto beposted,which
may initiate some meta-level reasoning within the agent to select the most appropriate plan
instance. Refer to theMeta-Level Reasoning chapter for more details on meta-level reasoning.

When the agent executes a plan, it starts by executing the plan'sbody() method. The body
method is a special kind of method in the JACK Agent Language called areasoning method.
Reasoning methods are quite different from ordinary methods in Java, as they are bound by
extra logical rulesandconditions.Eachstatementin areasoningmethodis treatedasa logical
statement that can either succeed or fail.

Failure of a plan statement will cause thebody() method to fail unless the plan specifically
allows for this possibility. If execution proceeds to the end of thebody() method, thebody()
method succeeds.

Plans

AgentManual
Release5.3

98 10-June-05
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

Thebody() methodcancall otherreasoningmethodsasit executes.Thesereasoningmethods
must be declared in the plan using the#reasoning method declaration. They help break
complex processingdown into smallercomponentsandmakeplansbothsimplerto understand
and more scalable.

All reasoning methods can include JACK Agent Languagereasoning method statements.
These statements are identified by a preceding@ symbol, and describe logical behaviour that
the reasoning method should adhere to. If a reasoning method statement is violated the
reasoning method also fails. Reasoning methods execute asFinite State Machines (FSMs).

7.2 Finite State Machines
Finite State Machines (FSMs) are a standard concept in computer science. They describe
executionenginesthatrepresentcalculationsandstatechangesin atomic,indivisiblesteps.In
afinite statemachine,executionmaybesuspendedor switched,but only atdesignatedpoints.
Eachstepin theexecutionis guaranteedto beatomic,andoncestartedwill notbeinterrupted
until it is complete. These atomic steps are normally quite small, but nonetheless the atomic
nature of each step is assured.

Finite State Machine statements (or FSM statements) are significant in the JACK Agent
Language because Java is a multi-threaded language where switching between execution
threads is normally the responsibility of the programmer. The Java execution engine does not
guarantee safe points at which it will switch execution threads, so it is up to the Java
programmer to implement object locking and any other concurrency controls which may be
required.

With FSM statements, however, multi-threading is taken care of by the JACK kernel. Each
statement is executed in a series of atomic steps, between which the agent can switch to other
executionthreadssafely. All reasoningmethodsandtaskexecutionsin JACK areFSMs,asare
statements that execute subtasks synchronously with the parent task (such as@subtask,
@achieve, @insist, @test and@determine). This ensures that the statements they contain
executein safe,atomicsteps.Thesestepsarenotalwayswholestatements:sometimesasingle
statement may consist of multiple component steps.

Note: Becausethreadingin FSMsis handledby theJACK kernel,noprogrammer-level multi-
threading should be performed in an FSM statement. This would not only be superfluous, but
may also hamper the efficiency of the underlying kernel multi-threading.

Plans

Agent Manual
Release 5.3
10-June-05 99
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

7.3 Plan Definition
The minimal format for the definition of a plan is given below:

plan PlanName extends Plan
 {

#handles event EventType event_ref

 // Plan method definitions and JACK Agent Language
 // #-statements describing relationships to
 // other components, reasoning methods, etc.

body()
 {
 // The plan body. This describes the actual steps
 // an agent performs when it executes this plan.
 }
 }

Each component of this definition is explained in the following table:

Table 7-1: Components of a Plan definition

7.4 Plan Member s and Methods
Like agents and events, plans can include normal Java members and methods. The user may
choose to add these to implement certain low-level functionalities.

Component Description

plan A JACK Agent Language keyword used to introduce a
plan definition.

PlanType The plan's name.

extends Plan Plays the same role as in Java – it indicates that the
plan being defined inherits from a JACK Agent
Language base class calledPlan. ThePlan base class
implementstheplan'sbasemethodsandtheunderlying
functionalityto supporttheplan'scorebehaviour, such
as reasoning methods and reasoning method
statements.

#handles event() Specifiestheeventtypethatthisplanhandles.Theplan
may place further constraints on its applicability via
relevant() andcontext() methods.

body() Describes the actual work done by an agent when the
plan is executed. It is the plan's top-level reasoning
method: if it succeeds, the plan succeeds and if it fails,
the plan fails.

Plans

AgentManual
Release5.3

100 10-June-05
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

Some members and methods are supplied automatically in JACK. These members and
methods enable the user to:

• identify which agent a plan belongs to,

• determine when a plan isrelevant,

• determine when a plan isapplicable;

• implement the core functionality of the plan, and

• define properties that an instance of a plan has to assist in meta-level reasoning.

Each of these members and methods are summarised in the following table and are described
in more detail below:

Table 7-2: Plan methods

Agent getAgent()

getAgent() can be used anywhere within a plan to access the instantiating agent. It can be
used within a plan to access the agent'stimer member and thename() method. It can also be
used to access user-defined agent methods and members.

Method Purpose

Agent getAgent() Identifies the agent which instantiated the plan.
Using the#uses agent implementing declaration and
the#uses interface declarationsenablesaPlan class
to be shared between agents.

relevant() Determines whether the plan is relevant to a particular
kind of event.

context() Determines whether the plan is applicable to a
particular event occurrence.

body() Describeswhattheagentmustdowhenit executesthe
plan. It is the plan's top-level reasoning method and
must always be present.

getInstanceInfo() Allows details to be extracted on any properties that
have been defined for a plan instance. These property
details can be compared in meta-level reasoning plans
to determine which instance to execute.

after()

afterMillis()

These methods create cursors that become true
immediately after a specified time.

elapsed()

elapsedMillis()

 These methods create cursors that become true
immediately after a specified time period has elapsed.

Plans

Agent Manual
Release 5.3
10-June-05 101
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

Note thatgetAgent() has a return type ofAgent. An explicit cast is then required to provide
accessto user-definedagentmethodsandmembers.A preferredalternativeto getAgent() is to
use the#uses interface Interface reference declaration which provides access to the
enclosing agent with the correct type cast. This is described in more detail in the section on
plan declarations in this chapter.

relevant(EventType)

Relevance is the first filter that the agent applies when determining which plan to execute
when a given event occurs. To be relevant, the plan must declare that it is capable of handling
thekind of eventthathasarisen(via the#handles event declaration)andthatit is relevantto
the event instance (via therelevant() method).

Not all plans have arelevant() method. When present, it provides the agent with a filter to
exclude plans that will definitely not be able to handle the event. For example, if the plan is
only relevant when certain parameters are passed, or when some parameters have specific
values, this can be tested by therelevant() method. If the event is not one that the plan can
handle, the agent can put it aside immediately. Therelevant() method provides a finer
granularity for determining relevance than just the distinction between events. It can actually
allow the agent to have plans to discriminate between instances of the same event when that
event has different parameters types, or different values for a given parameter.

Therelevant() method always takes the following form:

 static boolean relevant (EventType event_ref)
 {
 // Code to determine if the plan is
 // relevant to this event.
 }

That is, it must always be a static boolean method. If this method returns true, the plan is
relevant to the event. If not, the plan is not relevant to the event.

The body of therelevant() method can perform any Java processing you want. Usually,
however, it will test one or more of the event's members to make a decision.

For example, suppose a prospecting agent that travels around looking for treasure has a plan
that describes how to call in a helicopter to pick up some treasure it has found. Suppose also
thattheagentincludesaFoundTreasureEvent which is generatedwhentreasureis discovered.
If the helicopter costs $500 to call in, the plan would only be relevant if the treasure found is
worth more than $500. Therelevant() method can check the value of the
FoundTreasureEvent'sval field and if it is greater than $500, returnTRUE.

Plans

AgentManual
Release5.3

102 10-June-05
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

Using arelevant() method in this way, the agent can filter out those plans it knows it won't
want to execute before proceeding with the applicability calculations described in the
following sub-section. Typically, these applicability calculations are more resource-intensive,
so well-thought outrelevant() methods can improve the computational efficiency of the
application.

Therelevant() method is especially useful if an event has more than one posting method. If
differentpostingmethodssetdifferentpropertiesandprovidedifferentnumberof parameters,
this method can be used to catch instances of the event posted by one posting method and not
the others.

For example, if an agent keeps track of racers, and this agent posts an event whenever a racer
completes a lap, the event may take two forms. One form may represent the completion of a
lap during the race, whereas the other may represent the completion of the final lap at the end
of the race. If the plan is to compose a final leaderboard, this plan will only be relevant when
thefinal lap is complete,not for theintermediatelaps.By testingtheparameterssuppliedwith
each lap instance event, the plan can identify the event for which it is relevant.

context()

The context method is the next filter that the agent applies when determining which plan to
execute when an event occurs. The context method usually contains a logical condition that
tests one or more of the agent's beliefset relations and/or data members. In many respects, it
represents the core of the agent's simulated rational behaviour, because it takes into account
thecurrent circumstances (identified by the current values of respective members and data
structures), and the agentcurrent beliefs (represented by its beliefset relations), and uses this
information to select a plan instance that isapplicable to the current conditions.

Theplaninstanceis acopy of theplanwith particularvaluesfor its members.Thesemembers
may include ordinary Java members and speciallogical members. Instead of being assigned
valueslikenormalJavamembers,logicalmembersareboundto particularvaluesby aprocess
of unification (attempting to match them with other known or partially known values). The
semantic behaviour of logical methods is quite different to that of Java methods; therefore,
logical methods include specific JACK Agent Language statements and expressions to
manipulate them and their values.

Thecontext() method always takes the following form:

context()
 {
 // Logical condition to determine which plan instances
 // are applicable.
 }

That is, it does not take any arguments and its body is always a single JACK Agent Language
logical expression. Logicalexpressionsarestatementsconsistingof booleanmembers,logical
members and beliefset cursor expressions.

Plans

Agent Manual
Release 5.3
10-June-05 103
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

When evaluating thecontext() method, the agent will consider all possible alternatives. For
every set of values that can satisfy thecontext() method, a separate instance of the plan will
be generated and available for execution. For example, a context method that has 5 possible
bindings will cause 5 separate plan instances to be produced.

This is like a shopping agent being told to buy a piece of fruit. If a shop sells apples, oranges
and bananas, buying any one of these will handle this event. The agent would have three
instancesof thefruit-buyingplanavailable:oneto buy anapple,oneto buy anorangeandone
to buy abanana.Theplaninstancechosendependsontheeventmodelbeingused(referto the
Events section for details). The agent will have achieved its objective if the chosen plan
instance succeeds.

body()

Thebody() methodis themainreasoningmethodin aplanandis executedwheneveraplanis
executed. Thebody() method is analogous to themain() method in Java in that it represents
the starting point in a plan's execution.

Because a plan's body is a reasoning method, its execution structure is not the same as for an
ordinary Java method. Firstly, it can contain a number of JACK Agent Language statements
thatcanonly appearin reasoningmethods.Thesestatementsareall precededby the@ symbol
and are described in theReasoning Method Statements section below.

Secondly, reasoningmethodsarelike 'big logicalexpressions'in thatwhentheagentexecutes
them,it is constantlythinking 'is this true?'.Eachstatementin thebody() methodis, therefore,
treated as a boolean expression, and each semicolon between statements as an AND
connector. Thebody() method is true (succeeds) if, and only if, execution reaches the end. If
any statement fails, thebody() method terminates immediately and fails.

For example, if a plan'sbody() method can be broken down as follows:

body()
 {

statement A;
statement B;
statement C;
statement D;

 }

This method will only succeed ifstatement A andstatement B and statement C and
statement D succeed.If statement B wasto fail, for example,theagentwouldstopexecuting
thebody() method at this point and the plan instance would fail (meaning that, in this case,
statement C andstatement D are never attempted).

Plans

AgentManual
Release5.3

104 10-June-05
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

It is not necessary for every statement in the reasoning method to succeed for the method to
succeed. Only the entire boolean expression represented by each statement needs to be true.
For example, if the reasoning method contains the block:

 if (condition A)
statement B;

 else
statement C;

If condition A fails, thebody() method will not fail because there is an alternative execution
path to follow – theelse clause. However, if B or C fail, the plan still fails.

PlanInstanceInfo getInstanceInfo()

This callback is used to retrieve information about the instance of a plan that it is called on. It
has been provided for use in meta-level reasoning plans, so that when the agent is faced with
multipleapplicableplaninstances,it canusetheinformationreturnedto helpchoosebetween
them.

By default, this callback is undefined. When a plan is written to handle a BDI event for the
agent to be able to perform meta-level reasoning with, this method should be re-implemented
to provide the meta-level reasoning plan with information that it can use to make the decision.

For example, consider a soccer playing agent that has a number of plans which describe field
tactics it can use. Each of these plans might have an aggression property added to them for
meta-level reasoning purposes. That way, when more than one of these field tactic plans are
applicable, the agent's meta-level plan to choose between them can select the plan instance
with the highest aggression rating.

Cursor after(double t), afterMillis(long t)

These methods create cursors that become true immediately after a specified time.t specifies
the time as measured byagent.timer. The time is specified in seconds forafter() and in
milliseconds forafterMillis(). Note that their argument types are not the same. If the user
needs to use a timer other thanagent.timer, variants of both methods exist which accept a
second argument of typeaos.util.timer.Timer.

These methods are commonly used within@wait_for statements, as illustrated by the
following plan fragment:

 //wait until half past the hour

 long now = agent.timer.getTime();
 long t = now / 3600000; // convert to hours (truncated)
 t *= 3600000; // convert back to millis (on the
 // last hour)
 t += 30*60000; // add the after-the-hour offset
 if (t < now)
 t += 3600000; // Adjust to the next hour if necessary

@wait_for(afterMillis(t));

Plans

Agent Manual
Release 5.3
10-June-05 105
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

Cursor elapsed(double t), elapsedMillis(long t)

These methods create cursors that become true immediately after a specified time period has
elapsed.t specifies the time period as measured byagent.timer. The time period is specified
in secondsfor elapsed() andin millisecondsfor elapsedMillis() – notethattheirargument
types are not the same. If the user needs to use a timer other thanagent.timer, variants of
both these methods exist which accept a second argument of typeaos.util.timer.Timer.

These methods are commonly used within@wait_for statements, as illustrated by the
following plan fragment:

 //wait for 10 minutes to pass

@wait_for(elapsed(10.0*60));

7.5 Plan Declarations

#chooses for event Event1 Event2 ...

Whenaplancontainsoneor more#chooses for event declarations,thismeansthattheplan
is usedfor meta-level reasoning. Insteadof describingwhattheagentshoulddoto achievean
end, it describes how the agent should choose between a number of applicable plan instances.

Meta-level reasoning describes the ability that an agent has to choose between applicable
plans for a given BDI event. Normally when more than one plan instance is applicable for a
given event, the agent just chooses one at random. However, with meta-level reasoning the
agent can be more discerning. Instead of choosing an applicable plan instance to try at
random, the agent can invoke a plan to make this decision in a specific, deterministic way.
Plans that do this are known asmeta-level plans.

Each component of the#chooses for event declaration is described in the following table:

Table 7-3: Components of the#chooses for event declaration

Component Meaning

#chooses for event Identifies the declaration as a#chooses for event
declaration.

event1 event2 ... Lists the BDI events that the plan can choose for
between multiple applicable plan instances.

Plans

AgentManual
Release5.3

106 10-June-05
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

The#chooses for event declaration applies only to meta-level plans. When present, it
identifies the BDI events that the meta-level plan is able to choose between. This is necessary
because meta-level plans must all handle the internalPlanChoice event. They all contain the
following #handles event declaration:

#handles event PlanChoice event_handle;

This declares that the agent handles any PlanChoice event. To narrow down the range of
PlanChoiceeventsthattheplancanhandle,useoneor more#chooses for event declaration.
Only thosePlanChoice eventsthatapplyto oneof thelistedBDI eventswill behandledby the
meta-level plan.

For example, suppose a plan definition contains the following declarations:

plan ChooseFieldStrategy extends Plan
 {

#handles event PlanChoice ev;
#chooses for BDIMidfieldPlay BDICornerPlay BDIKickoff;

 // Other declarations and reasoning method definitions
 }

This identifies theChooseFieldStrategy plan as a meta-level reasoning plan for the BDI
events:BDIMidFieldPlay, BDICornerPlay andBDIKickoff.

Plans

Agent Manual
Release 5.3
10-June-05 107
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

#handles event EventType reference

Most#-declarations are optional in a plan definition, but the#handles event declaration is
mandatory. It specifies the event that the plan handles. Whenever an instance of this event
occurs,theagentwill considerthisplanasacandidateresponse.Unlesstheplan'srelevant()
method says otherwise, the agent will assume that this plan is relevant to the event.

Hence, without a#handles event declaration, a plan would never be executed by an agent.
Regardless of the event that arose, the agent would never deem the plan to be relevant.

Eachplandefinitionmusthaveexactlyone#handles event declaration.It is notpossiblefor a
single plan to be able to handle more than one kind of event. If this situation can arise in the
model,multiplecopiesof theplanwill needto bedefined,eachspecifyingoneof theeventsas
its relevant event.

The#handles event declaration takes the following form:

#handles event EventType reference;

Each component in this declaration is described in the following table:

Table 7-4: Components of the#handles event declaration

Component Meaning

#handles event Identifies the declaration as being of an event that the
plan can handle.

EventType The type of event that the plan can handle. The JACK
runtime ensures that any agent which uses this plan
alsoincludesa#handles event declarationidentifying
the same event type.
An agentcanonly handleaneventif it hasaplanto do
so.Equally, aplanis only everof useto anagentif the
agent declares that it handles the event handled by the
plan.

reference The name, or handle, that will be used to identify the
event in the plan. When any of the plan's reasoning
methodswantsto accessoneof theevent'smembersor
methods, it uses this event reference.

Plans

AgentManual
Release5.3

108 10-June-05
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

#posts event EventType reference

The#posts event statement declares that the plan is able to post events of this type when
executed.Thismaybein thebody() method,or oneof theotherreasoningmethods.Notethat
theplandoesnothave to postthiseventevery time it is executed,it merelyhasthecapacityto
do so.

Not all events must be declared with the#posts event statement – only those that the agent
postsinternally. Eventsthattheagentpostsexternallymustbeexplicitly declaredtoo,but this
is done using the#sends event statement instead.

A #posts event declaration takes the following form:

#posts event EventType reference;

Each component is explained in the following table:

Table 7-5: Components in the#posts event declaration

The#posts event declaration is similar to a function prototype in C. Technically, it is
redundant since the agent that the plan belongs to has already declared all the events it can
handleusingits own #handles event statements.However, explicitly declaringtheeventsthat
a plan posts ensures a correspondence between the events that an agent's plans can post and
the events that it can handle. There should be no events posted by the plan that the agent
cannot handle.

By explicitly declaring handled events at both the agent and the plan level, the compiler can
check that there are no 'dangling events' that the agent will ignore. This is in line with the
explicit definitions in modern programming languages and helps protect programmers from
runtime problems that are hard to locate.

Component Meaning

#posts event Identifies a (goal) event declaration. When an agent
executes this plan, it may cause events to be posted
which it will have to handle.

EventType Identifies the type of event that can be posted.
EventType must be included in the agent's event
definitions.

reference The name, or handle, used to identify the event in the
plan.Theplancanusethishandleto accesstheevent's
members and methods.

Plans

Agent Manual
Release 5.3
10-June-05 109
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

#posts event declarations identify the normal events and goal events that an agent posts.
Messageeventsthattheplancanpostaredeclaredusingthe#sends event constructdescribed
below.

#sends event MessageEventType reference

The#sends event declaration is just like the#posts event declaration, except that it
identifies message events that the plan can send to other agents. A plan can only execute
statements that send these events to other agents if the plan's definition includes a#sends

event declaration for that kind of event.

A #sends event declaration takes the following form:

#sends event MessageEventType reference;

Each component is explained in the following table:

Table 7-6: Components in the#sends event declaration

The#sends event declaration is similar to a function prototype in C. It specifies at the outset
the range of message events that the plan can post. Only those events specified in#sends
event declarations can be posted by statements in the plan.

The advantages of the#sends event declaration are the same as those of function prototypes
in C: they explicitly identify theeventsthattheplancanpostandhencemaketheplaneasierto
port to other agents and allow for compiler checking that can reduce programmer error.

Component Meaning

#sends event Identifies a message event declaration. When an agent
executes this plan, it may cause a message event to be
posted.

MessageEventType Identifiesthetypeof messageeventthatcanbeposted.
MessageEventType event must be included in the
agent's event definitions.

reference The name, or handle, used to identify the event in the
plan.Theplancanusethishandleto accesstheevent's
members and methods.

Plans

AgentManual
Release5.3

110 10-June-05
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

#uses data DataType reference

The#uses data statementidentifiesthoseobjectsor beliefsetrelationsthataplanuses(either
to read or to modify). To be accessed this way from within a plan, the Java object or beliefset
relation must have been declared in the enclosing agent or capability.

A #uses data statement takes the following form:

#uses data DataType reference;

Each item in the definition is described in the following table:

Table 7-7: Components in the#uses data declaration

For more information on beliefset relations and how to use them, refer to theBeliefset
Relations chapter.

#reads data DataType reference

The#reads data declaration indicates to the user that the Java object or JACK beliefset of
typeDataType is to be accessed within the plan. The Java object or beliefset must have been
declaredin theenclosingagentor capability. Notethatthereadonly constraintis notenforced
by JACK.

A #reads data declaration takes the following form:

#reads data DataType reference;

Each item in the definition is described in the following table:

Component Meaning

#uses data Identifiesadataobjector beliefsetrelationthattheplan
can use.

DataType Identifies the type of the user-defined data structure or
beliefset relation that the plan can access.

reference Thenamethatthedataobjector relationwill beknown
by in the plan.

Plans

Agent Manual
Release 5.3
10-June-05 111
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

Table 7-8: Components in the#reads data declaration

For more information on beliefset relations and how to use them, refer to theBeliefset
Relations chapter.

#modifies data DataType reference

The#modifies data statement indicates to the user that a Java object or JACK beliefset of
typeDataType is to be modified within the plan. The object or beliefset must have been
declared in the enclosing agent or capability.

A #modifies data statement takes the following form:

#modifies data DataType reference;

Each item in the definition is described in the following table:

Table 7-9: Components in the#modifies data declaration

For more information on beliefset relations and how to use them, refer to theBeliefset
Relations chapter.

Component Meaning

#reads data Identifies a JACK beliefset or user-defined data
structure that the plan can access.

DataType Identifies the type of the beliefset relation or the user-
defined data structure that the plan can access. The
relation or object of this type must have been declared
in the enclosing agent or capability.

reference The name that the data object or beliefset relation will
be known by in the plan.

Component Meaning

#modifies data Identifiesadataobjector beliefsetrelationthattheplan
can modify.

DataType Identifies the type of the user-defined data structure or
beliefset relation that the plan can access.

reference Thenamethatthedataobjector relationwill beknown
by in the plan.

Plans

AgentManual
Release5.3

112 10-June-05
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

#uses agent implementing Interface reference

ThisdeclarationidentifiesaparticularJava interfacethattheplanrequireswhenit is executed.
Some plans rely on certain methods to be provided by the agent in which they are used. For
this reason,JACK normallyonly allowsplansto beusedin theagentfor whichthey havebeen
defined.

The#uses agent implementing declaration gets around this by allowing the plan's required
methods to be described by a Java interface. Any agent that implements this interface must
provide implementations for these methods and as a result will be able to adequately support
the plan.

Note: Agent sub-classes can be defined by extending from otherAgent classes that have been
defined. It is not necessary to extend only from the baseAgent class.

This declaration takes the following form:

#uses agent implementing Interface reference;

whereInterface is thenameof theJavainterfacethatcontainsthemethodsthisplanrequires,
andreference is the plan's handle on this interface. Thereference handle allows the plan to
invokemethodsthroughtheinterface.Thereference becomesamemberof theplanreferring
to the agent, but only of the given interface type.

When a plan definition includes a#uses agent implementing declaration, it can be used in
any agent that claims to implement this interface. This claim is made in the agent definition
header. For example, a plan that includes the following declaration:

#uses agent implementing WorldInterface world;

can be included in an agent whose definition is shown below:

agent World extends Agent implements WorldInterface
 {
 // Agent definition
 }

#uses interface Interface reference

This declares that one of the enclosing capabilities (or the enclosing agent) implements
Interface. Note that this declaration supersedes the#uses agent implementing declaration
for most purposes.

The declaration takes the following form:

#uses interface Interface reference;

Plans

Agent Manual
Release 5.3
10-June-05 113
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

whereInterface is thenameof theJavainterfacethatcontainsthemethodsthisplanrequires,
andreference is theplan'shandleonthis interface.Notethataclasscanalsobeconsideredto
be an interface, so thatInterface can be the actual name of aCapability class or anAgent
class.

For example, given an agent:

agent HelloWorld extends Agent
 {

#handles event SayHello;
#uses plan HelloPlan;

 :
 int counter;
 :
 public void hello()
 {
 //Java code
 }
 }

theHelloPlan can include the declaration

#uses interface HelloWorld self;

This gives the plan access to theHelloWorld members and methods as illustrated in the
following code fragment:

plan HelloPlan extends Plan
 {

#handles event SayHello sh;

 :
#uses interface HelloWorld self;

body()
 {
 :
 System.out.println(self.count);
 :
 self.hello();
 }
 }

#reasoning method name(parameters) <body>

The plan'sbody() method is the main method in a plan. It describes all the actions that the
agent performs when this plan is executed. A plan'sbody() method is unlike normal Java
methods in that it is areasoning method. However, thebody() method is not the only
reasoningmethodthataplanmaycontain.As with otherstructuredprogramminglanguages,it
is sometimes easier to split functionality into separate methods. Similarly, it is possible for a
plan to include other reasoning methods, which the mainbody() method can call as needed.

Plans

AgentManual
Release5.3

114 10-June-05
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

Each reasoning method that a plan contains beyond thebody() reasoning method must be
defined using the#reasoning method statement. The syntax for these definitions is shown in
the following code:

#reasoning method name(parameters)
 {
 // body of reasoning method. This can contain a mixture
 // of Java code and JACK Agent Language @-statements
 }

Each of the components of this definition are explained below.

Table 7-10: Components of a reasoning method definition

Reasoning methods do not have a return type like normal Java methods. Instead, they either
succeedor fail. This is determinedby theexecutionpaththroughthereasoningmethod.When
theagentexecutesareasoningmethod,it treatseverystatementor blockasaseparatestepthat
must be completed successfully if the reasoning method itself is to be completed successfully.

Therefore, if the agent succeeds in executing a statement or block, it will proceed to the next
statement or block in the reasoning method. However, if it fails, it will assume that the
reasoning method can no longer be completed successfully and therefore will fail.

Of course, this does not mean that every single conditional test must succeed for the agent to
continueexecutingthereasoningmethod.For example,if thereasoningmethodcontainsanif
... then ... else constructandtheif conditionfails,it canstill executetheelse clauseand
continue. However, if theif condition succeeded and then one of the statements in thethen

block failed, the agent would still abandon the reasoning method as unsuccessful.

If the agent reaches the end of a reasoning method without executing any statements that fail,
thereasoningmethodsucceeds.Otherwise,it fails.This is analogousto ahumanperforminga
task that requires the completion of several steps. If any step fails, the task can no longer be
completed, but if all steps succeeds, the task succeeds.

ReasoningmethodscanincludespecialJACK AgentLanguageconstructsknown asreasoning
method statements. Reasoning method statements control aspects of how the reasoning

Component Meaning

#reasoning method Introduces the definition of a plan's reasoning method.

name Thenameusedto identify themethod.Otherreasoning
methods in the plan can invoke this method by name.

parameters A list of thereasoningmethod'sparameters.Thesyntax
and semantics are the same as for parameter lists in
normal Java.

Plans

Agent Manual
Release 5.3
10-June-05 115
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

method runs, and execute any agent-specific activities that the plan has to perform (such as
sending messages to other agents, posting events, or ensuring that the plan is executed only
while a given maintenance condition continues to be true). JACK Agent Language reasoning
method statements begin with an@ character.

Reasoningmethodsexecuteasfinitestatemachines. Finitestatemachinesdefineanexecution
model where each step is atomic and the execution can be paused only between these steps.

#reasoning method pass() <body>

Thepass() reasoning method is a special reasoning method that may be included in a plan.
Unlikeotherreasoningmethods,it shouldnotbecalledexplicitly by otherreasoningmethods
in theplan.Instead,it is executedaftertheplan'sbody() methodhassucceeded,but beforethis
success is reported back to the task in which the plan is being executed. Therefore, it can be
used to describe any post-processing or 'cleaning up' that may be required after the plan has
succeeded.

Thepass() reasoning method is defined using the following format:

#reasoning method pass ()
 {
 // Post-processing and cleanup steps for when the
 // plan has succeeded.
 }

Thepass() reasoning method can only be called by the task-execution infrastructure.
Furthermore,its successor failurehasnoeffectontheplansoutcome.For example,if theplan
succeeds but thepass() method fails, the plan still succeeds.

Thepass() reasoningmethodis executedif andonly if theplansucceeds.If theuserwantsto
perform post-processing for a plan that fails, they should use thefail() reasoning method
described below.

#reasoning method fail() <body>

Thisreasoningmethodcomplementsthepass() reasoningmethod.Likethepass() reasoning
method, it should not be called from other reasoning methods, but instead must be called by
the underlying JACK task execution engine. Thefail() reasoning method is called if, and
only if, the plan it appears in fails. Like thepass() reasoning method, it can be used to
perform any post-processing or cleanup activities that might be required.

Thefail() reasoning method is defined using the following format:

#reasoning method fail ()
 {
 // Post-processing and cleanup steps to be performed
 // if the plan fails.
 }

Plans

AgentManual
Release5.3

116 10-June-05
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

7.6 Reasoning Method Statements (@-Statements)
As hasbeendescribedearlier, reasoningmethodsaredifferentfrom normalJavamethodsin a
number of ways. One of these is that they can include a number of special JACK Agent
Language statements. These statements are all preceded by an@ symbol and describe specific
logical guards or logical actions that the agent should perform within the reasoning method.
The reasoning method statements are:

• @wait_for(parameters)

• @action(parameters) <body>

• @maintain(parameters)

• @post(parameters)

• @reply(parameters)

• @send(parameters)

• @subtask(parameters)

• @sleep(parameters)

• @achieve(parameters)

• @insist(parameters)

• @test(parameters)

• @determine(parameters)

• @parallel(parameters) <body>

Each of these reasoning method statements is described below.

@wait_for(parameters)

The@wait_for expression controls the temporal flow through a reasoning method. When the
agent executes a@wait_for expression, it causes the plan to wait until a given logical
condition becomes true before continuing. That is, the agent waits for the condition to be
satisfied and then continues.

The@wait_for expression is a Finite State Machine (FSM).

An @wait_for expression takes one of the following three forms:

@wait_for (Cursor wait_condition);
@wait_for (Cursor wait_condition, Cursor sentinel_condition);
@wait_for (Cursor wait_condition, double timeout);

Each component of this statement is described in the following table:

Plans

Agent Manual
Release 5.3
10-June-05 117
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

Table 7-11: Components of the@wait_for statement

Each form of the@wait_for statement, and how it is executed, is described in the following
sub-sections.

Component Meaning

@wait_for Introduces a@wait_for statement.

wait_condition The wait condition specifies the logical condition that
theagentmustwait for beforecontinuingtheplan.The
logical condition can be any JACK Agent Language
cursor statement. A cursor is any logical expression
whose truth value can change over time.
An example is a statement that performs a beliefset
query and then tests the result – as the tuples in the
agent's beliefset can change while other tasks are
performed. Although the query can be satisfied or not
at one moment, this doesn't necessarily mean that it
will be the next.

sentinel_condition Thesentinelconditionspecifiesaguardonthewait – a
condition that represents a timeout for the agent's
waiting opportunity. If the sentinel condition is
satisfied before the wait condition, the agent has run
out of waiting time and therefore wait statement has
failed. If the wait condition is satisfied before the
sentinel condition, however, the@wait_for statement
succeeds.
The sentinel condition is optional. When absent, the
agent is free to wait for as long as necessary for the
wait condition to be satisfied.

timeout The timeout specifies a guard on the wait – a deadline
that marks when the agent can no longer wait until the
wait_condition is true. The timeout is a double
precisionrealnumberthatrepresentsthewait periodin
seconds.
The timeout is checked like a stop-watch from the
moment the@wait_for condition is first tested. If this
time period elapses without the wait condition having
becometrue,the@wait_for statementfails.Otherwise,
it succeeds.
Thetimeoutis optional.Whenabsent,theagenthasno
waiting deadline and can wait as long as is necessary.

Plans

AgentManual
Release5.3

118 10-June-05
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

@wait_for(wait_condition)

This is an unguarded wait. The agent will stop executing the current task and wait for as long
asis necessaryfor thewait_condition to besatisfied.If theconditionis alreadytruetheagent
continues, unhindered, through the reasoning method. This expression always succeeds – it
succeeds when thewait_condition is satisfied.

Note: Because this form of the@wait_for statement is unguarded, a poorly formed
wait_condition could infinitely suspend the execution of the plan.

This will not hamper the progress of the agent because the wait condition must be a triggered
cursor. Triggeredcursorsarenotcheckedusingabusy-wait loop.Instead,they areonly tested
when the agent performs a modification action on one of the cursor's relations.

This expression never fails. If thewait_condition is never met, the agent just waits for it
indefinitely (or until one of the circumstances described below arises). Note that this does not
mean that the agent as a whole comes to a standstill. Since the waiting task is suspended, the
agent will be able to proceed with any other tasks that are active, and undertake new tasks as
new asynchronous events arrive.

In theJACK runtimeenvironment,satisfyingthewait conditionis not theonly wayto 'break'a
@wait_for statement.Althoughsatisfyingthewait conditionis thewaya@wait_for statement
is meant to be broken, it will also be broken under the following circumstances.

• An exception is raised by the wait condition.

This may happen if a change is made that triggers the retesting of a cursor expression in
thewait condition.If theretestraisesanexception,thatexceptionwill breakthe@wait_for
statement.

• There is a maintenance condition violation in a parent task.

Thismayhappenif theagentis executingthe@wait_for statementin aplanthatis running
in a@maintain statement's subtask.

If the @maintain statement's maintenance condition is violated while the agent is waiting,
the entire subtask will be aborted, and the wait will terminate.

@wait_for(wait_condition, sentinel_condition)

This form of the wait condition tells the agent to do the following: "wait for wait_condition
to become true untilsentinel_condition becomes true". Both thewait_condition and the
sentinel_condition can be any form of triggered cursor.

This expression succeeds when thewait_condition is satisfied before the
sentinel_condition. In fact, it succeeds the moment thatwait_condition becomes true.

Plans

Agent Manual
Release 5.3
10-June-05 119
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

Note: This form of the@wait_for expression may still be vulnerable to indefinite waits if
neither thewait_condition norsentinel_condition are ever satisfied.

Thisexpressionfailswhensentinel_condition is satisfiedbeforewait_condition. In fact,it
fails the moment thatsentinel_condition becomes true.

@wait_for(wait_condition, timeout)

This form of@wait_for expression tells the agent to do the following: "wait for
wait_condition to become true fortimeout seconds". This is as though the agent is waiting
while the stopwatch runs. The timeout period is adouble precision real number that specifies
the timeout period inseconds. The granularity of this time period, however, is to the nearest
millisecond. When the agent executes this statement, the stopwatch starts ticking. If the
wait_condition is satisfied before the timeout is reached, the statement succeeds; otherwise,
it fails.

This expressions succeeds whenwait_condition is satisfied before thetimeout period has
passed. It succeeds the moment thatwait_condition becomes true. It fails when thetimeout
period has passed withoutwait_condition having been satisfied. It fails the moment the
timeout period expires.

Unlikeotherformsof the@wait_for expression,thisexpressionwill neverput theagentin an
indefinite wait because the timeout can always expire.

@action(parameters) <body>

The@action statementis acompactwayof writing in-line actioncursors– thesearediscussed
in theCursors section in this chapter. The@action statement has two forms:

@action() { <body> } ;

and

@action(thread_pool) { <body> } ;

wherebody is thesetof statementsfor the'action'methodof aninline anonymousextensionof
aos.jack.util.cursor.Action, and the optionalthread_pool argument specifies a thread
pool to beusedinsteadof theagent'sthreadpool. If no threadpool is given,theagent'sthread
pool is used.Threadpool is discussed inAppendix B: Utilities.

The@action statement is translated into a@wait_for statement with an action cursor.

Plans

AgentManual
Release5.3

120 10-June-05
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

@maintain(logical_condition, event)

 Like the@subtask statement, the@maintain statement posts an event to be handled
synchronously in the same execution thread. The current plan is suspended while the agent
handlesthiseventin aseparatesubtask.However, aswell asspecifyinganeventto behandled,
the@maintain statement also specifies a logical condition which is to be maintained for the
entire duration of the subtask execution. If the condition is violated during execution of the
subtask the statement fails. As one would expect, if the condition is false when the event is
posted, the statement will fail immediately.

A @maintain statement takes the following form:

@maintain (logical_condition, event);

Note: The second argument in an@maintain statement actually refers to the subtask which
arises from the synchronous handling ofevent, and is therefore of typeFSM (refer to theFSM
Statements sectionin thischapterfor detailsaboutFSMs).Consequently, thesecondargument
can be any expression of typeFSM, such as a reasoning method.

Each component of this statement is explained in the following table:

Table 7-12: Components of the@maintain statement

Note: The instance of the event to be posted will have been created by invoking a posting
method on the reference that is declared in the associated#posts or #sends statement. This
was described in the section on posting/sending events in theEvents chapter.

Component Meaning

@maintain Identifies the statement as being a@maintain

statement.

Cursor

logical_condition

Specifies a logical condition that must be continually
true while the subtask is being performed. The agent
waits until any change to the condition's arguments is
made, and on this trigger tests the condition to see
whetherit is still true.Thelogical conditionis acursor
expression.

Event event Theeventthatis postedby the@maintain statement.It
can be any Event or BDIGoalEvent, but will always be
handled synchronously by the agent.

Plans

Agent Manual
Release 5.3
10-June-05 121
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

Termination of the subtask will occur either because:

• the subtask has completed execution without a maintenance violation having occurred. In
this situation, the @maintain statement will succeed or fail depending on the success or
failure of the subtask.

• a maintenance violation has occurred while the subtask is executing. In this case, the
@maintain statement will fail and the subtask will fail.

Note: The subtask may instigate further asynchronous and synchronous activity. Any
asynchronous activity is treated as independent of the original subtask and is not terminated if
a maintenance violation occurs. However further synchronous activity is considered to be part
of the original subtask and all subtasks in the processing chain at the time of the violation will
be terminated.

A maintenance violation is like an exception and will not invoke any fail() methods. If some
cleanup action is required when a maintenance violation occurs, it can be achieved by
explicitly catching the MaintenanceViolation exception within a plan. This is shown below.
Note that if this exception is caught, it must be rethrown so that it can eventually reach the
@maintain exception handler. The statement will then fail (as it should).

 try
 {
 // code
 }
 catch (MaintenanceViolation e)
 {
 // cleanup
 throw e;
 }

@post(event)

The @post statement is used to post an event from within a plan. The statement accesses the
event posting method and uses it to post a new instance of the event for the agent to handle.

The event is posted asynchronously to be handled by a new task that is executed in a new and
independent task execution thread. Hence this statement always succeeds, because once the
event has been posted, the plan continues processing. Even if the event is not handled (because
there are no relevant or applicable plans), or the agent attempts to handle it but fails, the @post

statement still succeeds.

A @post statement takes the following form:

@post (event);

Each component of this statement is described in the following table:

Plans

AgentManual
Release5.3

122 10-June-05
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

Table 7-13: Components of the@post statement

Theplanmustuseoneof theevent'spostingmethodsto createtheeventto beposted.Thiswas
described in the section on posting/sending events in theEvents chapter.

Provided all these conditions are met, a plan can post an instance of an event using the@post
statement. The event instance is created using the parameters passed to the event's posting
method.

Component Meaning

@post Identifies this as a@post statement.

Event event The event to be posted. This event must have:

• been defined as described in the sectionEvent
Definition;

• been included in this plan's set of#posts event

declarations; and

• been included in the#handles event declarations
of any agent that uses this plan (i.e. that claims to
use this plan with a#uses plan declaration).

Plans

Agent Manual
Release 5.3
10-June-05 123
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

@reply(original_event, reply_event)

The@reply statementis usedby anagentto reply to amessageeventthatit hasreceivedfrom
another agent. It replies to the sending agent with a message event (MessageEvent or
BDIMessageEvent) which arrives as a data object on the reply queue of the original message
event in the sending agent. This means the message event that is sent back using@reply does
not trigger a new task or plan.

Messagingis normallyinitiatedwith @send andthereafter@send or @reply areusedaccording
to protocol.

A @reply statement takes the following form:

@reply (original_event, reply_event);

Each component of this statement is described in the following table:

Table 7-14: Components of the@reply statement

Component Meaning

@reply Identifies the statement as a@reply statement.

original_event TheMessageEvent that is being replied to.

reply_event TheMessageEvent that is being sent as a reply.

Plans

AgentManual
Release5.3

124 10-June-05
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

An example involving the updating of a GUI is presented below:

// Note the 2 methods from MessageEvent that are used
// in the example:
//
// replied () which is a boolean cursor method that
// becomes true when there is an unread reply to the event
//
// getReply () which returns the first unread reply to
// the event

// The sender's plan (GUI.plan)
plan GUI extends Plan
{
#handles event CommandString cse;
#sends event UserRequest ure;

 // note the absence of a #handles Response declaration

 ...

body()
 {
 ...

 // the user has entered a command (available in cse) -
 // send it to the command handler agent for processing.

 UserRequest ur = ure.postingMethod(...);
@send("CommandHandler",ur);
@wait_for(ur. replied ());

 Response r = (Response) ur. getReply ();

 // now update the GUI ...
 }
}

// The receiver's plan (ProcessCommand.plan)
plan ProcessCommand extends Plan
{
#handles event UserRequest ure;
#sends event Response re;

body()
 {
 // process command

 // send response
@reply(ure,re.response(...));

 ...
 }
}

@send(agent_name, message_event)

The@sendstatementis usedto sendamessageeventto anotheragentfrom within areasoning
method. Like the@post statement, the@send statement uses one of the message event's own
postingmethodsto createtheinstanceof theeventto besent.Thiswasdescribedin thesection
on posting/sending events in the previous chapter.

Plans

Agent Manual
Release 5.3
10-June-05 125
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

A @send statement takes the following form:

@send (agent_name, message_event);

Each component of this statement is described in the following table:

Table 7-15: Components of the@send statement

To be able to send an event, the plan must know the name of the agent to send it to. Like the
@post statement, the@send statement always succeeds. This is because the message event is
sentasynchronouslyandoncetheagenthassentit off, it immediatelycontinuesexecutingthe
plan. How the message event is handled by the destination agent is not a factor.

@subtask(event)

The@subtask statement is similar to the@post statement, except that instead of posting an
event in the normal (asynchronous) way, it posts the eventsynchronously. Instead of being
handled in a separate task and execution thread, an event posted with the@subtask statement
is handled as asubtask of the current task.

The@subtask statementdoesnotcreateanew executionthreadwithin theagentasis thecase
with normaleventposting.Instead,it suspendsthecurrentplanandadoptsataskto handlethe
event within the same execution thread. The@subtask statement then succeeds or fails
depending on whether the posted event succeeds or fails.

Component Meaning

@send Identifies the statement as a@send statement.

String agent_name The name of the agent to send this message event to.
Theagent'snameis specifiedasastring.Routingof the
event to the agent will be handled by JACK's
underlying network layer.

Event message_event The message event to send. This message event must
have:

• been defined as described in theEvents section;

• been included in this plan's set of#sends event

declarations;

• been included in the#handles event declarations
of any agent that uses this plan (i.e. that contains a
#uses plan declaration for this plan).

Plans

AgentManual
Release5.3

126 10-June-05
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

A subtask is handled exactly like a normal task. That is, the agent posts the event, finds all
relevantplansandall applicableplaninstances,thenexecutestheseplaninstancesuntil oneof
them succeeds or it runs out of alternatives. The only difference is that the suspended plan
waits for this result to be returned, whereupon the@subtask either succeeds or fails.

A @subtask statement takes the following form:

@subtask (event);

Each component of this statement is described in the following table:

Table 7-16: Components of the@subtask statement

Note that the instance of the event to be executed as a subtask will have been created by
invokingapostingmethodonthereferencethatis declaredin theassociated#posts or #sends
statement.Thiswasdescribedin thesectiononposting/sendingeventsin thepreviouschapter.

The@subtask statement can be used to make plan code more portable and manageable. It
allowsagentsto re-useentireplans(or evenplansets)by callingthemfrom within otherplans.
The other plan can post the plan's invocation event as a@subtask, and take further action
based on whether this subtask succeeds or fails. Because the subtask is handled in the same
taskexecutionthread,the@subtask statementgivesJACK themeansfor functionalabstraction
in plans.

A @subtask statement succeeds when the event that it posts is handled successfully in the
subtask.If theagentcanexecuteaplanthathandlesthiseventsuccessfully, thesubtaskwill be
successful. The statement fails when the event that it posts is not handled successfully by the
subtask. This may be because no relevant plans are found, no applicable plan instances are
found, or all applicable plan instances that are found fail.

Component Meaning

@subtask Identifies this as a@subtask statement.

Event event The name of the event to executed in the subtask. This
event must have:

• been defined as described in theEvents section;

• been included in this plan's set of#posts event

declarations; and

• been included in the#handles event declarations
of any agent that uses this plan (i.e. that claims to
use this plan with a#uses plan declaration).

Plans

Agent Manual
Release 5.3
10-June-05 127
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

@sleep (timeout)

The@sleep statement, like the@wait_for statement, is used to control the temporal flow of a
plan. The@sleep statement is far more straightforward, however: it merely tells the agent to
wait for a designated period before continuing.

A @sleep statement takes the following form:

@sleep (double timeout);

Thetimeout is specifiedasadoubleandrepresentstheperiodof timethattheagentmustwait
(sleep)beforecontinuingwith theplan.Thetimeout periodis specifiedin tickson theagent's
clock. The actual length of time depends on theTimer that the agent is using.

If the timer is a real-time clock, the timeout period represents a sleep period inseconds, with
millisecond granularity. If thetimer is adilatedor simulationclock, it representsthenumberof
clock ticks on that timer.

For example, the@sleep statement;

@sleep (6.789);

means that the enclosing plan is suspended for 6789 ticks on theTimer assigned to the timer
member of the calling agent. For a real-time clock this is 6789 ticks at one millisecond per
tick, or 6 seconds, 789 milliseconds.

Note: @sleep only causes the current task to sleep. Any other tasks that the agent is currently
executing proceed as normal.

A @sleep statement succeeds when the time period has expired. In other words, the@sleep
statement always succeeds – it never fails.

@achieve(condition, goal_event)

The@achieve statementis oneof four postingstatementsthatcanbeusedongoal events only.
The other three are@test, @insist and@determine, all of which test a logical condition and,
depending on its result, post a goal event in a different way.

The@achieve statement is used to model the situation where an agent is asked toachieve a
goal. The agent is given agoal to achieve, and acondition to determine whether any action
needs to be taken (i.e. whether the goal has already been achieved).

When the agent executes an@achieve statement, it tests the condition.

• If theconditionis true, theagentbelievesthatthegoalhasalreadybeenachievedandwill
do nothing. The@achieve statementsucceeds and the agent goes on with the next
statement in the plan.

Plans

AgentManual
Release5.3

128 10-June-05
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

• If the condition is false, the agent believes that it must do something to achieve the goal. It
suspends the current plan and starts executing a subtask to achieve it. The goal is supplied
as a goal event, and achieving it amounts to handling the goal event in a subtask execution.

Because subtasks are handled synchronously, the parent plan waits until the subtask has either
succeeded or failed before continuing. The success or failure of the subtask determines the
success or failure of the @achieve statement.

An @achieve statement takes the following form:

@achieve (condition, goal_event);

Each component is explained in the following table:

Table 7-17: Components of the @achieve statement

Note that the instance of the event to be posted will have been created by invoking a posting
method on the reference that is declared in the associated #posts or #sends statement. This
was described in the section on posting/sending events in the previous chapter.

An @achieve statement succeeds when either the condition is true, or when the condition is
false but the subtask to handle the goal_event succeeds. It fails when the condition is false
and the subtask to handle goal_event fails.

@insist(condition, goal_event)

The @insist statement is similar to the @achieve statement, but places a greater emphasis on
ensuring that the goal is handled properly. With the @achieve statement, the agent assumes it
has handled the goal if it successfully performs the subtask. No check is made of the success
condition to ensure that this is the case: it is assumed.

Component Meaning

@achieve Introduces an @achieve statement, which asks
the agent to test a condition and if it is not true, to
handle a goal event.

Cursor condition The logical condition that the agent tests before
determining whether anything needs to be
achieved. If this condition is true, the agent
assumes that the goal has already been achieved
and does nothing. Otherwise, it handles the goal
event in a subtask execution.

BDIGoalEvent goal_event The goal event describing the goal that the agent
must try to achieve.

Plans

Agent Manual
Release 5.3
10-June-05 129
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

This assumption is reasonable and it is a general assumption made for event handling in
JACK. In fact, the successful handling of an event isdefined as the location and successful
execution of an applicable plan. All task (and subtask) executions succeed as soon as an
applicableplanis completed.However, the@insist statementallowstheagentto addanextra
step – to 'make sure' that the goal has been achieved.

It does this byre-testing the given condition after each successful subtask execution. If the
conditionis true,the@insist statementsucceedsandtheagentwill continuethroughtheplan.
If it fails,however, theagentwill attemptto re-executethesubtask(i.e. try to achieve thegoal
again). If the subtask fails, the@insist statement fails. Otherwise, the agent repeats the
process by checking the condition again.

Hence, an@insist statement may involve multiple subtask executions. Each time the same
goaleventis posted.Thatis, theagentis insistingthatthegoalhasbeenachievedasdefinedby
the success condition given in the@insist statement. If this goal has not been achieved, the
@insist statement fails.

An @insist statement takes the following form:

@insist (condition, goal_event);

Each component is explained in the following table:

Table 7-18: Components of the@insist statement

Note that the instance of the event to be posted will have been created by invoking a posting
method on the reference that is declared in the associated#posts or #sends statement. This
was described in the section on posting/sending events in the previous chapter.

Component Meaning

@insist Introduces an@insist statement, which
repeatedly tries to achieve a goal until the given
success condition holds true.

Cursor condition Thelogicalconditionthattheagentusesto define
the goal's successful achievement. It is tested
before each subtask execution. If true, the goal
hasbeenachievedandnomorework needsto be
done.Otherwise,theagentmusttry to handlethe
goal event once more.

BDIGoalEvent goal_event The goal event describing the goal that the agent
must achieve.

Plans

AgentManual
Release5.3

130 10-June-05
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

An @insist statement succeeds when thecondition is true. This can be when the@insist
condition is first executed (i.e. before any subtasks have been performed) or after any
successful subtask execution of thegoal_event. It fails when any subtask execution of the
goal_event fails.

@test(test_condition, goal_event)

The@test statement tells the agent to determine whether a logical condition
(test_condition) is true or false. It is similar to the@achieve statement, except that in this
case the logical condition is important.

If the test_condition is true, the@test statement succeeds and it performs a unification
against thetest_condition.

If the test_condition is false, the@test statement fails and there is no unification.

Thegoaleventcomesin to playwhenthelogical conditionis neithertruenor false,but rather
is unknown. Not all logicalconditionscanbeunknown in JACK AgentLanguage– only those
that follow Open World semantics. Therefore, if a logical expression consisting of ordinary
boolean values and Closed World relations is tested, the@test statement will always succeed
or fail based on the logical expression's truth valuation and the@test statement's goal event
will never be posted. Thus, it is only when Open World relations are involved that the
possibility of goal handling may arise.

When an Open World relation is involved and thetest_condition is unknown, the
goal_event will be posted. The event is then responsible for doing any unification that is
required,asthe@test statementwill donothingwhenthegoalhasfinishedexecuting– it will
simply succeed or fail based on the success or failure of the goal. The@test statement does
not check whether or not thetest_condition is true if the goal succeeds.

A @test statement takes the following form:

@test (test_condition, goal_event);

Each component is explained in the following table:

Plans

Agent Manual
Release 5.3
10-June-05 131
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

Table 7-19: Components of the@test statement

Note that the instance of thegoal_event to be posted will have been created by invoking a
postingmethodonthereferencethatis declaredin theassociated#posts or #sends statement.
This was described in the section on posting/sending events in the previous chapter.

The@test statement can be thought of as modelling what a human would do when asked to
test something. First, they would consult their own knowledge (beliefs) to find the answer. If
this uncovers nothing, action would be taken to find out the answer. The@test works in the
same way – the agent first tests the logical condition (often against its own beliefset). If this
does not work, it starts trying to achieve a goal to find the answer.

An @test statement succeeds when thetest_condition is true, or thetest_condition is
unknown but thegoalto find its truth (goal_event) succeeds(i.e. thesubtaskthathandlesthis
goal succeeds). It fails when thetest_condition is false, or thetest_condition is false and
the goal to find out its truth (goal_event) fails.

@determine(binding_condition, goal_event)

The@determine statement tells the agent to try and find a logical binding for which a given
BDIGoalEvent will succeed. It does this by finding all possible sets of values that satisfy the
logical condition, then posting the goal event for each in turn until one of them succeeds.
When the goal event succeeds for a particular set of bindings, the@determine statement
succeeds and the values for these bindings are committed. The@determine statement will
return (bind) the logical members in the logical condition with those values that caused the
goal event to be satisfied.

Component Meaning

@test Introduces a@test statement, which tests a
condition and succeeds or fails accordingly. If it
cannot evaluate the condition, it executes a
subtask to try and find the answer.

Cursor test_condition The logical condition that the agent is being
asked to test. If the agent can determine whether
it is trueor falsefrom its own dataandbeliefs,no
further work needs to be done. Otherwise, the
agent must adopt a goal subtask to find the truth
valuation.

BDIGoalEvent goal_event A goal event describing the goal to find out the
condition's truth. It will only be executed if the
agentcannotdeterminethecondition'struthfrom
its own set of beliefs.

Plans

AgentManual
Release5.3

132 10-June-05
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

In a way, it is the opposite of the other threeBDIGoalEvent posting statements:@achieve,
@insist and@test. Insteadof testinga logicalconditionandpostingagoaleventwhenit fails
or is unknown, the@determine statementpostsagoaleventfor known values.Theagentis not
trying to add to its knowledge base. Rather, it is trying to determine which of the possible
candidates in its knowledge base allow it to achieve the goal that it wishes to achieve.

The@determine statement's logical condition is designed for use with a beliefset cursor. It
iteratesthroughtheresultsthatthebeliefsetcursorreturns,testingthesereturnedvalues,until
one set of values satisfies the logical condition. In other words, the agent is being asked to
"determine a situation under which the given goal can be achieved". The@determine
statement iterates over the beliefset cursor, testing and discarding possible bindings for its
logical members, until all set have been found that satisfy the condition. Once this set of
bindings has been found, the agent posts aBDIGoalEvent, synchronously, for each binding in
turn. This causes a subtask to be executed for each binding, one after the other, until one
succeeds.

If a subtask succeeds, the@determine statement succeeds and no more bindings are tried. It
commits the current set of bindings and discards the rest. Otherwise, the agent takes the next
set of bindings that satisfied the logical condition and attempts the goal again. Therefore, the
@determine statement succeeds if, and only if, the goal can be met for at least one of the sets
of bindings returned by the logical condition.

A @determine statement takes the following form:

@determine (binding_condition, goal_event);

Each component is explained in the following table:

Table 7-20: Components of the@determine statement

Component Meaning

@determine Introduces a@determine statement, which
iterates through all possible values that satisfy a
logical condition until a goal subtask using these
values succeeds.

Cursor binding_condition The logical condition that the agent uses to find
values. For each set of bindings that satisfy this
condition, the agent posts a goal event.

BDIGoalEvent goal_event The goal event that the agent executes for each
set of values that satisfy the binding condition.
When this goal event succeeds, the@determine
statement succeeds.

Plans

Agent Manual
Release 5.3
10-June-05 133
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

Note that the instance of the event to be posted will have been created by invoking a posting
method on the reference that is declared in the associated#posts or #sends statement. This
was described in the section on posting/sending events in the previous chapter.

The@determine statement has been designed specifically to work with beliefset relations in
thebinding_condition, iterating over the relation's tuples until it finds ones that might meet
thegoal.However, it determinesall possiblebindingsbeforethefirst goaleventis posted.This
means that if the subtask changes any tuples that are used in the logical condition while they
areprocessing,thiswill notaffect the@determine statement.If thesubtaskgoesonandfails,it
will postnext goalwith thenext setof bindingsfrom its list. It will not re-evaluatethelogical
condition and find that the set of tuples have changed.

An @determine statement succeeds when thegoal_event is successfully handled for a set of
bindingsprovidedby binding_condition. Thestatementsucceedsassoonasthefirst binding
is successfullyhandled– nomorebindingsaretested.It failswhennobindingsarefoundthat
satisfybinding_condition, or the handling ofgoal_event fails for all bindings found.

@parallel(parameters) <body>

The@parallel statement allows concurrent sub-tasking of a set of statements within
reasoning methods. The@parallel statement suspends execution of the calling plan while all
enclosed statements are executed in parallel.

The@parallel statement is used in a plan as a program control structure to sub-task goals in
parallel, or more precisely, to progress on several branches of activity in the plan in parallel.
The success or failure of the statement depends on the successes and failures of the parallel
branchesinvolved.Theprogrammerspecifieswhetherall branchesneedto succeedor whether
it is sufficient thatat leastonebranchsucceed.Theprogrammeralsospecifieswhetherto wait
for all branches to complete before the statement completes, or whether to complete the
statementassoonaspossible(e.g.with thefirst successfulbranch,if thesuccessof onebranch
is sufficient).

The@parallel statement provides a very powerful mechanism for expressing plans. The
implied task synchronisation reduces the effort of programming coordinated activity, in
particular while focusing on the "success paths". Recovery procedures, contingency planning
and their effect on coordination, require careful design and use of the task control statements
available in JACK.

The form of the@parallel statement is as follows:

@parallel(arguments) {
branch_1;
branch_2;

 :
 :

branch_n;
 };

Plans

AgentManual
Release5.3

134 10-June-05
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

The@parallel statement works like a control structure where the statements,branch_1,
branch_2, etc. are executed as parallel tasks, while the@parallel statement itself waits until
its terminationconditionholds.A branchis eitherasinglestatementor acompoundstatement.
Branches may be labelled. They have the same form as a Java labelled statement.

The mandatory arguments to the@parallel statement specify success condition, termination
condition, and how termination is notified. An optional fourth argument is allowed, which is
an object through which the execution of the parallel statement can be monitored.

• Thesuccess condition attribute specifies when the@parallel statement as a whole
succeeds. The variants are:

– ParallelFSM.ALL. The@parallel statement succeeds when all parallel branches have
terminated successfully. This can be viewed as a parallel AND statement, because all
branches must succeed. Further, the@parallel statement fails immediately with the
first branch failure, and all ongoing branches are then notified accordingly.

– ParallelFSM.LAST. The@parallel statement succeeds when all the parallel branches
have terminated successfully. However, failure is postponed until all branches have
terminated.

– ParallelFSM.FIRST. The@parallel statement succeeds as soon as any one of the
parallel branches succeeds, and all ongoing branches are then notified accordingly.
This can be viewed as a parallel OR statement with (temporal) short circuiting.

– ParallelFSM.ANY. The@parallel statement succeeds if one of the branches succeed,
but does not terminate until all branches have terminated.

• Thetermination condition attrib ute is a triggered condition which will terminate the
@parallel statement if it becomes true. Ongoing parallel branches are then notified and
treated as failed, and the@parallel statement fails.

The termination condition can be any triggered expression in JACK and may in particular
be affected by some of the branches. For instance, a branch may make a change to a team
belief that could trigger the condition that terminates the@parallel statement.

Notethatif false is usedin placeof a terminationcondition,thenthisabortmechanismis
effectively turned off.

• Thenotification exception attribute provides programming control of how branches are
notified about termination. Thenotification exception is a user defined Java exception
object.Thisexceptionis thrown to activebranchesthatareexecutingin parallelif they are
required to terminate (i.e. if the termination condition is encountered). The termination
takeseffect immediatelyfor the@parallel statement.Thebranchesarethereafternotified
by using the given exception. If there is no termination condition, then the value of null is
used. If there is a termination condition, then the exception object must be provided.

Plans

Agent Manual
Release 5.3
10-June-05 135
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

• The optional monitor attribute must, if given, be an instance of class ParallelMonitor.
Through this object, the parallel execution can be monitored and controlled, as illustrated
by the following code outline:

ParallelMonitor p = new ParallelMonitor();
@parallel(..., p) {

 reasoning_method1(....);
 xxx: reasoning_method2(....);
 {

@wait_for(elapsed(1000));
 p.throwTo("xxx", new Exception("Check point"));
 }
 };

With a ParallelMonitor object, the teamplan can inspect the processing of parallel branches,
and as in the example, throw exceptions to branches selected by label or by index.

The ParallelMonitor object given to a @parallel statement becomes a handle for that
statement, which can be probed regarding termination and/or success of the individual
branches. It can also be used to add branches to a @parallel statement dynamically through
the addTask(FSM) method. The FSM argument is an event or a reasoning method in the plan.
The following code extract is an illustration of how this may be used.

ParallelMonitor p = new ParallelMonitor();
@parallel(... , p) {

 // some definite parallel branches
 ...

 // This branch generates more parallel branches
 for (int i=0; i < 42; i++)
 p.addTask(cleverness(i));
 }

 #reasoning method cleverness(int i) { ... }

The code above would create 42 instances of the cleverness(int) reasoning method, with
different input argument, and add their executions to the parallel statement monitored by p.
The @parallel statement will then not complete until all the branches have completed.

In addition, parallel branches can be referred to via labels. If a branch is a labelled statement,
the program can refer to that statement using the label as a string. The earlier code outline is
an illustration of this, where the branch labelled xxx is thrown an exception after 1000
seconds.

Plans

AgentManual
Release5.3

136 10-June-05
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

Branchescanalsobereferredto by index, where0 is thefirst branch,1 thesecondbranch,etc.
Dynamically added branches are numbered contiguously after the definite branches, and the
addTask(FSM) methodalsoreturnstheindex for thebranchadded.TheParallelMonitor class
is documented in section on theParallelMonitor Base Class.

Exception Handling within the Parallel Execution Model

Exception handling within the parallel execution model is designed to strictly follow the Java
model for exceptions. That is, a branch may throw an exception, and if not caught, the
exception is propagated upwards in the calling stack. When the exception reaches the
@parallel statement, it causes a notification to any ongoing branch before the exception
propagates out of the@parallel statement.

A branch may catch exceptions, as in the following example:

@parallel(...) {
 try { reasoning_method1(...) }
 catch (...) {...}
 finally {...}

 try { @test(...) }
 catch (...) {...}
 finally {...}
 };

In thisexample,therearetwo parallelbranchesthateachcontainatry-catch-finally block.
If, for instance, an exception is thrown within the reasoning_method1, the parallel sub-
statement may catch that exception and succeed anyhow without propagating the exception.

The ParallelMonitor Class

A ParallelMonitor object enables the tasks associated with a@parallel statement to be
explicitly monitored and controlled.Theaos.extension.parallel.ParallelMonitor class
implements the following interface:

public int addTask(FSM)
//
// Adds a new branch to the @parallel statement. FSM
// is either a reasoning method or an event. It returns the
// index to the new branch. The first branch in the @parallel
// statement has an index of 0.
//

public Cursor finished()
//
// A triggered Cursor for checking that the @parallel
// statement has finished.
//

public Cursor changed()
//
// A triggered Cursor for reacting to state changes in the execution
// of the @parallel statement, e.g. when branches finish.
//

Plans

Agent Manual
Release 5.3
10-June-05 137
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

public boolean hasFinished()
//
// Tests whether the @parallel statement has finished or not.
//

public int getStatus()
//
// Returns the current execution status of the @parallel
// statement.
//

public int nTasks()
//
// Returns the total number of parallel branches.
//

public int getStatus(String n)
//
// Returns the execution status of a labelled branch.
//

public int getStatus(int n)
//
// Returns the execution status of a branch by index.
//

public Throwable getException(String n)
//
// Returns the exception, if any, thrown to a labelled branch.
//

public Throwable getException(int n)
//
// Returns the exception, if any, thrown to a branch
// identified by index.
//

public int findTaskIndex(String name)
//
// Returns the index for a labelled branch.
//

public void throwTo(String name, Throwable t)
//
// Throws an exception to a labelled branch.
//

public void throwTo(int n, Throwable t)
//
// Throws an exception to a branch identified by index.
//

7.7 Cursors
In relational databases, a query can return multiple tuples in the form of a result set; access to
the elements of this set is then provided through a cursor. In JACK, these concepts have been
extended to provide cursors which not only operate in the conventional manner but can also
operate on the temporal evolution of a query. The latter type of cursor is typically used in

Plans

AgentManual
Release5.3

138 10-June-05
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

JACK applications to determine when a particular condition (such as the clock reaching a
specified time) becomes true. Cursors which provide this additional capability within JACK
are implemented astriggered cursors . Triggered cursors are not checked using a busy-wait
loop– rather, they areonly testedwhentheagentperformsamodificationactionononeof the
cursor's relations.

All JACK cursors have anext() method which provides access to the next element in the
resultset.As onewouldexpect,theexactbehaviour of thenext() methodis cursordependent.
A brief description of each cursor and the behaviour of itsnext() method is given below:

Time cursors – test a given value against an internal clock and return true or false
dependingonwhetherthetimeperiodhaselapsed.Call to next() checkto seeif theclock
has reached the specified time.

Again cursors – return true at regular time intervals after invocation. In between these
times, they return false. The first call tonext() (and the first call tonext() after true is
returned)causesthenext triggerpoint to beset.All othercallsto next() checkto seeif the
trigger point has been reached.

Change cursors – monitor anObservable object and return true when the object has
changedits stateandsatisfiesaparticularcondition.Otherwise,falseis returned.Thefirst
call tonext() (which can occur immediately after construction if the appropriate
constructor was invoked) returns true or false depending on the cursorscondition()

method.next()is then called whenever the object being observed notifies that a change
has occurred and the cursor is tested using thecondition() method.

Action cursors – areusedto initiate long-runningJavamethodsfrom plans,andto testfor
their completion. The first call tonext() starts the action method; subsequent calls check
the completion status.

RepeatAction cursors – are used to repeatedly execute an action. The first call tonext()
starts the action method; subsequent calls check the completion status. The call after true
is returned causes the action to be repeated.

Beliefset cursors – query a beliefset relation, attempting to find a tuple that matches the
given pattern. When first called,next() unifies the cursor's logical member(s) to the first
valuesthatsatisfythecursorquery. Onsubsequentcallsit rolls backthelastunificationof
the cursor's logical members and then attempts to re-bind them.

Enumeration cursors – iterate over ajava.util.Enumeration. True is returned while
elements are available in the enumeration; false is returned when the end of the
enumeration is reached. Successive calls tonext() unify the cursor's logical member to
successive elements in the enumeration.

Array cursors – are non-triggered cursors which can be used to bind logical variables to
the values of an array. Successive calls tonext() provide one binding at a time until the
array is exhausted.

Plans

Agent Manual
Release 5.3
10-June-05 139
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

In all cases, the cursor may return a different truth value each time it is tested.

In situations where the cursor can result in the binding of logical variables (as in beliefset and
enumeration cursors) the current binding is made available by invoking next() on the cursor.
Within #reasoning methods the .next() is implicit when a condition or sub-condition of type
Cursor occurs as either:

• a top level condition statement, or

• the condition part of a composite statement.

Composite statements which have condition parts are:

• the Java if, while, do and for statements; and

• the JACK @achieve, @insist, @test, @determine, @wait_for and @maintain statements.

Note that .next() is not implicit in Cursor valued right-hand side expressions of assignment
statements.

Each of the above cursor types is described in more detail in the following sub-sections.

7.7.1 Time Cur sor s and Again Cur sor s
Time cursors are used for simulation purposes, and provide internal timing facilities for
simulation measurement and synchronisation. JACK provides both real-time cursors as well as
dilated clock cursors. Time cursors can use a real-time clock, which synchronises the agent
with real-time systems; a dilated clock for simulated time increments that can be altered as
required (effectively providing slow-motion, fast-forward, incremental steps, etc.); or a
simulation clock, which can be ticked manually to provide even more control over the passage
of time in a simulation environment. Each kind of clock is packaged in a Timer class.

A time cursor has the following constructor:

 TimeCursor(long time, Timer clock)

The parameters are described below:

Table 7-21: The parameters in the TimeCursor constructor

Parameter Meaning

time The time to be tested against the designated Timer

clock.

clock The clock that the time given above is tested against.

Plans

AgentManual
Release5.3

140 10-June-05
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

A time cursor becomes true when time has been reached on the clock, i.e. if the clock time is
at or past the designated time. It becomes false when time has not yet been reached on the
clock. Hence, the time cursor is like a stopwatch for the agent. It is false as long as there is
still time to go (the designated time has not been reached) and then true afterwards. Time
cursors are useful for causing the agent to synchronise with other agents or objects in a
simulation program.

Like time cursors, again cursors are used for simulation purposes, and provide internal timing
facilities for simulation measurement and synchronisation. As with time cursors, again cursors
can use a range of different clocks.

An again cursor has the following constructor:

 Again(long interval, Timer clock)

Each parameter is described below:

Table 7-22: The parameters in the Again cursor constructor

An again cursor becomes true when the next interval has been reached on the clock. It
becomes false when the next interval has not yet been reached on the clock. Again cursors
are useful for causing the agent to synchronise with other agents or objects in a simulation
program. For an example which uses an again cursor, refer to Example 2 in the Views chapter.

With both time and again cursors, any clock of the JACK Timer class can be used in a cursor
statement. In JACK, the following timer members are provided for agents to use:

• aos.util.timer.RTClock.timer

• aos.jack.jak.core.Jak.timer

• aos.jack.jak.agent.Agent.timer

These timer members are assigned a particular clock, which describes how time is
manipulated. These clocks are listed below.

• aos.util.timer.RTClock

• aos.jack.jak.util.timer.DilatedClock

• aos.jack.jak.util.timer.SimClock

Parameter Meaning

interval The interval between successive triggerings of the
cursor.

clock The clock that is used for determining whether or not
triggering should occur.

Plans

Agent Manual
Release 5.3
10-June-05 141
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

EachTimer member andClock class is described in the following sub-sections.

aos.util.timer.RTClock.timer

ThisTimer member is the JACK universal real-time clock. Since it isstatic, there is only a
single copy of it which is available to all agents. It is initialised from the operating system's
real-time clock, and measures the current system time when tested.

ThisTimer ticks in milliseconds.Hence,whentestingit with alonginteger, this integershould
be a measurement of system time expressed in a unit of milliseconds.

ThisTimer provides a base methodgetTime(). When called, this method will return the
clock's current time. Because this timer measures system time, thegetTime() method will
return the same result as the normal JavaSystem.currentTimeMillis() system method.

aos.jack.jak.core.Jak.timer

ThisTimer member is the JACK relative real-time clock. It is initialised from the universal
real-timeclock, but canberesetby any agentin theapplicationasrequiredto startmeasuring
time from a specified moment. For example, in a soccer playing multi-agent system, you
might use a relative real-time clock to measure match time. It would be reset at kickoff, and
again at half time.

Like the universal real-time clock, thisTimer is static and hence common to all agents and
objects throughout the application.

aos.jack.jak.agent.Agent.timer

This is aprivate real-time clock for aspecificagent.It is initialisedfrom therelative real-time
clock, but can be reset if required.

aos.util.timer.RTClock

This is theJACK real-time clock class.It measurestimein milliseconds,is initialisedfrom the
operating system's clock and supplies thegetTime() method for reading its current value.

aos.jack.jak.util.timer.DilatedClock

This is the JACK dilated clock class. When aTimer is defined to be of this class, it behaves
like a dilated clock. A dilated clock is like a console on a video recorder: it can allow time to
passatnormalpace,but it canalsoslow down,speedupor pausetimeif required.It is calleda
dilatedclockbecauseslowing down andspeedinguptheclockcanbethoughtof asredefining
the length of each tick.

TheDilatedClock class provides two constructor methods:

 DilatedClock(double dilation, Timer t)
 DilatedClock(String name, double dilation, Timer t)

Plans

AgentManual
Release5.3

142 10-June-05
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

Each parameter is explained in the following table:

Table 7-23: The parameters in theDilatedClock constructor

The JACK dilated clock class also provides a base method to change the dilation factor, as
well as a base method to read the current time. These methods are listed below:

getTime() – returns the clock's current time.

setDilation (double dilation) – sets the clock's dilation factor to the new value
specified. This allows agents to manipulate the clock as they run.

aos.jack.jak.util.timer.SimClock

This is the JACK simulation clock class. This clock has been provided for specific simulation
purposes where even greater time manipulation is required than is provided with the JACK
dilated clock class. Unlike the dilated clock, the simulation clock is ticked manually.

TheSimClock class provides two constructors:

 SimClock()
 SimClock(String name)

The second constructor allows you to specify a name for the newly created clock instance,
while the first allocates the new clock a default name.

Parameter Meaning

dilation Specifies the dilation factor (or time between ticks). A
dilation factor of:

• 1 is real-time,

• > 1 is fast motion,

• < 1 is slow motion, and

• 0 is stopped time. The dilation factor can be
thoughtof asamultiplier. For example,whensetat
2 the clock will run twice as fast as a real-time
clock.

t This is theTimer thatwill beusedto specifythisclock.
The timer will determine whether the clock is the
universal clock, a relative real time clock or a private
clock for use by the agent only.

name This parameter allows a name to be provided for the
clock instance that is constructed. When absent, the
clock is given a default name.

Plans

Agent Manual
Release 5.3
10-June-05 143
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

As well asgetTime() to readtheclock'scurrenttimevalue,thesimulationclockprovidestwo
methods for the agent to manage the passage of time. These methods are listed below.

setTime (long t) – used to reset the time to a specific value.

adjustTime (long delta) – used to add delta ticks to the clock.

Hence,theagentis notconstrainedto incrementtheclockby asingletick: any numberof ticks
can be applied at once.

7.7.2 Change Cursors
Change cursors are used to observejava.util.Observable objects. A change cursor is
intended to be used in an@wait_for statement to block condition testing until the cursor
returns true. This occurs when the object being observed notifies that a change has occurred
and the cursor'scondition() method evaluates to true. Programmers can develop their own
customised change cursors by extendingaos.jack.util.cursor.Change.

A change cursor has two constructors:

 Change(java.util.Observable observable, boolean flag)

and

 Change(java.util.Observable observable)

The parameters are described in the following table:

Table 7-24: The parameters in theChange cursor constructor

Note: For efficiency reasons JACK usesaos.util.Watchable internally (rather than
java.util.Observable) as the base class for its observables – additional constructors are
therefore available which accept an observable of typeWatchable

Parameter Meaning

observable The object to be observed.

flag Specifieswhetherthecursorconditionwill betestedon
thefirst accessto thecursor. If theflagis setto true,the
value of the condition will be returned; if it is false,
then false will be returned. Constructing the cursor
with a false flag in a@wait_for statement will cause
the@wait_for statement to wait until the condition is
triggered even if the condition is initially true.

Plans

AgentManual
Release5.3

144 10-June-05
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

A change cursor becomes true when the object being observed notifies that a change has
occurred and the cursor'scondition() method returns true. The default implementation of
condition is to always return true – if this behaviour is inappropriate for a given application,
the programmer must extend theChange class and override thecondition() method. It may
also become true if testing of the cursor immediately after construction has been enabled.

The following two examples illustrate the use of the change cursor:

Example 1: Monitoring data in a Java class

In this example, the agent is required to monitor the progress of a chemical reaction and
determinewhenthereactionis complete.It is assumedthatthereactionvariablesaresampled
on a regular basis, and that the current reading is available in an instance of theReading class
(whichextends Observable). TheReactionCursor class overrides thecondition() method
in the base class (aos.jack.util.cursor.Change), incorporating the code to test whether or
not the reaction is complete. The monitoring plan could then be similar to the following:

 public plan MonitorReaction extends Plan
 {
 ...

body()
 {
 r = new Reading();

 //code to start the reaction
 :
 :
 // now wait for completion - sampling is external
 // to this plan

@wait_for(new ReactionCursor(r,false,7.0));
 }
 }

TheReactionCursor class andReading class would be similar to the following:

 public class ReactionCursor extends Change
 {
 Reading reading;
 double endpH;

 public ReactionCursor(Reading r,boolean test,double pH)
 {
 super(r,test);
 reading = r;
 endpH = pH;
 }

 public boolean condition()
 {
 if (reading.pH() < endpH)
 return true;
 return false;
 }
 }

Plans

Agent Manual
Release 5.3
10-June-05 145
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

 import java.util.Observable;
 public class Reading extends Observable
 {
 public long time;
 public double pH;

 public Reading()
 {
 }

 public void log(long p1,double p2)
 {
 if (Math.abs(pH-p2) > 0.05)
 {
 time = p1;
 pH = p2;
 setChanged();
 notifyObservers();
 }
 }
 ...
 }

Example 2: Monitoring data in a beliefset

Since beliefsets extend aos.util.Watchable they can be used as the observable in a change
cursor. In the following example, jigs is a beliefset which maintains the current status of the
jigs in an assembly cell. The AllocateJig plan has the responsibility of assigning a jig to an
incoming part. The plan tests to see if a jig is available (busyJig()) whenever a change occurs
in jig status. The availability test involves determining whether the jig is in use by another part
and, if it is not, whether it is in the loading position for the cell.

plan AllocateJig extends Plan
 {

#uses data Jigs jigs; // Jigs is a JACK beliefset

 ...

body()
 {
 while (busyJig())

@wait_for(new Change(jigs, false));
 // get here if a jig is available
 // allocation code goes here
 }

#reasoning method busyJig()
 {
 // code to test if the jigs are busy
 // it fails if a jig is in the correct position
 // and is empty
 }
 }

Plans

AgentManual
Release5.3

146 10-June-05
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

7.7.3 Action Cursors and RepeatAction Cursors
If thereis aneedto includeanactionwithin aplanthatmaytakealongtimeto complete(such
asanexternaldatabaseaccessor acomputationallyintensivecalculation),theuseof anaction
cursor (aos.jack.util.cursor.Action) is recommended. The programmer extends the
aos.jack.util.cursor.Action class, overriding itsaction() method with one that
incorporates code that performs the time-consuming action. The user-defined cursor can then
be incorporated in an@wait_for statement within a plan. When the@wait_for statement is
executed, the action is performed in a separate thread and the plan waits until the cursor
returns true, indicating that the action is complete.

Note: Thereis an@action reasoningstatementwhichprovidesamorecompactwayof writing
in-line action cursors.

As an example, suppose that an application required a robot to perform a pick and place
action.Onecouldencapsulatetheactionwithin anactioncursorandperformtheactionwithin
an@wait_for statement using code like the following:

 import aos.jack.util.cursor.*;

 public plan PickAndPlace extends Plan
 {
 // a move event specifies part type, pick location and
 // place location

#handles event Move m;

 class MoveAction extends Action
 {
 int part; // part type
 int from; // pick location
 int to; // place location

 MoveAction(int part,int from, int to)
 {
 part = p;
 from = p1;
 to = p2;
 }

 protected void action()
 {
 // code to pick and place the part
 }
 }

body()
 {
 ...

Cursor c = new MoveAction(m.part,m.from,m.to);

 //action starts the first time completion is queried

Plans

Agent Manual
Release 5.3
10-June-05 147
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

@wait_for(c);
 ...
 }
 }

Another example of the usage of Action cursors can be found inExample 2 in theViews
chapter.

Note: If any plan step within a reasoning method (e.g.body()) takes more than 2 time slices
(200ms) to complete, the following message will be displayed (with details about the agent
and plan involved):

 New Executor spawned due to plan step taking too long

Thismightbetheresultof aprogrammingerror(e.g.acall to Javacodewhichnever returns),
or it might be a legitimate piece of code that just takes a long time to execute. The message
indicatesthattheJACK kernelhasdissociateditself from thethreadthatis takingtoo longand
has started a new thread in its place for the continued processing of the other agents. If the
code executing on the original thread ever finishes, the thread terminates and normal plan
processing continues on the new thread. If the message was not caused by a programming
error it is indicative of sub-optimal use of JACK and should be avoided. One could either
incorporatetheoffendingcodeinto anactioncursorwhich is thenusedto triggera@wait_for

statement, or directly into an@action statement.

The repeat action cursor provides a capability for repeatedly performing the same action. It is
created in the same way as the action cursor, except that we create a class which extends
RepeatAction (rather thanAction). The user provides a constructor andaction() method as
before. If we require the action to be performed at regular intervals, the desired effect can be
achieved by coupling an again cursor with a repeat action cursor.

7.7.4 Beliefset Cursors
Thebeliefsetcursorstatementis usedto querybeliefsetrelations.This is donemostoftenin a
plan'scontext() method and in reasoning method statements that take a logical condition,
such as@wait_for, @maintain, @achieve, @test, @insist and@determine.

Beliefset cursor statements use unbound logical members to perform a pattern-match search
over the relation's tuples. If any tuples can be unified with this pattern the beliefset cursor
returns true.

Beliefset cursors and their behaviour are best explained by means of an example. Suppose a
beliefset relation is defined for a political commentary agent that describes the ministers in
politics. This relation might be defined as shown in the following code:

Plans

AgentManual
Release5.3

148 10-June-05
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

beliefset Politician extends OpenWorld
 {

#key field String name;
#value field String party;
#value field String portfolio;
#indexed query

 who(logical String name,String party,logical String port);

 // other #indexed and/or #linear query definitions
 }

Suppose that an agent makes use of this beliefset relation by having the following declaration
included in its definition:

#private data Politician politician();

The agent now has a private relation calledpolitician() of typePolitician. Suppose that
the agent's current tuples for this relation are as shown in the following table:

Table 7-25: Tuples stored in the Politician beliefset

If the agent has two unbound String logical members calledname andportfolio, it could
query this relation using the beliefset cursor statement shown in the following code.

 politician.who(name, "Sensible Party", portfolio)

The beliefset cursor uses the appropriatewho() query method for the relation based on the
parameters. In the example above there is only onewho(...) query method defined.

Unbound logical variables are used asoutput parameters for a query. Bound logical variables
are still treated asoutput parameters but they can only match the already bound value.

Note: JACK considerslogicalmembersto beacompletelydifferenttypeto normalmembers,
sopassingalogicalmemberwhereanormalparameteris expectedwill causeatypemismatch
error. All logical variables are converted to the typeaos.jack.jak.logic.Variable.

When the above expression is evaluated, the agent looks through each tuple and attempts to
match it with the pattern provided by unifying the logical members.

• If a matching tuple is found, the logical members arebound to this tuple's values and the
beliefset cursor statement returnstrue.

name party portfolio

Mr Important Sensible Party Prime Minister

Ms Action Sensible Party Minister for Sport

Mr Knockout Silly Party Minister for Sport

Plans

Agent Manual
Release 5.3
10-June-05 149
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

• If no matching tuple can be found, the logical members remainunbound and the beliefset
cursor statement returnsfalse.

In this example, the first tuple will match the pattern provided whenname is bound to "Mr.
Important"andportfolio is boundto "PrimeMinister".Thepartyfield matchesthatspecified
in thepattern,sobindingthelogicalmembersin thiswaywill provideanexactmatchwith the
relation's first tuple. Hence, if executed under these circumstances, the beliefset cursor
expression will return true, and the logical members will be bound to their designated values.

Hence, a beliefset cursor appears to always return the first matching tuple in the relation.
However, when it appears in a composite logical expression, subsequent tests may reject the
first tuplereturnedandtheagentmayhaveto back-trackandbindwith thenext matchingtuple
instead. This is discussed in more detail in theComposite Logical Expressions section in this
chapter.

7.7.5 Enumeration Cur sor s
Enumeration cursors iterate over ajava.util.Enumeration. True is returned while elements
are available in the enumeration; false is returned when the end of the enumeration is reached.

An enumeration cursor has the following constructor:

 EnumerationCursor(
 java.util.Enumeration enumeration, Variable variable)

The parameters are described in the following table:

Table 7-26: The parameters in theEnumerationCursor constructor

An enumeration cursor becomes true while there are more elements to be bound and is false
otherwise.

Thecursor'snext() methodcallsbindValues() with thecurrentelementasits argument.The
default implementationof bindValue() is to returntruewith nobindingtakingplace.In most
situations this is not the desired behaviour and the user must extend
aos.jack.util.cursor.EnumerationCursor and overridebindValues(). An example is
shown in the following code.

Parameter Meaning

enumeration The enumeration to be iterated through.

variable A logicalvariablewhichwill beboundto eachelement
of the enumeration in turn.

Plans

AgentManual
Release5.3

150 10-June-05
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

 public class CertainTypeEnumeration extends EnumerationCursor
 {

Variable variable; // logical CertainType $v;

 public CertainTypeEnumeration(Elements e,Variable x)
 {
 super(e, x);
 variable = x;
 }

 public bindValues(Object element)
 {
 if (element instanceof CertainType)
 return variable.unify((CertainType) element);
 return false;
 }
 }

7.7.6 Array Cursors
aos.jack.util.cursor.ArrayCursor is a non-triggered cursor which can be used to bind
logicalvariablesto thevaluesof anarray. Successivecallsto next() providesonebindingata
time until the array is exhausted.

An ArrayCursor has two constructors:

 public ArrayCursor(Object[] array, Variable var)

and

 public ArrayCursor(Object[] array, Variable var, int start, int end)

Thelatteris for iteratingthroughthesubarraywhichstartsat index start andendswith index
(end - 1).

The parameters are described in the following table:

Table 7-27: The parameters in theArrayCursor constructor

TheArrayCursor is particularly useful for use within a context condition in a plan. For
example:

Parameter Meaning

array The array to be iterated through.

var A logicalvariablewhichwill beboundto eachelement
of the array in turn.

start Specifies the start of a region in the array of interest.

end Specifies the end of a region in the array of interest.

Plans

Agent Manual
Release 5.3
10-June-05 151
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

plan X extends Plan {
#handles event interestedParties ev;

 logical String party;

context()
 {
 new ArrayCursor(ev.parties, party);
 }

body()
 {
 System.out.println(party.as_string());
 }
 }

In this case, a plan instance is generated for each element in ev.parties, with party bound to
that element.

7.8 Plan Pr ogramming Guide
This section gives some advice on how to write the plans that agents will use. It presents some
typical plan templates that can be used as a starting point, and gives some advice on
abstracting agent tasks into a set of related plans.

7.8.1 Plan Definition T emplates
This section provides typical plan templates for both normal plans and meta-level plans. Since
the fundamental purpose of meta-level plans is distinct from that of normal plans, their
templates are slightly different.

Plans

AgentManual
Release5.3

152 10-June-05
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

7.8.1.1 Normal Plan Template

A template to use for defining normal plans is given below.

plan PlanType extends Plan
 {
 // A declaration of the event that the plan handles

#handles event EventType reference;

 static boolean relevant (EventType reference)
 {
 // code to determine whether the plan is relevant
 // to an instance of the above event.
 }

context()
 {
 // logical condition to test applicability
 }

 // Declarations of any events that the plan may post

#posts event Event1 handle1;

#sends event MessageEvent1 messagehandle1;

 // Declarations of any beliefset relations that the
 // agent uses.

#reads data Relation1 relation_name1;
#modifies data Relation2 relation_name2;

 // Declaration of the interface that any agent which
 // uses this plan must implement. This is optional and
 // only applies if the plan will be shared between
 // different agents.

#uses agent implementing InterfaceType InterfaceName;

#uses interface InterfaceType InterfaceName;

 // Declarations of all the reasoning methods that the
 // agent can execute when performing this plan.

#reasoning method methodName (parameters)
 {
 // Code for the agent to perform.
 }

body()
 {
 // The plan body. This is the main reasoning
 // method that the agent runs when it
 // executes an instance of this plan.
 }
 }

Plans

Agent Manual
Release 5.3
10-June-05 153
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

7.8.1.2 Meta-level Plan Template

A template to use for defining meta-level plans is given below.

plan PlanType extends Plan
 {
 // A declaration that this plan handles the PlanChoice
 // event (and therefore is a meta-level plan) along with
 // a declaration of the BDI events that this meta-level
 // plan should be used to choose applicable plan
 // instances for.

#handles event PlanChoice event_handle;
#chooses for event event1 event2 event3 ...
#chooses for event eventn eventn+1 ...

 static boolean relevant (EventType reference)
 {
 // code to determine whether the plan is relevant
 // to an instance of the above event.
 }

context()
 {
 // logical condition to test applicability
 }

 // Declarations of any events that the plan may post.

#posts event Event1 handle1;
#sends event MessageEvent1 messagehandle1;

 // Declarations of any beliefset relations that the
 // agent uses.

#reads data Relation1 relation_name1;
#modifies data Relation2 relation_name2;

 // Declaration of the interface that any agent which
 // uses this plan must implement. This is optional and
 // only applies if the plan will be shared between
 // different agents.

#uses agent implementing InterfaceType InterfaceName;

 // Declarations of all the reasoning methods that the
 // agent can execute when performing this plan.

#reasoning method MethodName (parameters)
 {
 // Code for the agent to perform.
 }

body()
 {
 // The plan body. This is the main reasoning
 // method that the agent runs when it
 // executes an instance of this meta-level plan.

Plans

AgentManual
Release5.3

154 10-June-05
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

 // This reasoning method should reference the
 // event handle, as it has the applicable set.
 }
 }

7.8.2 Functional Abstraction
Of all JACK structures,theplanis usuallythemostcomplex. As well asincludinganumberof
#-declarations, it will also frequently contain a number of reasoning methods to express its
functionality. Themainbody() reasoningmethodwill alwaysbepresent,but if theactionsthat
theagentmusttakewhenit executestheplanarereasonablycomplex, they maybeabstracted
into other reasoning methods, or other entire plans which the agent can call with BDI
statements or@subtask statements.

In most cases, you should abstract a plan into separate reasoning methods which express
subtasks that the agent needs to perform when executing the plan'sbody(). You should only
abstract it into entirely separate plans (to be called by the@subtask statement) when:

• these plans already exist and can be reused; or

• the subtask requires the agent to perform different sequences of actions, depending on the
agent's circumstances.

In this case, the subtask is really better expressed as an event. The different approaches to
handling it can then be expressed in different sub-plans, which the agent can choose between
at run time by their respective context conditions.

7.8.3 Logical Statements
Most of the core differences between JACK Agent Language semantics and those of ordinary
Java involve theway logicalstatementsareusedandinterpreted.In Java,booleanmethodsare
just likenormalmethodsthathappento returnabooleanresult.In theJACK AgentLanguage,
however, the logical expressions hold more meaning.

Some of the differences between JACK Agent Language logical expressions and regular
boolean expressions are listed below:

• JACK AgentLanguagelogicalexpressionscanfollow eitheranOpen World semanticsor a
Closed World semantics.

OpenWorld semanticsmodels'realworld' knowledge.It allowsfor threetruthstates:True,
False andUnknown. The default value is Unknown: unless you have found out that
something is either True or False, you know nothing about it.

Closed World logic follows the more pure boolean logic. It assumes that everything is
known, and can either be True or False. The default is False: unless you have found out
that something is True, you assume that it is False.

Plans

Agent Manual
Release 5.3
10-June-05 155
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

In particular applications it may be appropriate to model some agent beliefsets using
Closed World semantics and other agent beliefsets using Open World semantics.

• WhenanunguardedJACK AgentLanguagelogicalexpressionfails in areasoningmethod,
it causes the reasoning method to fail.

Reasoning methods are essentially sequences of statements that an agent must perform
when executing a plan. The plan's body is a reasoning method, which can in turn contain
other reasoning methods. Whenever a logical statement of any form is executed in a
reasoning method, it will cause the reasoning method to fail if there is no alternative for
the agent to try.

For example, if a reasoning method contains anif condition without anelse clause and
theif condition fails, the reasoning method it appears in fails. If there is anelse clause,
however, the agent has somewhere to proceed and so the reasoning method does not fail:
the reasoning method only fails when the agent is left with no alternative to try.

Logical statements are important in JACK. They are used to determine which instances of a
planareapplicable,andto determinethesuccessandfailureof theseplansandtheir respective
components.

Although logical statements are common to many programming languages, some unique and
important properties should be mentioned with regard to their use in JACK.

7.8.3.1 Components of a Logical Statement

 The components from which logical statements in JACK can be built are listed below.

• Logical constants, boolean values and boolean expressions.

These constitute logical expressions in most other programming languages. A single
boolean member can be thought of as a trivial logical expression that is true or false
depending on its value.

Thisbooleanmembercanbeincludedin booleanexpressionswith otherbooleanmembers
andlogicalconstants.Whendone,thelogicalexpressionformedis trueor falsedepending
on the values of each member, each logical constant and the connectives used between
them. The normal rules of boolean algebra are applied.

For example, if an object includes two members, A and B, the right-hand side of the
following Java statement:

 answer = A && B;

is an example of a logical expression.

• A beliefset cursor expression, and boolean expressions containing beliefset cursor
expressions.

Plans

AgentManual
Release5.3

156 10-June-05
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

Beliefset cursors are logical expressions that are used specifically to query beliefset
relations. They are called cursors because their behaviour is analogous to cursors in
databasequerylanguages.A beliefsetcursortakesapatterninvolving at leastoneunbound
logical member and a beliefset relation. It then attempts to unify this pattern with the
relation's tuples.

Unification involves the agent trying to match each tuple with the pattern where any
unbound logical member is a 'wild card'. If the agent can match a tuple, it temporarily
unifiesthepattern'slogicalmember(s)to its values.Often,theboundvariablewill thenbe
testedor usedin someway(for example,in a@determine statementit is usedin asubtask
execution). If it is used successfully and the unification succeeds, the logical member(s)
are bound to the values that they were matched with. Once bound, they cannot be
unbound. However, if the cursor is being used in an expression which can roll-back to
before the binding took place (such as a determine statement can when the subtask
execution fails), this 'frees' the logical member(s) so that another binding can be found.

• All other cursor expressions.

All othercursorsarelogicalexpressionsandcanbeusedin compositelogicalexpressions.
For more details refer to the section on cursors in this chapter.

• a Finite StateMachine (FSM) statement.

FSMstatementsareJACK statementsthattheruntimeengineexecutesin athreadsafeway
by atomic steps. They can occur as logical statements but not in compound statements.

7.8.4 Logical Member s
Logical members can be included in any JACK Agent Language definition, but have specific
support in plans. Most often, they are used in a plan'scontext() method or reasoning
methods. Logical members bring elements of logic programming to JACK.

Logical members follow the semantic behaviour of variables from logic programming
languages such as Prolog. That is, they are not place-holders for assigned values like normal
Java members: rather, they represent a specific, but possibly unknown, value. Conceptually,
themurdererin aclassicmurdermysterycanberepresentedby a logical variable.Thatis, the
murderer is a specific person, but the detective may not know this person. As the detective
investigates, he or she attempts to match new evidence with what he or she already knows
about the murderer in order to uncover the murderer's identity.

Theprocessof investigationthatthedetective in theaboveexamplegoesthroughis analogous
to the way that an agent uses logical members. Instead of assigning values to them, the agent
attempt to uncover their value through a process known asunification. Unification involves
attemptingto matchthelogicalmemberwith aknown pattern.Thelogicalmember, therefore,
behaves like a 'wild card' in this pattern matching exercise. If it is possible to find a value for
the wild card to make it match the pattern, the agent will treat this as a possible value for the
logical member. It will bind the logical variable to this value.

Plans

Agent Manual
Release 5.3
10-June-05 157
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

Therefore,anunboundlogicalmemberis amemberwhosevalueis still unknown to theagent,
whereas a bound logical member is a member whose value has been determined.

A logical member is defined with the plan's other members. Their definition takes the
following form:

logical Type name;

Each component of this definition is described in the following table:

Table 7-28: Components of a logical type definition

Once bound, a logical member's value cannot be changed. Returning to the murder mystery
example, this is equivalent to uncovering the murderer. Once the murderer has been
uncovered, the murderer is known. This cannot change.

Logicalvariablesareobjectsthat,whenbound,requiretheuseof anaccessorto gainaccessto
the values they represent. The available accessors are:

 boolean as_boolean()
 char as_char()
 byte as_byte()
 short as_short()
 int as_int()
 long as_long()
 float as_float()
 double as_double()
 java.lang.Object as_object()
 java.lang.String as_string();

Each of these will throw aLogicalException if the user tries to determine the value of an
unbound logical variable.

Component Meaning

logical Identifiesthismemberasalogicalmember, asopposed
to a normal Java member.

Type Identifiesthetypeof this logicalmember. Unlike logic
programming languages where an unbound logical
variable can represent anything, JACK Agent
Language logical members are typed. When unbound
their value is still unknown, but the agent does know
that whatever the value is, it will be of the designated
type.
A logical member's type can be an object, any scalar
type (int, float or boolean) or aString.

name The logical member's name, used to identify it during
plan execution.

Plans

AgentManual
Release5.3

158 10-June-05
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

Unification is a boolean method of the logical member. This method can be called directly
from within a reasoning method if required.

If a logicalvariableis unboundit canbeboundusingunify(). For example,a logicalmember
of type integer can be defined and then unified with the value '3' in a reasoning method as
shown below.

logical int x;
 x.unify(3);

This is like assigning a member the value '3', except that once unified, the value cannot be
changed. In this case ifx was unbound beforex.unify(3), unify() would returntrue. If x
was already bound and you usedunify to attempt to bind it again, it would returntrue if you
attempted to bind it to its current value andfalse otherwise.

The previous example shows the simplest form of unification – where the agent simply
designatesavalue.In themurdermysteryexample,it wouldbelikethedetectivedecidingthat
Colonel Mustard is the murderer (presumably after some flawless deduction). Sometimes,
however, logicalmembersareusedin waysthataremorecomplex. Theagentmaynotsimply
beableto bindthememberto aparticularvalue.Instead,it mayattemptto bindthememberto
a possible value, then perform some test to see whether the value is suitable. This can be
thought of as testing thehypothesis that the logical member's value has been bound correctly.

For example, consider a@determine statement in the context of the murder mystery example
(the detective agent is trying to determine the identity of the killer). The detective may find
thatthevictim wasshotandhenceconcludethatthemurdererhadaccessto agun.If thereare
only three people who had access to a gun, the detective may hypothesize that one of these
people is the murderer. This will be followed by further investigation that will prove whether
this is the case. If it is, the killer has been uncovered. Otherwise, the detective will repeat the
process with the second candidate.

In a@determine statement, this would correspond to there being three tuples that satisfy the
statement's logical condition. The agent temporarily binds the condition's logical variable to
thefirst tupleandthenpostsaneventusingthis tuple'svalues.Theagentcommits thebinding
if this succeeds; otherwise, the binding isrolled back and the next tuple's values are bound.
Rolling back is just like the detective finding out that his hypothesis is wrong and hence
withdrawing the accusation of guilt.

Roll-backis theonly way thatthebindingof a logicalmembercanbe'undone'.It only occurs
when the logical member is used in acursor and when this cursor appears in a composite
logical expression, or a compound statement such as the@determinestatement.

Plans

Agent Manual
Release 5.3
10-June-05 159
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

7.8.5 Composite Logical Expressions
 Individual logical statements in JACK can be combined using the standard boolean
connectives available in Java ('&&', '||' and '!' representing the logical connectivesAND, OR and
NOT respectively).

Whena logicalexpressionis used,theagentalwaysevaluatesit in a short-circuit, left to right
manner. That is, the agent will start evaluating the logical expression from the left-most
statement and will stop evaluating as soon as it has found enough information to determine
whether the expression istrue or false.

For example,supposethebeliefsetrelationdescribedin theexamplefrom theprevioussection
is used in the following logical expression (wherename andportfolio are unbound logical
members of typeString):

 politician.who(name, "Silly Party", portfolio)
&& portfolio.as_string().equals("Minister for Sport");

Evaluation is performed left to right, so that the agent first looks at thepolitician relation's
tuples to unify the query pattern with each tuple. The first and second tuples do not have a
party field thatmatchesthe"Silly Party" string,however thethird onedoes.Hence,theagent
bindsname to "Mr. Knockout" andportfolio to "Minister for Sport", and the beliefset cursor
returnstrue.

The agent now moves onto the second expression, which compares the value ofPortfolio
with theString, "Minister for Sport". This matches, so the logical expression is true.

As well as returningtrue, the logical expression has bound the logical membersname and
portfolio to valuesthatsatisfythestatement.If thisexpressionwereto appearin acontext()

method, it could lead to an applicable plan instance. In that case, the logical members would
capture the context in which the plan was applicable.

Now consider a logical expression of the following form instead:

 politician.who("Fred", "Silly Party", portfolio)
&& portfolio.as_string().equals("Minister for Sport")

Again, the agent starts with the left-most beliefset cursor and attempts to unify it with the
relation'stuples.However, thereis notuplewhosenamefield matchesthe"Fred"string,sothe
portfolio member will remain unbound and the beliefset cursor will returnfalse.

Thelogicalexpressionis of theform A && B, soif A is falsethereis nowaythattheexpression
will be true. Therefore, the agent does not test the second comparison (B). Evaluation is also
short-circuiting, so the agent considers the logical expression to be false immediately. It is
importantthattheagentdoesnottry to evaluatethecomparisonstatementat thispointbecause
theportfolio member is still unbound. Any attempt to read its value will throw a
LogicalException exception.

Plans

AgentManual
Release5.3

160 10-June-05
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

Finally, consider a third logical expression as shown below:

 politician.who (name, "Sensible Party", portfolio)
&& portfolio.as_string().equals("Minister for Sport")

In this logical expression, the beliefset cursor can unify with the first tuple:

 ("Mr. Important", "Sensible Party", "Prime Minister")

Thename andportfolio members are bound in the same way as before, but when the second
conjunctis tested,portfolio'svalue"PrimeMinister" doesnotmatchtheexpectedstring.The
evaluation will back-track to the previous conjunct and try to choose a new binding forname
andportfolio. In our example,name will become bound to "Ms. Action",portfolio will be
bound to "Minister for Sport" and the query will return true. The entire logical expression
succeeds, with the logical members bound as follows:

 name = "Ms. Action"
 portfolio = "Minister for Sport"

Meta-LevelReasoning

Agent Manual
Release 5.3
10-June-05 161
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

8 Meta-Level Reasoning
In orderfor aneventto beprocessedby anagent,theagentmustdeterminewhichplan(if any)
should handle the event.

Note: Eachplanis capableof handlingonly asingleeventtypewhichis specifiedby theplan's
#handles event declaration. However, it is possible that there is more than one plan capable
of handling a particular event type. As will be discussed later, it is also possible for multiple
plan instances to be generated from a single plan.

To decide which of the plans are applicable, JACK employs the following steps:

1. Identify the plans whichhandle the event type.

2. Usetherelevant() methodto eliminateplanson thebasisof thedataassociatedwith the
particular event instance.

3. Usethecontext() methodto generateplaninstanceswhichareconsistentwith theagent's
current beliefs.

The last step results in what is known as the applicable plan set. Elements in the applicable
plansetareorderedaccordingto theorderin which theircorrespondingplansweredeclared–
this ordering is calledprominence. This ordering can be overridden by a process called
precedence, where a ranking is provided for each entry via thegetInstanceInfo() method.

Having generatedtheapplicableplansetfor anevent,oneentrymustbechosenfor subsequent
execution.NormallyJACK will performthisselection,choosingeitherthefirst entryin theset,
or choosing one at random. The exact mechanism used is tunable via behaviour attributes
associatedwith theevent(this is discussedin detailin thesectionCustomising BDI Behaviour
with Behaviour Attributes in theEvents chapter).Notethatwhenachoiceis beingmade,only
the highest precedence entries are considered. If the event is a BDI event and there is more
thanoneentryin theapplicableplanset,aPlanChoice eventis posted.If plansareprovidedto
handle this event (referred to asmeta-level plans), the applicable set can be interrogated and
the entry deemed most appropriate for the current situation selected. Note again that the
available choices are restricted to the highest precedence entries – there may be additional
entries of lower precedence, but they will be considered only when all entries of higher
precedence have been exhausted.

Meta-Level Reasoning

AgentManual
Release5.3

162 10-June-05
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

8.1 Applicable Set Generation

8.1.1 Handling the Event Type
Most#- declarations are optional in a plan definition, but the#handles event declaration is
mandatory. It specifies for which event type the plan type may be relevant. Whenever an
instanceof thiseventoccurs,theagentwill considerthisplanasapotentialcandidate.Unless
the plan'srelevant() method indicates otherwise, the agent will assume that this plan is
relevant to the event.

The#handles event declaration takes the following form:

#handles event EventType event_ref;

event_ref is available within the plan to reference the event being handled and its data fields.

8.1.2 Relevance
To berelevant to a given event instance:

a) a plan must declare that it handles the event type that has arisen through a#handles

event declaration; and

b) if a relevant() method is present, a value oftrue must be returned.

If aplandoesnothavearelevant() method,theplanis relevantfor all instancesof theevent.

In the following example, therelevant() method ensures that the plan is only considered if
there is a colour specified in thecolour data member of thePaint event.

 public plan PaintSpecifiedCurrentColour extends Plan
 {

#handles event Paint ev;

 static boolean
relevant{Paint ev}

 {
 return ev.colour != null && ev.colour.length()>0;
 }

 // context method, discussed below.

body()
 {
 // As appropriate to the plan
 }
 }

Meta-LevelReasoning

Agent Manual
Release 5.3
10-June-05 163
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

8.1.3 Applicability
Thecontext() method provides the next level of 'filtering' afterrelevant(). If a plan is
relevantto aparticularevent,thecontext() methoddetermineswhethertheplanis applicable
given the agent's current beliefs.

Thecontext() method does not take any arguments and its body is always a single JACK
AgentLanguagelogicalexpression. Logicalexpressionsarecomposedof booleanmembers,
logical members and beliefset cursor expressionswhich can, in general, bind to multiple
values. When evaluating thecontext() method, the agent will consider all possible
alternatives. For every possible set of values that satisfy thecontext() method, a separate
entry will be created in the applicable plan set.

In thefollowing example,thecontext() methodensuresthattheplanis only applicableif the
Paint event requests a specific colour that is the same as the agent's currentpaintColour.

 public plan PaintSpecifiedCurrentColour extends Plan
 {

#handles event Paint ev;

 static boolean
relevant(Paint ev)

 {
 // As appropriate to the plan
 }

#uses interface Robot self;

context()
 {
 self.paintColour.equals(ev.colour);
 }

body()
 {
 // As appropriate to the plan
 }
 }

In thefollowing plan,thecontext() methodqueriesaBOM (Bill of Materials)beliefsetusing
getSubcomponent(). The plan will only be applicable if thegetSubcomponent() query can
find a tuple with a key of component in the beliefset. Note that it is quite normal for a
componentto havemorethanonesub-component– if this is thecase,entriescorrespondingto
each sub-component will be added to the applicable plan set.

Meta-Level Reasoning

AgentManual
Release5.3

164 10-June-05
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

 public plan FindSubcomponentPlan extends Plan
 {

#handles event FindSubcomponent fsc;

 static boolean
relevant(FindSubcomponent fsc)

 {
 // As appropriate to the plan
 }

#reads data BOM bom;

context()
 {
 bom.getSubcomponent(fsc.component, sc);
 }

body()
 {
 // As appropriate to the plan
 }
 }

As usual, only one plan instance will be attempted, and a second one is only tried if the first
one fails.

8.1.4 Prominence
In the absence of precedence, the order in which plans appear in an agent or capability (the
orderof the#uses plan declarations)determinestheorderin which thecorrespondingentries
appear in the applicable plan set.

For example, the agent below uses two plans. Prominence dictates that entries arising from
PaintSpecifiedCurrentColour will appear in the applicable plan set before entries arising
from PaintAnyColour.

 public agent Robot extends Agent
 {
 ...

#handles event Paint;

#uses plan PaintSpecifiedCurrentColour;
#uses plan PaintAnyColour;

 ...
 }

Note that inner capabilities are more prominent than plans.

Meta-LevelReasoning

Agent Manual
Release 5.3
10-June-05 165
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

8.1.5 Precedence
Precedence is the second means of ordering entries in the applicable plan set. If a
getInstanceInfo() method is provided in a plan when the entry for the applicable plan set is
beinggenerated,thegetInstanceInfo() methodwill becalled.getInstanceInfo() returnsa
PlanInstanceInfo object. ThePlanInstanceInfo class has the following members and
methods:

Table 8-1: PlanInstanceInfo class members and methods

Note that a data member is available for holding a rank – the entries in the applicable plan set
areorderedaccordingto rank.In orderto simplify therankingprocess,anarrayof predefined
PlanInstanceInfo objects(def[]) is provided.Thearrayindex correspondsto therank– 0 is
the lowest rank and 9 is the highest rank. For example, the following plan will have a rank of
4:

 public plan PaintSpecifiedCurrentColour extends Plan
 {

#handles event Paint ev;
 ...

 public PlanInstanceInfo getInstanceInfo()
 {
 return PlanInstanceInfo.def[4];
 }
 ...
 }

If a second plan is now introduced:

 public plan PaintAnyColour extends Plan
 {

#handles event Paint ev;
 ...

 public PlanInstanceInfo getInstanceInfo()
 {
 return PlanInstanceInfo.def[5];
 }
 ...
 }

Name Description

public static final

PlanInstanceInfo def[]

An array ofPlanInstanceInfo objects
pre-constructed for ranks 0 – 9.

public PlanInstanceInfo(int) For constructing an object with a given
rank.

public int rank The rank.

public int getRank() Returns the rank.

Meta-Level Reasoning

AgentManual
Release5.3

166 10-June-05
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

then entries arising from thePaintAnyColour plan will always precede those arising from the
PaintSpecifiedCurrentColour plan regardless of their prominence.

Note thatgetInstanceInfo() is executed aftereach binding of thecontext() method. Thus
thecurrentbindingis availableto getInstanceInfo() andcanbeusedin determiningtherank
to be returned, as shown in the following example:

public plan DoSomething extends Plan
 {

#handles event SomeEvent ev;
#reads data Order order;

 // BeliefSet "Order order(tag,precedence)" has tuples
 // of the form:
 //
 // <"important",8>, <"normal",5>, <"background", 3>
 // and the incoming event includes a tag to match.

logical int precedence;

context()
 {
 order.get(ev.tag, precedence);
 }

 public PlanInstanceInfo getInstanceInfo()
 {
 try
 {
 return PlanInstanceInfo.def[precedence.as_int()];
 }
 catch (LogicException ex)
 {
 return PlanInstanceInfo.def[5];
 }
 }
 ...
 }

Whencontext() results in multiple bindings (as could occur in the earlier BOM example),
getInstanceInfo() is executed aftereach binding. Thus, each entry added to the applicable
plan set could be assigned a different ranking.

8.2 The Applicab le Plan Set
The applicable plan set is used to determine which plan instance of those applicable to the
event under current consideration should be executed. A plan instance is defined by:

• the plan type instance which is handling the event instance in question, and

• a binding of logical variables arising from execution of thecontext() method.

Note that multiple plan instances may arise from a single plan type instance.

Meta-LevelReasoning

Agent Manual
Release 5.3
10-June-05 167
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

In order to facilitate reasoning about plan instances JACK provides theSignature class. It
providesarepresentationwhichenablesplaninstancesto beuniquelyidentifiedandefficiently
compared for logical equivalence. Note that a signature does not contain a reference to the
actual plan type instance – rather, it keeps all the information needed for re-establishing the
plan instance.

TheSignature class provides the following methods for use by the programmer:

Table 8-2: Signature class methods

One can gain access to thePlanInstanceInfo object that was returned by the plan's
getInstanceInfo() method via thegetInfo() method.

TheApplicableSet class extends theSignatureList class and one can therefore access the
applicable plan set using the following methods:

Table 8-3: Methods to access the applicable plan set

Name Description

public Event getEvent() Returns the originating event.

public PlanInstanceInfo getInfo() Returns thePlanInstanceInfo object
associated with this signature.

public Plan getPlan() Returns a 'plan factory' which can be
used to determine the type of the plan
concerned,andto accessthelogicalplan
variables associated with the plan.

Name Description

public Signature first() Returns the first signature in the list.

public Signature last() Returns the last signature in the list.

public Signature next(Signature) Returns the signature in the list after the
onegiven,or null if theonegivenis the
last signature.

public Signature prev(Signature) Returns the signature in the list before
theonegiven,or null if thatgivenis the
first signature.

public int size() Returns the number of signatures in the
list.

Meta-Level Reasoning

AgentManual
Release5.3

168 10-June-05
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

Thus, given a reference to the applicable plan set for an event, one can iterate through the
Signature objects, inspect their correspondingPlanInstanceInfo objects and decide which
signature is most appropriate for the current situation. Note that the applicable set only
contains the highest precedence signatures – lower precedence signatures become 'visible'
only after all higher precedence signatures have been used and failed.

If one is going to explicitly select a signature, additional information regarding the plan
instances will invariably be required. This can be provided by extending the
PlanInstanceInfo base class and then creating a suitablePlanInstanceInfo instance in the
getInstanceInfo() method.

8.3 Choosing a Plan Instance
With normal events, the agent selects an entry from the applicable plan set for a given event
andexecutesonly theplaninstanceassociatedwith thatentry. As notedearlier, themechanism
used for selection (pick the first entry in the list or a pick an entry at random) is tunable via
behaviour attributes associated with the event.

With BDI events,if theapplicableplansetcontainsmorethanoneentry, aPlanChoice eventis
posted.PlanChoice events are described in detail elsewhere; for the purposes of this
discussion note that thePlanChoice class allows access to the following data members:

Table 8-4: PlanChoice class data members

If the user has provided meta-level plans to handle thePlanChoice event, one uses the
PlanChoice data members to reason about the applicable plan set and to determine which is
the most appropriate plan instance in the current situation. This process is called meta-level
reasoning.

A meta-level plan is defined to#handle thePlanChoice event. It may further include one or
more#chooses for statements to constrain to which object-level events the plan is relevant.

Name Description

public Event event Holdstheobjectlevel eventinstancethat
caused the plan choice event.

public ApplicableSet applicable Holds information about the current set
of applicable plan instances.

public FailureSet failure Holds information about the current set
of failed plan instances.

public Signature chosen Assigned by the plan choice handling
plan.

Meta-LevelReasoning

Agent Manual
Release 5.3
10-June-05 169
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

This is discussed in more detail in the section onPlan Declarations in thePlans chapter. The
plan will also access the data members of the particularPlanChoice event instance.

These features are illustrated in the following simple example which prints "Hello World" in
differentlanguages.Eachlanguageis identifiedby anumber(1 for English,2 for Swedish...)
and each plan#handles an event of typeTransEvent. This event has a single data member
whichcontainstherequestedlanguagenumber. Thecodefor TransEvent is not listedbut note
that itmust extendBDIGoalEvent. Meta-level reasoning is used to select the appropriate plan
instance. Note that this example is for pedagogical purposes only – there are much simpler
ways to achieve the same result.

 public class LanguageType extends PlanInstanceInfo
 {
 public int language;

 public LanguageType(int i)
 {
 super(5); // 5 is the default precedence
 language = i;
 }
 }

Meta-Level Reasoning

AgentManual
Release5.3

170 10-June-05
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

plan Trans1Plan extends Plan
 {

#handles event TransEvent ev;

public PlanInstanceInfo getInstanceInfo()
 {
 return new LanguageType(1);
 }

body()
 {
 System.out.println("Hello World");
 }
 }

plan Trans2Plan extends Plan
 {

#handles event TransEvent ev;

 public PlanInstanceInfo getInstanceInfo()
 {
 return new LanguageType(2);
 }

body()
 {
 System.out.println("Tjena Moss");
 }
 }

plan ChooseLanguage extends Plan
 {

#handles event PlanChoice ev;
#chooses for event TransEvent;
body()

 {
 TransEvent te = (TransEvent) ev.event;

 for (Signature s = ev.applicable.first();
 s != null ;
 s = ev.applicable.next(s)
)
 {
 if (s.getInfo() instanceof LanguageType)
 {
 LanguageType p = (LanguageType) s.getInfo();
 if (p.language == te.n)
 {
 ev.chosen = s;
 return true;
 }
 }
 }
 }
 }

Beliefset Relations

Agent Manual
Release 5.3
10-June-05 171
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

9 Beliefset Relations
9.1 Intr oduction
 Beliefsets are used in JACK to maintain an agent's beliefs about the world.

An agent'sbeliefsetcanbestoredaseitheranOpenWorld or aClosedWorld class.Thebeliefset
represents these beliefs in afirst order, tuple-basedrelational model. The logical consistency
of thebeliefscontainedin thebeliefsetis automaticallymaintained.Hence,for example,if an
agent adds a belief that contradicts a belief it already has, the beliefset detects this and
automatically removes the old belief.

The beliefset is not the only way that an agent can represent information. Agents can also
include ordinary data members and other data structures that have been implemented in Java.
However, the advantage of using a beliefset over normal Java data structures is that beliefsets
have been designed specifically to work within the agent-oriented programming paradigm.
Therefore, it is fully integrated with the other JACK Agent Language classes, and provides
facilities not available with other data storage techniques. In particular, a JACK beliefset
provides:

• Automatic maintenance oflogical consistency andkey constraints.

• EitherOpen World or Closed World logic semantics for maintaining these beliefs.

• Theability to posteventsautomaticallywhenchangesaremadeto thebeliefset,andhence
initiate action within the agent based on a change of beliefs.

• The ability to supportbeliefset cursor statements, providing a distinct tuple that unifies
with the cursor's query expression each time the cursor attempts to rebind the query (in a
complex logical expression).

Eachbeliefsetclassdefinitionthatanagentusesis calledabeliefsetrelation. It describesaset
of beliefs that the agent may have in terms offields. When the agent wants to adopt a new
belief, it specifies values for each of these fields andadds this belief to the relation. This
creates atuple for the relation. Every belief that an agent currently has stored in a given
beliefset relation is represented as a tuple.

Tuples can either betrue or false. This models the 'belief' aspect of the tuple. If the tuple is
true, the agent believes that it is a true statement. If it is false, the agent believes that it is a
false statement. For example, an agent may have a tuple to represent the statement that Mr
Important is Prime Minister and member of the Sensible Party. If this tuple is stored as being
true, this indicates that the agent will consider the statement true. If it is stored as false, the
agent will assume that this statement is false.

Beliefset Relations

AgentManual
Release5.3

172 10-June-05
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

The fact that beliefset relations represents their data as beliefs rather than 'absolute truths'
distinguishes them from most other programming storage mechanisms and allows agents to
more realistically exhibit rational behaviour. Agents do not treat what they know as absolute
truth,but ratherasbeliefsthatreflectwhatthey havelearnedor havebeentold abouttheworld
to this moment. Like people, they will operate on the assumption that these beliefs are true
until more information comes to light, but if something new is uncovered that contradicts
them, they will update these beliefs accordingly.

9.2 Beliefset Definition
A beliefset definition uses a relational model to specify an agent's knowledge capacity. This
knowledge capacity is expressed as a relation that the agent can use to express beliefs with.
Each belief is represented by a specific set of values for each of the relation's fields. The
general format for a beliefset relation's definition takes one of the two forms shown below:

beliefset RelationName extends ClosedWorld
 {
 // Zero or more #key field declarations.
 // These describe the key attributes of each belief.
 // Zero of more #value field declarations
 // These describe the data attributes of each belief.
 }

beliefset RelationName extends OpenWorld
 {
 // Zero or more #key field declarations.
 // These describe the key attributes of each belief.
 // Zero of more #value field declarations
 // These describe the data attributes of each belief.
 }

Each component of this definition is explained in the following table:

BeliefsetRelations

Agent Manual
Release 5.3
10-June-05 173
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

Table 9-1: Components of a beliefset definition

For an agent to be able to use a beliefset, its agent definition filemust include a data
declaration. The data declaration describes the type of beliefset required by the agent and
specifies an external name (BeliefType) and an internal name (beliefName) for the beliefset.
The external name of the beliefset maps to a beliefset definition file of the same name.

Each of an agent's plans that makes use of a beliefset must contain a declaration specifying
read-onlyor read-writeaccessto thebeliefset.This is achievedby usingeithera#reads data,
a#modifies data or a#uses data plan declaration.

9.2.1 Closed World Relations
ClosedWorld relationsassumethattheagentis operatingin aworld whereeverytuplethatthe
relation can express is stored in the beliefset at all times as being either true or false. This
meansthatthereis noquerytheagentcanmakefor which it doesnothaveananswerbecause,
theoretically, everypossibletupleis alwaysrepresentedin thebeliefset.All thattheagentcan
change is whether it believes the tuple to be true or false.

Of course, most tuple fields have an almost infinite range of values, and hence in practical
terms the beliefset cannot store every possible tuple. Instead, only those tuples that the agent
believes to be true are stored. Any tuple that is not stored, therefore, is assumed to be false.

In aClosedWorld relation,addingatupleto thebeliefsetcausestheagentto believewhatwas
false to now be true. Similarly, removing a tuple causes the agent to believe what was true is
now false.

Syntax Term Description

beliefset JACK Agent Language keyword, identifies a beliefset
relation's declaration.

RelationName Used to identify the beliefset relation. Whenever an
agent wants to query or modify this relation's tuples, it
does so by using this name.

extends ClosedWorld Identifies the beliefset relation as aClosed World
relation. ClosedWorld relationsarerelationsthatstore
true tuples and assume any tuple not found isfalse.

extends OpenWorld Identifies the beliefset relation as anOpen World
relation. Open World relations are relations that store
true andfalse tuplesandassumeany tuplenot foundis
unknown.

Beliefset Relations

AgentManual
Release5.3

174 10-June-05
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

Closed World relations do not often occur in the real world, but are still useful in many
applications.For example,consideranagentthatplayschess.It needsto know thepositionsof
the pieces on the board. This information could be modelled using Closed World relations.

9.2.2 Open World Relations
Open World relations model knowledge and beliefs as most people in the real world
experiencethem:for any givensetof beliefs,only someof theanswersareknown to theagent.
Some things may be known to be true, others known to be false and still others unknown.

Unlike the Closed World example, therefore, Open World relations store both true and false
tuples. This models the situation where the agent does not know what something is, but does
know what it is not. For example, consider a detective in a classic murder mystery. This
detective may not know who the murderer is, but may believe that the murderer is definitely
notMs Scarlet(dueto someprior investigation).To reflectthisknowledge,theagentwill store
the statement, "Ms Scarlet is the murderer" in the beliefset as a false tuple – one that is
believed not to be the case.

Because Open World relations record both true and false tuples, any tuple that is not stored in
the beliefset is assumed to be unknown. That is, the agent does not know whether the tuple is
true or not.

Unlike Closed World relations, therefore, Open World relations effectively work with three
logic values:true, false andunknown.

9.3 Beliefset Members and Methods
Just like the other JACK Agent Language classes, beliefsets provide a number of base
members and methods that you can access. These members and methods are described in the
following subsections.

Beliefset Construction
JACK supports three types of beliefsets; private, agent and global. Only private beliefsets can
be populated by a beliefset constructorand manipulated by plans that use theadd() and
remove() methods. Beliefsets that are specified in an agent declaration as being agent or
globalareread-only, soafterthey arepopulatedby their constructorthey canonly bequeried.
As thedefaultconstructorcreatesanemptybeliefsetwhentheagentthatusesit is instantiated,
it only makes sense to use the default constructor for private beliefsets.

A beliefset can be populated with an initial set of tuples by either writing a constructor that
readstherequireddatafrom afile andexplicitly addingtherecordsto thebeliefsetor by using
JACOB Object Modelling.

BeliefsetRelations

Agent Manual
Release 5.3
10-June-05 175
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

The following example shows a beliefset constructor which reads data from a file and
explicitly adds tuples to the beliefset.

 import java.io.*;
 import java.text.*;

beliefset Foo extends ClosedWorld
 {

#key field int tag;
#value field double stamp;

#indexed query get(int t, logical double s);

 static MessageFormat format =
 new MessageFormat("(foo {0, number} {1, number))");

 Foo(String name)
 {
 try
 {
 BufferedReader in =
 new BufferedReader(new FileReader(name));

 for (String line; ((line = in.readLine()) != null);)
 {
 try
 {
 Object [] data = format.parse(line);

 int t = ((Number)data[0]).intValue();
 double s = ((Number)data[1]).doubleValue();
 add(t, s);
 }
 catch (ParseException e) { }
 }
 }
 catch (IOException e)
 {
 System.err.println("Problems loading file "+name+".");
 }
 catch (BeliefSetException e)
 {
 System.err.println("Loading of file "+name+" failed.");
 }
 }
 }

If multiple constructors have been defined, the JACK kernel determines which beliefset
constructor to use on the basis of the number and type of arguments supplied.

An alternativemethodis to initialise tupleobjectsusingJACOBObjectModelling.JACOBis
described in more detail in theJACOB Manual. Beliefsets have aread() method which takes
thenameof afile asits argument.Theread() methodpopulatesthebeliefsetaccordingto the
contents of the file which should contain data in JACOB format.

Beliefsetsalsohaveawrite(String filename) methodthatcanbeusedto write thebeliefset
contents in the appropriate JACOB form to the given filename.

Beliefset Relations

AgentManual
Release5.3

176 10-June-05
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

The following example illustrates how a beliefset can be initialised in this way.

Given the beliefset

 public beliefset BookData extends ClosedWorld {
#key field String title;
#key field String author;
#value field double price;

indexed query get(String t, String a, logical double p);
 }

and an agent containing the declaration:

#private data BookData books();

The beliefset could be populated using theread() method as illustrated below:

 books.read("book.dat");

The data filebook.dat could contain data similar to the following:

 <TupleTable
 :tuples (
 <BookData__Tuple
 :title "Reading is Fun"
 :author "Walter Fox"
 :price 23.75
 >
 <BookData__Tuple
 :title "Spelling is Fun"
 :author "Walter Fox"
 :price 23.75
 >
)
 >

whereTupleTable is a pre-defined object for the purpose of initialising beliefsets in this way.
Also note that in the above example BookData__Tuple has two underscores.

Note: An OpenWorld beliefsetwouldbeinitialisedby two consecutiveTupleTable objects;the
first for true beliefs and the second forfalse beliefs.

In addition, beliefset classes have a constructor which takes a filename as an argument and
uses the read method to populate the beliefset.

This means that by declaring the beliefset as follows:

#private data BookData books("book.dat");

the tuples are initialised with the data contained inbook.dat.

BeliefsetRelations

Agent Manual
Release 5.3
10-June-05 177
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

void postEvent(Event e)

BeliefSet modification callbacks use this method to post events when changes are made to a
beliefsetrelation.Therefore,whenregisteringany beliefsetcallbackswith abeliefsetrelation,
the relevant events using this method must be posted.

void add(parameters)

Thismethodis automaticallygeneratedfrom thebeliefsetdefinitionfile by theJACK compiler
– thekey andvaluefieldsof therelationbecomeargumentsof theadd() method,asillustrated
by the following example.

beliefset Foo extends ClosedWorld
 {

#key field int a;
#value field boolean b;

 ...
 }

This results in the following methods being generated in the classFoo:

add (int __v0, boolean __v1);

Thismethodis usedto addtuplesto Foo. It assumesthatthetupleto beaddedhasabeliefstate
of true.

add (int __v0, boolean __v1, BeliefState __d);

This method could also be used to add tuples toFoo. However, given thatFoo has Closed
World semantics,it is only valid to addtupleswith abeliefstateof true.Attemptsto addtuples
with a belief state of false or unknown will result in aBeliefSetException being thrown. If
Foo had been defined to have Open World semantics, it would have been valid to add tuples
with belief states of either true or false. Attempts to add tuples with anunknown belief state
into a beliefset with Open World semantics will cause aBeliefSetException to be thrown.

Theadd() methodsallow anagentto addtuplesto any of its privaterelations,but not to any of
its agent or global relations (as these relations cannot have their tuple set changed after
creation).

void remove(parameters)

Thismethodis automaticallygeneratedfrom thebeliefsetdefinitionfile by theJACK compiler
– the key and value fields of the relation become arguments of theremove() method as
illustrated by the following example.

beliefset Foo extends ClosedWorld
 {

#key field int a;
#value field boolean b;

 ...
 }

Beliefset Relations

AgentManual
Release5.3

178 10-June-05
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

This results in the following methods being generated in the classFoo;

remove (int __v0, boolean __v1);

This method is used to remove tuples fromFoo. It assumes that the tuple to be removed has a
belief state oftrue.

remove (int __v0, boolean __v1, BeliefState __d);

Thismethodcouldalsobeusedto removetuplesfrom Foo. GiventhatFoo hasbeendefinedto
have Closed World semantics, this form of the method should only be used to remove tuples
with abelief stateof true.Attemptingto remove tupleswith abelief stateof falseor unknown
from a beliefset with Closed World semantics will result in aBeliefSetException being
thrown.

If Foo had been defined to have Open World semantics, it would have been valid to remove
tuples with belief states of either true or false. Attempting to remove tuples with anunknown
belief state from a beliefset with Open World semantics will cause aBeliefSetException to
be thrown.

Theremove() methods allow an agent to remove tuples from any of its private relations, but
not from any of its agent or global relations (as these relations cannot have their tuple set
changed after creation).

public int nFacts()

This relation method returns the number of tuples stored in the relation at the time of calling.
This includes all tuple instances that physically appear in the relation; therefore, the meaning
and results are different depending on whether the relation follows an Open World or Closed
World logical model.

For ClosedWorld relations,this returnsacountof thenumberof Truetuplesthatarecurrently
stored for this relation. For Open World relations, this returns a count of both the number of
TrueandFalsetuplesthatarecurrentlystoredfor thisrelation.For example,if arelationstores
tuples to represent statements of, "The tie is blue", "The tie is not green" and "The tie is not
red", callingnFacts() on this relation will return 3: one tuple representing true information
and two tuples representing false information.

BeliefsetRelations

Agent Manual
Release 5.3
10-June-05 179
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

9.4 Beliefset Declarations
BeliefSet definitions can include the following declarations:

#key field FieldType field_name;
#value field FieldType field_name;
#indexed query methodName(parameters);
#linear query methodName(parameters);
#complex query methodName(parameters) <statements>
#function query return-type methodName(parameters) <statements>
#posts event EventType handle;
#propagates changes [EventType];

Each of these declarations are described in the following sections.

#key field FieldType field_name

This declaration is used to describe a beliefset relation's key fields. Key fields describe
attributes that uniquely identify the object or entity that the tuple is referring to. Each belief
that is expressed using a beliefset tuple is a belief aboutsomething. Hence, the agent needs
some way of knowing whether two tuples refer to thesame thing or not.

The relation's key fields are used for this purpose. They describe a uniquely identifying
characteristic of the thing that the tuple refers to.

For example, suppose an agent had a beliefset relation to represent bank accounts. When a
tupleis addedto thebeliefset,how doestheagentknow whichbankaccountit refersto?How
does it know whether this new information contradicts what it already believes about bank
accounts?

With bankaccountinformation,this is normallydoneusinganaccountnumber. By definition,
the account number uniquely identifies a given bank account. Therefore, if the beliefset
already contains a tuple stating that account 54321 contains $100, adding a (true) tuple that
says account 54321 contains $200 contradicts and replaces this belief. Similarly, adding a
tuple that says account 12378 has $200 has no effect on this tuple, because the agent knows
from its key that this tuple refers to a different bank account.

A #key field declaration takes the following form:

#key field FieldType field_name;

Each component of this declaration is described in the following table:

Beliefset Relations

AgentManual
Release5.3

180 10-June-05
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

Table 9-2: Components of a#key field declaration

In thelastexample,thebankaccountshadasinglekey field. This is notnecessarilythecasein
all situations.Sometimesarelationmayhavemultiplekey fields(for examplein arelationthat
describesgeographiclocation,wherethekey might requiretwo key fields:asite'slatitudeand
its longitude).Similarly, arelationmighthavenokey fields.Whenarelationhasnokey fields,
this means that there is only ever one object that the relation refers to (hence, it does not need
to be specified).

Note: When a beliefset relation has no key fields, this does not necessarily mean that the
beliefset will only ever hold one tuple. If the relation is Open World, the agent may store
multiple falsetuplesabouttheobject.For example,theremaybeonly onewinner. However, if
the agent does not know who the winner is but knows that it is not Mr Important, adding the
fact that it is not Ms Action will not contradict its existing belief.

The knockout of existing tuples due to key constraints occurs for true tuples only. As the
example above demonstrates, an Open World beliefset can have many negative tuples about
something without having them contradicting one another. In fact, if the beliefset contains a
positive tuple and the agent adds a negative tuple that doesn't contradict it, the two tuples will
coexist in thebeliefsetaswell ("Ms Action is theMinister for Sport"and"Ms Action is not the
Prime Minister", though redundant, do not contradict one another). The only way negative
tuples will knock out positive ones is if the two are directly contradictory (for example, "Ms
Action is the Minister for Sport" and "Ms Action is not the Minister for Sport").

Component Meaning

#key field Adds a key field to the beliefset relation. Values given
for thisfield in tupleswill beusedto identify theobject
that the tuple is referring to, and hence to determine
whether this tuple's data clashes with an existing tuple
and needs to replace it.

FieldType The field's data type. A beliefset relation's key fields
are constrained to be of typeString, any scalar type

or any type that implements
aos.jak.beliefset.Immutable. If the type is a user
defined type, the user may need to override the
equals() andhashCode() methodsof its parentclass–
refer to thejava.util.Hashtable documentation.

field_name Used to identify the key field.

Beliefset Relations

Agent Manual
Release 5.3
10-June-05 181
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

#value field FieldType field_name

This declaration is used to specify a relation's data fields. Unlike key fields, data fields do not
identify the object that the tuple is describing. Instead, they represent information about this
objectthattheagentneedsto know. To acertainextent,thevaluefieldsarethereasonwhy the
agenthastherelationin thefirst place– becauseit wantsto know this informationaboutsome
kind of object.

A #value field declaration takes the following form:

#value field FieldType field_name;

Each component of this declaration is described in the following table:

Table 9-3: Components of a#value field declaration

For example, a bank account's key field is its account number. However, the account number
does not provide any information about the account that an agent will want to record. Its
purpose is purely to distinguish one account from another. The sorts of things that the agent
mightwantto know abouttheaccountareits balance,owner'sname,creditlimit, etc.Eachof
there attributes would be described using value fields.

#indexed query methodName(parameters)

Once a beliefset relation has been defined and tuples have been added to the beliefset, the
agentwill needto accessthisdata.It doessoby performingaqueryon therelation.Thereare
two kinds of query that an agent can perform on a relation:

• anindexed query (defined by the#indexed query declaration); or

• a linear query (defined by the#linear query declaration).

Both these queries produce the same results (search for the tuple(s) concerned). The only
difference is in implementation. Indexed queries maintain a hash index of tuples, and can
usually locate them more quickly, whereas linear queries do not maintain an index; thus the
only way that matching tuples can be found is through a linear search.

Component Meaning

#value field Adds a value field to the beliefset relation. Data
assigned to these fields is used to represent attributes
about the object of which the agent needs to be aware.

FieldType The field's data type. A beliefset relation's value fields
can be of any type.

fieldName Used to identify the value field.

Beliefset Relations

AgentManual
Release5.3

182 10-June-05
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

Indexed queries occupy slightly more space (which is required for the index) and are slightly
slower to update tuples (since the index must be updated as well), but are much quicker to
query in most circumstances. Therefore, unless memory and update speed is at an absolute
premium, you should use indexed queries for all but the smallest of relations (i.e. those that
will hold at least 10 tuples in the beliefset).

When a query is performed and most of the fields are unified with unbound logical variables,
the agent may not have enough information to use the index effectively. In this case, the
indexed query would be just as slow as the linear one.

An indexed query's definition takes the following form:

#indexed query methodName(parameters);

Each component of this definition is described in the following table:

Table 9-4: Components of an#indexed query definition

Only theprototypeneedsto bedeclaredfor eachindexedquery. Theactualqueryclasswill be
a derived class ofBeliefSetCursor generated by the JACK compiler. The indexing is done
using only the non-logical parameters.

For example, suppose a beliefset relation is defined as shown below:

beliefset Politician extends OpenWorld
 {

#key field String name;
#value field String party;
#value field String portfolio;
#indexed query

 getPortfolio (String n,String p,logical String port);
 }

This beliefset relation has an indexed query, which takesname andparty as input parameters,
and if successful will return the matching tuple'sportfolio.

Component Meaning

#indexed query Defines an indexed query, namely one that builds and
maintains an internal hash table index for query
optimisation.

methodName The name of the query.

(parameters) The list of parameters used by the query. These
parameters are matched in order with the relation's
tuples. Parameters that are defined asnormal members
areinput parameters. Parameters that are defined as
logical members areoutput parameters.

BeliefsetRelations

Agent Manual
Release 5.3
10-June-05 183
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

A beliefsetrelationmayhavemany querymethods,eachspecifyingdifferentinputandoutput
parameters.

Beliefset queries take a number of parameters which are either data values (which can either
be literal, normal members or logical members that have already been bound to a specific
value)or unboundlogicalmembers.Thequeryattemptsto matchthegivenparametersagainst
the relation's tuples, using the unbound logical members as 'wild cards'. If a match can be
found, the logical members are bound to the tuple's values.

It is possibleto overloadthequerymethodsby providing differentparameterlists.Whensuch
polymorphic query methods are defined, the compiler will select the definition that best
matches the parameters provided.

For example, consider the following beliefset relation definition:

beliefset Job extends OpenWorld
 {

#key field String name;
#value field String employment;
#indexed query jobQuery(String n, String e);
#indexed query jobQuery(String n, logical String e);
#indexed query jobQuery(logical String n, String e);
#indexed query jobQuery(logical String n, logical String e);

 }

The same query name has been defined with all different combinations of input and output
parameters. This means that any combination ofString and logical variables can be queried.

#linear query methodName(parameters)

The#linear query method is identical to the#indexed query method in all respects, other
than the way queries search the beliefset for matching tuples. The#indexed query builds an
index that allows for search speed optimisation while the#linear query is more efficient in
terms of memory usage.

Each component of a#linear query is described in the following table:

Beliefset Relations

AgentManual
Release5.3

184 10-June-05
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

Table 9-5: Components of a#linear query definition

In all other respects, linear queries are identical to indexed queries in terms of how they are
defined and how they are used.

#complex query name(parameters) <body>

Complex queriesprovideawayto combinesimplequeries(asdescribedabove) into oneentity
that can be used in the same way as a simple query. Suppose that there is a beliefset which
contains onlyparent(parent, child) relations and aparent(parent, child) query has
already been defined. Agrandparent() query could be written as follows, avoiding the need
to add specificgrandparent(grandparent, grandchild) relations to the beliefset.

beliefset Ancestors extends OpenWorld
 {

#key field String parent ;
#key field String child ;

#indexed query parent(String p , logical String c);
#indexed query parent(logical String p , logical String c);

#complex query
 grandparent(logical String a, logical String c)
 {

logical String b;

 return parent(a, b) && parent(b, c);
 }
 }

Note: the return value expression of acomplex query incurs an implicit.next() in the same
way as a condition expression in a#reasoning method

Component Meaning

#linear query Defines a linear query – namely one that the agent
executes by attempting to unify with each tuple in the
beliefset in turn.

methodName The name of the query.

(parameters) This list of parameters must be passed in a query.
These parameters are matched in order with the
relation's tuples.

• Parametersthataredefinedasnormal members are
input parameters.

• Parameters that are defined aslogical members are
output parameters.

BeliefsetRelations

Agent Manual
Release 5.3
10-June-05 185
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

A #complex query declaration takes the following form:

#complex query name(parameters) <statements>

Each component of this declaration is described in the following table:

Table 9-6: Components of a#complex query definition

#function query ReturnType name(params) <body>

In JACK, the code for indexed and linear queries is generated automatically – the user only
provides the function prototypes. With a function query the user provides the entire function
definition so queries can be constructed which use arbitrary Java code. A function query can
contain logical member definitions, so it can be used to query a beliefset from JACK entities
thatdonotsupportlogicalmembers.In thefollowing example,thefunctionqueries#function
query String parent(String b) and#function query int numChildren(String p)
could be used from within an agent method.

Component Meaning

#complex query Declaresthatthefollowing methodis acomplex query.

name(parameters) name is thenameof thequery. Parameterscanbeof any
type.

<statements> The code which constitutes the query. The method
body can contain arbitrary Java code, but the method
must return aCursor.

Beliefset Relations

AgentManual
Release5.3

186 10-June-05
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

beliefset Ancestorship extends OpenWorld
 {

#key field String parent ;
#key field String child ;

#indexed query parent(logical String p , String c);
#indexed query parent(logical String p , logical String c);

#function query String parent(String b)
 {

logical String a;

 parent(a,b).next();
 return a.as_string();
 }

#function query int numChildren(logical String p)
 {

logical String child ;
 int i = 0;

Cursor c = parent(p,child);
 while(c.next())
 i++;
 return i;
 }

#function query int numChildren(String p)
 {

logical String lp;
 lp.unify(p);
 return numChildren(lp);
 }
 }

Note:

1. There is a requirement for an explicit .next() in the function queries. Implicit .next()
only occurs inside reasoning methods and in the return statement of a complex query.

2. For the purposes of method overloading, it is important to note that the JACK compiler
converts all logical variables into variables of type aos.jack.jak.logic.Variable. So in
the example above, no ambiguity exists between the two numChildren() queries.

A #function query declaration takes the following form:

#function query ReturnType name(parameters) <statements>

Each component of this declaration is described in the following table:

BeliefsetRelations

Agent Manual
Release 5.3
10-June-05 187
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

Table 9-7: Components of a#function query definition

#posts event EventType handle

Beliefset relations are able to post events when changes are made to their tuples. This is done
by postinganeventwithin abeliefset callback. Beliefsetcallbacksaredescribedin moredetail
below, but essentially they are methods that will be called when a particular beliefset change
occurs. This declaration specifies the event types that may be posted from within any of the
callbacks defined for this beliefset type.

A #posts event declaration takes the following form:

#posts event EventType handle;

Each component of this declaration is described in the following table:

Table 9-8: Components of a#posts event declaration

Component Meaning

#function query Declares that the following method is a function query.

ReturnType Unlike a#complex query, a#function query can
return any type.

name(parameters) name is thenameof thequery. Parameterscanbeof any
type.

<statements> The code which constitutes the query. The method
body can contain arbitrary Java code.

Component Meaning

#posts event Identifies that the beliefset relation can post an event.
Typically, the details of when this event is posted will
be specified in a beliefset callback.

EventType The type of event that this beliefset relation can post
via callbacks.

handle A handle on this event, so that the event's posting
methods can be accessed.

Beliefset Relations

AgentManual
Release5.3

188 10-June-05
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

#propagates changes [EventType]
#propagates changes marks that a beliefset may be a source beliefset in a team belief
connection,andit providesanimplementationof theconnectiondynamics,sothatchangesto
the beliefset are propagated correctly. Belief propagation is only available when using JACK
Teams. Refer to theTeams Manual for more details.

This propagation includes filtering when the#propagates changes declaration is used with
an optional event type. This is discussed in more detail in theTeams Manual.

9.5 Beliefset Callbac ks
A beliefset relation will only post an event if the specific event-posting callback has been
written.Hence,abeliefsetrelationwill only needto include#posts event declarationsif such
callbacks are going to be written. These callbacks are defined in the beliefset super-classes
OpenWorld andClosedWorld. Their prototypes are listed below:

• public void addfact(Tuple t, BeliefState is);

This callback is executed whenever an attempt is made toadd aTuple t with theis
BeliefState into the agent's beliefset, regardless of whether the tuple is already present.

TheBeliefState can either beCursor.TRUE if the tuple is meant to be true, or
Cursor.FALSE if the tuple is meant to be false (this only applies toOpenWorld relations).

• public void newfact(Tuple t, BeliefState is, BeliefState was);

This callback is executed whenever aTuple t with theBeliefState is is added to the
beliefset.

Thewas BeliefState is bound to theBeliefState that the tuple had in the beliefset
previously.

– If the tuple was not present in any form and the beliefset relation isClosedWorld, was
will be Cursor.FALSE.

– If thetuplewasnotpresentin any form andthebeliefsetrelationis OpenWorld, was will
beCursor.UNKNOWN.

• public void delfact(Tuple t, BeliefState was);

This callback is executed whenever aTuple t with BeliefState was is removed from the
agent's beliefset.

Thewas BeliefState can either beCursor.TRUE if the tuple is meant to be true, or
Cursor.FALSE if the tuple is meant to be false (this only applies toOpenWorld relations).

Beliefset Relations

Agent Manual
Release 5.3
10-June-05 189
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

• public void endfact (Tuple t, BeliefState was, BeliefState is);

This callback is executed whenever aTuple t with BeliefState was is removed from the
agent'sbeliefset.Thisremoval cantakeplaceeitherthroughanexplicit remove, theadding
of its negation or through key constraint knockouts.

Theis BeliefState is bound to theBeliefState that the tuple has after being removed.
This may beCursor.FALSE if the tuple was negated or the beliefset relation is
ClosedWorld, or it may beCursor.UNKNOWN if the tuple is removed completely and the
relation isOpenWorld.

• public void modfact (Tuple t, BeliefState is, Tuple knocked, Tuple negated);

This callback is executed just before aTuple t gets added to the relation's beliefset and
changes itsBeliefState to is. If the change knocks out another tuple due to key
constraints, this tuple is assigned to the knocked parameter, and if the change knocks out
another tuple due to inconsistency (negation), this tuple is assigned to the negated
parameter.

• public void moddb();

This is a catch-all callback. It is called whenever the state of the beliefset changes due to
anadd() or remove() method call.

Note: This is called after the change has been made to the beliefset.

Whenany of thesecallbacksareincludedin abeliefsetrelation'sdefinition,it is imperative to
declare any events that the callback posts in#posts event declarations.

Beliefset Relations

AgentManual
Release5.3

190 10-June-05
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

For example, consider the following beliefset definition:

beliefset Politician extends OpenWorld
 {

#key field String name;
#value field String party;
#value field String portfolio;

#indexed query
 getPortfolio(String n,String p,logical String port);

#indexed query
 getWho(logical String n,String p,String port);

#posts event electedEvent electref;

 public void newfact(Tuple t,BeliefState is,BeliefState was)
 {
 // Note that Politician__Tuple contains two underscores
 Politician__Tuple pt = (Politician__Tuple) t;

 if (pt.portfolio.equals("Prime Minister"))
 {
 // code to post the elected event. This code will
 // be executed whenever a new prime minister is
 // elected. For example:
 postEvent(electref.newElection(pt.name, pt.party,
 pt.portfolio));
 ...
 }
 }
 }

In this example, the beliefset relation includes a callback that should be executed whenever a
new prime minister is elected. When a new tuple is added to the beliefset whoseportfolio

field is 'Prime Minister' thenewfact() callback is executed. Thename member will be bound
to thenew primeminister'snameandtheparty memberto thenew primeminister'sparty. It is
up to the callback's author to implement how the event should be posted when these
circumstancesarise.Becauseaneventof typeelectedEvent will beposted,the#posts event

electedEvent electref declaration is required. Thenewfact() callback method can use this
event'selectref handle to access the event's posting methods.

9.6 Manipulating Beliefset Relations
ThebeliefsetOpenWorld andClosedWorld classesprovide two basemethodsfor manipulating
the tuples in an agent's beliefset. These areadd(), which is for adding information to the
beliefset, andremove(), which is for removing information from the beliefset. Each of these
methods are provided for both Closed World and Open World relations.

BeliefsetcursorsalsoprovideabasemethodcalledremoveAll() thatcanbeusedto removea
set of tuples from an agent's beliefset relation. When called, this method removes all tuples
from the relation that unify with the beliefset cursor's query expression.

BeliefsetRelations

Agent Manual
Release 5.3
10-June-05 191
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

For example, suppose an agent uses a private relation calledpolitician() (of type
Politician). Suppose also that the current set of tuples for this relation are as shown in the
following table:

Table 9-9: Tuples in the Politician beliefset

If the agent executes the following code, this will remove the first two tuples from the agent's
privatepolitician() relation.

logical String name;
 String party;
 String portfolio;

 party.unify("Sensible Party");
 politician.getWho(name, party, portfolio).removeAll();

That is, it will remove all tuples that unify with the parameters provided to the relation'sget
who indexed query.

One simple way to clear a private relation for an agent is to use theremoveAll() method on a
beliefset cursor expression with unbound logical members for all query parameters. For
example, to completely clear the above agent's politician relation of tuples, regardless of how
many it has, an agent could execute the following reasoning method code:

logical String name;
logical String party;
logical String portfolio;

 politician.who(name, party, portfolio).removeAll();

Since every tuple in the relation will unify with this query expression, every tuple will be
removed.

9.7 Beliefset Iteration
A JACK beliefsetis neitheranarraynora list of records.It is structuredin away thatpermits
efficient query-based information retrieval, and this is how it is best used. To access data
linearly, it may be more appropriate to use a Java data structure rather than a JACK beliefset.
Nevertheless, it is sometimes useful to be able to retrieve all the tuples from a JACK beliefset.

Name Party Portfolio

Mr Important Sensible Party Prime Minister

Ms Action Sensible Party Minister for Sport

Mr Knockout Silly Party Minister for Sport

Beliefset Relations

AgentManual
Release5.3

192 10-June-05
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

A JACK beliefset query returns aCursor and it is possible to iterate over all the matching
tuples using this cursor. For example, suppose we have a plan with:

 //code that iterates through the beliefset

#reads data BeliefsetType bel;

logical something x, y, z;

 for (Cursor c = bel.get(x,y,z) ; c.next() ;)
 {
 // process x,y,z with new bindings each time
 }

The logic machinery knows of cursors as objects that can provide bindings for logical
variables and that they carry information, so that when thenext() method is called on the
cursor, it will renew thebindings,if possible.Thefirst call to next() providesthefirst binding,
thesecondcall providesthesecondbinding,andsoon,until all alternativebindingshavebeen
provided,atwhichpoint thenext() resetsbindingsto theoriginal inputstateandreturnsfalse.

However, note that if the subsequent processing changes the beliefset, or the beliefset is
changed by some other task, the next c.next() call will result in aBeliefSetException.

Note that the code below doesnot iterate through the beliefset (as one may initially expect),
but insteadrepeatedlyperformsthesameprocessingwhile acertainbeliefsetstateholds.This
is because there is no call tonext() on the cursor returned bybel.get() to renew the
bindings:

 //code that does NOT iterate through the beliefset

logical something x, y, z;

 while (bel.get(x,y,z))
 {
 // process x,y,z
 }

9.8 Extending the OpenWorld or ClosedWorld classes
If you wish to create your own extension of theOpenWorld or ClosedWorld classes they must
be marked asabstract.

It will alsobenecessaryto createaCursor classfor yourextendedclass.An exampleis shown
below:

 public abstract class MyOpenWorld
 extends aos.jack.jak.beliefset.OpenWorld {

 // Any constructors or methods
 // you wish to override go here.
 }

 public abstract class MyOpenWorldCursor
 extends aos.jack.jak.beliefset.OpenWorldCursor {

BeliefsetRelations

Agent Manual
Release 5.3
10-June-05 193
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

 // You need this class whether or not
 // you plan to override anything in it.
 }

The JACK compiler will define the required abstract methods for each specific type of
beliefset that you define in your JACK application.

Beliefset Relations

AgentManual
Release5.3

194 10-June-05
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

Views

Agent Manual
Release 5.3
10-June-05 195
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

10 Views
10.1 Intr oduction
Theview concept is central to JACK's data modelling capability, providing the means to
integrateawiderangeof datasourcessuchasJACK beliefsets,Javadatastructuresandlegacy
systems into the JACK framework. In performing this role, theview type level construct is
used in conjunction with JACK query methods (in particular the#complex query and the
#function query introducedin theBeliefset Relations chapter),andJACK cursors,whichare
described in thePlans chapter.

10.2 View Definition
A view is definedasa typelevel constructusingthekeywordview. Therearenorequirements
on base classes or interfaces for the view. (Note that this is different from all other type level
constructs in JACK.)

A view definition takes the following form:

 public view ViewType
 {
 // Declarations and Definitions
 }

Note that a view definition can extend any class and implement any interface.

10.3 View Declarations
A view can contain the following declarations:

#uses data Type ref
#complex query methodName(parameters) <statements>
#function query ReturnType methodName(parameters) <statements>

Each of these declarations is described in the following sections.

#uses data Type ref

This is a declaration that this view requires data of typeType. Type can refer to a JACK
beliefset or to an arbitrary data type. The reference nameref is used to refer to the data
instance within this view. An actual view is bound to an actual data instance at construction
time.

Views

AgentManual
Release5.3

196 10-June-05
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

#complex query methodName(parameters)<statements>

This enables a complex query calledmethodName to be defined. Complex queries were
introduced in theBeliefset Relations chapter. However, note that when used in aview (as
opposedto abeliefset), thequerycanbedefinedto spanmorethanoneJACK beliefset.Note
thatmethodName must return aCursor. The parameters for the query can be of any type.

#function query ReturnType methodName(params)<statements>

 This enables a function query calledmethodName to be defined. Function queries were
introduced in theBeliefset Relations chapter. They enable queries which use arbitrary Java
code to be constructed. Unlike a complex query, a function query can return any type. The
parameters for the query can be of any type.

#posts event EventType [reference]

 This statement declares an event that an agent can post from within a view using the
postEvent method.

10.4 Usage
A view doesnot have automaticadd or remove methods. Like beliefsets, views must be
declared in the agents and plans that use them. The declaration within the agent takes the
following form:

#private data DataType ref(arg_list); or
#agent data DataType ref(arg_list); or
#global data DataType ref(arg_list);

whereDataType is the type of data involved,ref is the reference used within the agent and
arg_list is the list of arguments that must be passed to the constructor.

The declaration within a plan takes the following form:

#reads data DataType ref; or
#modifies data DataType ref;

whereDataType is the type of data involved andref is the reference to the data.

Viewscanbeusedin thesamewayasJACK beliefsets(bearingin mind thedifferencesnoted
above) and conversely, JACK beliefsets may include#complex query and#function query
statements.

The following examples illustrate how theview construct can be used.

Views

Agent Manual
Release 5.3
10-June-05 197
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

Using a view to form a query spanning multiple beliefsets
This example illustrates how you can use aview and a#complex query to formulate a query
that spans two JACK beliefsets.

In this example, you have two beliefsets, one which records where people live and one which
records what credit cards people have. Aview could then be generated to obtain information
about credit cards used by people in Melbourne. The associated definitions could look as
follows:

 //In a file Addresses.bel

 public beliefset Addresses extends OpenWorld
 {

#key field PersonID who;
#value field Address where;

#indexed query get(PersonID p , logical Address a);
#indexed query get(logicall PersonID p , Address a);

 }

 //In a file CreditCards.bel

 public beliefset CreditCards extends OpenWorld
 {

#key field PersonID who;
#key field CreditCard what;

#indexed query get
 (logical PersonID p, logical CreditCard c);
 }

 //In a file MelbourneCards.view

 public view MelbourneCards
 {

#uses data Addresses bel_where;
#uses data CreditCards bel_card;

#complex query get(logical CreditCard card)
 {

logical PersonID who;

 return bel_where.get(who , new Address("Melbourne")) &&
 bel_card.get(who , card);
 }
 }

Theview, MelbourneCards, is now availablefor uselikeaJACK beliefset.It is aclassthathas
a constructor taking two arguments, which correspond to the data it uses in the order they are
declared. However, the view does not have any automaticadd or remove methods.

Views

AgentManual
Release5.3

198 10-June-05
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

It could be used in the following way:

 //In a file CleverAgent.agent

agent CleverAgent extends Agent
 {
 ...

#private data Addresses where();
#private data CreditCards cards();
#private data MelbourneCards

 cards_in_melbourne(where , cards);

 ...
 }

 //In a file InterestingPlan.plan
plan InterestingPlan extends Plan

 {
 ...

#reads data MelbourneCards cards_in_melbourne;

 ...

body()
 {

logical CreditCard card ;

 // if nothing in beliefset, wait for it... (just an example)
@wait_for(cards_in_melbourne.get(card) && ...);

 }
}

Using a vie w to integrate an e xternal pr ocess into J ACK
Thefollowing exampleillustrateshow aview canbeusedto integrateanexternalprocessinto
JACK. In thisexample,thereis anassemblycell which is controlledby aprogramcalledBBS.
Eachmachinein thecell hasadesignatedinputaddressandoutputaddress.Theinputaddress
provides access to the machine's status word; the output address provides access to the
machine's control word.BBS accepts requests on a UDP socket to either read the contents of
the input address or to set the contents of the output address.

Control of a machine by an external agent is achieved as follows:

• The agent waits until theidle bit in the status word maintained byBBS is true. The agent
then sets theprogram bits in the control word to the desired values and thego bit in the
control word to true to start the desired operation.

• When the operation starts, the actual software controlling the machine sets theidle bit in
the status word maintained byBBS to false and then thego bit in the control word to false.
When the operation is complete, it sets theidle bit to true.

Views

Agent Manual
Release 5.3
10-June-05 199
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

If theinterfaceis wrappedin aview, it is possibleto encapsulatethelow level socket interface
into a higher level functional interface consisting of the following queries:

outputIdle(boolean value) – this sets/clears the idle bit.

inputIdle(int rate,boolean value) – this polls the idle bit every rate milliseconds.

A plan which implements the control loop specified above can then be implemented as
follows:

plan DefaultProgramRun extends Plan
 {

#handles event RunProgram ev;
 static boolean relevant(RunProgram ev)
 {
 return ev.program >=0 && ev.program <= 15;
 }

#uses data BBSConnection bbs;

body()
 {
 // uses bits 4,3,2,1 for program number
 bbs.output = ev.program << 1 ;

 // Tell the desired program number + go ahead bit
@wait_for(bbs.outputIdle(true));

 // Wait for the operation to start -- hopefully it hasn't
 // completed already (race condition)

@wait_for(bbs.inputIdle(100, false));

 // Turn the go bit off (the PLC should do this ...)
@wait_for(bbs.outputIdle(false));

 // Wait for the operation to complete
@wait_for(bbs.inputIdle(500, true));

 }
 }

The implementation for the view (BBSConnection) is given below. Note the use of
RepeatAction andAgain cursors to implement polling. Polling is a strategy which should be
avoidedwheneverpossibleasit canbeextremelywastefulof CPUtime.In thissituation,there
was no alternative, but inspection of the code reveals that:

• the read action is performed on a separate thread.

• the action is performedonly every rate milliseconds. In between times the read action
thread is in awaiting state.

Consequently, the impact of polling on the rest of the system is minimised.

Views

AgentManual
Release5.3

200 10-June-05
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

 import aos.jack.util.cursor.Action;
 import aos.jack.util.cursor.RepeatAction;
 import aos.jack.util.cursor.Again;
 import aos.util.ThreadPool;
 import java.net.DatagramSocket;
 import java.net.DatagramPacket;
 import java.net.InetAddress;
 import java.io.IOException;
 import java.net.UnknownHostException;

 public view BBSConnection
 {
 static String bbs_host = null;
 static InetAddress bbs_ip;
 static int bbs_port;
 static ThreadPool thread_pool = new ThreadPool(1);
 static DatagramSocket socket;

 public static void setBBS(String host,int port)
 throws UnknownHostException
 {
 if (bbs_host == null)
 {
 bbs_host = host;
 bbs_ip = InetAddress.getByName(bbs_host);
 bbs_port = port;
 try
 {
 socket = new DatagramSocket();
 }
 catch (Exception e)
 {
 e.printStackTrace();
 System.exit(1);
 }
 }
 }

 int input_address = -1;
 int output_address = -1;

 public int input = 0;
 public int output = 0;

 public void setAddresses(int in,int out)
 {
 if (input_address == -1)
 {
 input_address = in;
 output_address = out;
 }
 }

 public void write(int value) throws IOException
 {
 sendBBS("IRW, " + output_address + ", " + value);
 }

Views

Agent Manual
Release 5.3
10-June-05 201
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

 private void sendBBS(String s) throws IOException
 {
 byte [] d = s.getBytes();
 DatagramPacket p =
 new DatagramPacket(d, d.length, bbs_ip, bbs_port);
 socket.send(p);
 }

 private final static int SIZE = 4096;

 public int read() throws IOException
 {
 try
 {
 sendBBS("IRR, " + input_address);
 byte[] b = new byte[SIZE];
 DatagramPacket p = new DatagramPacket(b, SIZE);
 socket.receive(p);
 String s = new String(b, 0, p.getLength());
 int ix = s.lastIndexOf(' ');
 return Integer.parseInt(s.substring(ix + 1));
 }
 catch (NumberFormatException e)
 {
 e.printStackTrace();
 return 0;
 }
 }

 public Action writeAction(int value)
 {
 return new Write(value);
 }

 public Action readAction()
 {
 return new Read();
 }

 class Write extends Action
 {
 int value;

 Write(int v)
 {
 value = v;
 }

 protected void action()
 {
 try
 {
 write(value);
 }
 catch (IOException e)
 {
 // Discarding this as too unlikely to happen.
 }
 }
 }

Views

AgentManual
Release5.3

202 10-June-05
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

 class Read extends RepeatAction
 {
 protected void action()
 {
 try
 {
 input = read();
 }
 catch (IOException e)
 {
 // Discarding this as too unlikely to happen.
 }
 }
 }

 // inputIdle(long,boolean) is a support query to repeatedly
 // review the input idle bit (bit 0) for a set or reset
 // value.
 //

#complex query inputIdle(long rate,boolean set)
 {
 return new Again(rate) && readAction() && isSet(set);
 }

 boolean isSet(boolean set)
 {
 int bit = input & 1;
 return (bit != 0)? set : !set ;
 }

 // outputIdle(boolean) is a support query to set or reset the
 // output idle bit (bit 0).
 //

#complex query outputIdle(boolean set)
 {
 output = (output & -2) + (set? 1 : 0);
 return writeAction(output);
 }
 }

Appendix A: JackBuild

Agent Manual
Release 5.3
10-June-05 203
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

Appendix A: JackBuild
Description
TheJackBuild utility is aJavaprogramthatinvokestheJACK compilerandtheJavacompiler
appropriately so as to rebuild outdated files after editing. The utility accepts arguments from
thecommandline, from which it preparescommandlinesfor first runningtheJACK compiler
(if needed for any JACK files), and thereafter the Java compiler, as needed for any Java files.
The command line is as follows:

 java aos.main.JackBuild flags sources

Theflags areusedto defineoperatingparametersfor theJackBuild utility, while thesources
includes files and directories to be visited by the compiler. If a directory is mentioned, the
utility will operate on all files it recognises in that directory.

Table A-1: File name extensions

Files are recognised by their file name extensions according to the table above, which also
shows the file dependencies supported by the utility. In addition, the compiler also recognises
a.jack extension. This can be used if it is desirable to keep all JACK source files in*.jack
rather than*.agent, *.plan etc.

The flags for theJackBuild utility are as follows:

Extension Contents Produces Produced By

x.class Java class file -

x.java Java source file x.class Java compiler

x.agent JACK agent source file x.java JACK compiler

x.plan JACK plan source file x.java JACK compiler

x.event JACK event source file x.java JACK compiler

x.bel JACK beliefset source file x.java JACK compiler

x.cap JACK capability source file x.java JACK compiler

x.view JACK view source file x.java JACK compiler

x.api JACOB DDL file x.java JACOB compiler

Appendix A: JackBuild
Description

AgentManual
Release5.3

204 10-June-05
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

Table A-2: Flags for theJackBuild utility

Note that the-r flag tells the utility to operate recursively, which means that it will traverse
any directoriesmentionedonthecommandline exhaustively andincludeall recognisablefiles
in the operation. By default, files and directories beginning with a dot are not looked at or
traversed. The-a flag can be used to override this.

Dependent files are generated by the respective compilers, and will end up in the same
directories as their respective sources.

Flag Meaning

-h, -help Provide a list of options and exit immediately.

-hj Provide a complete list of compiler options and exit immediately.

-v, -version Provides details about the version of JACK.

-a Visits all files/directories (including those that start with.)

-n Checks only; no compiled files will be generated.

-r Recursively enters subdirectories looking for code to compile.

-d <dir> Specifies where to put generated.java and.class files.

-dc <dir> Specifies where to put generated.class files. This overrides the -d
option for the class files.

-c, -clean Clean up by removing generated files.

-q Queries only; outputs a list of the source files detected.

-x Recognises JACOB files (extension.api andInit__*.java).

-E[xxx.prj] Creates Jack Development Environment files from a set of JACK
source files. Optionally creates a project file (xxx.prj) if a name is
specified.

-P <pkg> Sets the top level package name which will be stripped from the -E
generated JACK Development Environment files.

-f Forces compilation of as many files as possible, even if errors are
found in sources.

-cp <CLASSPATH>, Set theCLASSPATH.

-classpath

<CLASSPATH>

-wd <dir> Searches the given directory, rather than the current directory.

-i Tells thecompilerto reporterrorsrelativeto theinternallygenerated
code fragments rather than the original JACK code.

-Dxxx Property is set and passed on to each JACK compilation command.

Appendix A: JackBuild
Description

Agent Manual
Release 5.3
10-June-05 205
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

If no sources are mentioned on the command line, the utility will operate on all recognisable
files in its current working directory.

If a source is missing, or rather is neither a file nor directory, themake utility will abort and
leave the file system unaffected.

If the -n flag is given, the utility will merely analyse and report on what is outdated without
affecting the file system.

TheJackBuild utility operates as follows:

1. Go through all files concerned and remove dependent files.

2. If -x was given, invoke JACOB compiler on updated JACOB DDL files (*.api).

3. Go through all files (and directories) that were listed on the command line and collect
updatedJACK andjavafiles.If nonewerelistedonthecommandline thecurrentdirectory
is assumed. This is a recursive process if-r was given.

4. Invoke the JACK compiler on all updated files.

5. Collectall changedJava(*.java) files(in therelevantdirectories).Mostof thesewill have
been created by the JACK compiler.

6. Invokejavac on all updated Java files.

The-DJAVACARGS=xxx argument can be used to add extra arguments to any javac command
invoked by the JACK compiler.

The-DJAVAC=xxx argument can be used to force the JACK compiler to invoke a different
javac command, for examplejikes.

The-DJACOBARGS=xxx argument can be used to add extra arguments to any JacobBuild

command invoked by the JACK compiler.

Appendix A: JackBuild
Description

AgentManual
Release5.3

206 10-June-05
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

Appendix B: Utility Classes

Agent Manual
Release 5.3
10-June-05 207
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

Appendix B: Utility Classes
Introduction
 The JACK distribution includes a number of utility packages. Most of the classes in these
packagesareintendedfor internalusebut someareof moregeneralapplicability. Thepurpose
of this appendix is to document briefly those utility classes which may be of use to JACK
developers. The utility packages that are included in the JACK distribution are summarised
below:

Table B-1: Utility packages included in the JACK distribution

Note that in the descriptions that follow, it is assumed the user is familiar with particular Java
classes and the basic concepts of synchronisation in a multi-threaded environment.

aos.util.PathEntry
PathEntry provides a capability to open files and to load objects that are in one'sCLASSPATH.
To open a file, use:

static InputStream open(String filename)

To load an object, use either:

Package Contents Comments

aos.util Convenience classes. Most are intended for
internal use;PathEntry,
Properties, Redirector
andThreadPool are
described below.

aos.util.timer Timer classes. Described in the manual in
theTime Cursors section.

aos.jack.util Convenience classes. Intendedfor JACK internal
use.

aos.jack.util.cursor Cursor classes. Described in the manual in
theCursors section.

aos.jack.util.thread Synchronisation
classes.

Described below.

aos.jack.jak.util Convenience classes. Intendedfor JACK internal
use.

Appendix B: Utility Classes
Introduction

AgentManual
Release5.3

208 10-June-05
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

static byte[] loadObject(String filename)

or

static byte[] loadObject(InputStream is)

as appropriate.

aos.util.Properties
 TheProperties class provides an alternative interface to the system properties list. In
particular, the loading of user defined properties is simplified and properties are returned as
their intendedtyperatherthanasaString (whichmustthenbeconvertedto thedesiredtype).
The loading of user defined properties is achieved with the following method:

synchronized static final void readProperties(String list)

list can be either a UNIX filename or a URL.

The following methods are available for accessing properties:

static final int getIntProperty(String propertyName,int defaultValue)

static final long getLongProperty(String propertyName,long defaultValue)

static final double getDoubleProperty(String propertyName,double defaultValue)

static final boolean getBooleanProperty(String propertyName,boolean

defaultValue)

static final String getStringProperty(String propertyName,String defaultValue)

static final int getBitMapProperty(String propertyName,int defaultValue,String[]

bitNames)

The behaviour of the above methods is self-explanatory, with the exception of
getBitMapProperty(). The value stored with the property can either be an integer or a
sequence of bit position names separated by colons. If the name is preceded by !, the value of
that position is set to 0, otherwise it is set to 1. The position is determined from the index of
the bit position name in thebitNames array.

Note: Thejack.run.debug.options property (discussed in theIntroductionchapter) is
specified as such a bitmap.

Appendix B: Utility Classes
Introduction

Agent Manual
Release 5.3
10-June-05 209
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

aos.util.Redirector
 TheRedirector class allows the user to dynamically redirect the standard input, standard
output and standard error for a process. A single method

static void doRedirection()

is provided for this purpose; if any of the propertiesdebug.setInput, debug.setOutput or
debug.setError are set in the system properties list, the appropriate redirection will occur.
Theassociationbetweenoneof thestandardstreamsandthefile to beusedfor redirectioncan
be achieved using either a properties file andaos.util.Properties.readProperties(), by
usingSystem.setProperty() or by using the-D option on the command line for the
application.

aos.util.ThreadPool
A ThreadPool is an object that manages a set of threads that are used to process a queue of
Runnables. The number of threads in the pool varies between a lower and an upper limit,
which are specified at construction time. Three constructors are provided:

ThreadPool() The lower limit and upper limit are both set to 1 – i.e. the thread pool contains
exactly 1 thread.

ThreadPool(int i) The lower limit and upper limit are both set toi – i.e. the thread pool
contains exactlyi threads.

ThreadPool(int i,int j) The lower limit is set toi and the upper limit is set toj.

 In order to execute aRunnable object, the method

synchronized void run(Runnable r)

must be invoked by the programmer. This method addsr to the queue ofRunnables which is
being served by the threadpool.

aos.jack.util.thread.Semaphore
 A Semaphore is a synchronisation resource which is used to establish mutual exclusion
regions of processing in JACK plans and threads. ASemaphore is a binary resource which
plans and threads may wait for and signal on when they have completed. Waiting entities
queue up on the semaphore and acquire the semaphore in FIFO order.

TheSemaphore class has a single constructor:

Semaphore()

Appendix B: Utility Classes
Introduction

AgentManual
Release5.3

210 10-June-05
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

The semaphore is grabbed initially by the constructing thread (or plan), and must thus be
released by a call to signal().

Methods are provided to grab and release the semaphore:

Cursor planWait()

planWait() returns a Cursor object to grab the semaphore. This method is called by JACK
plans, which then use @wait_for to synchronise.

void threadWait()

threadWait() waits (via Object.wait()) to grab the semaphore. This method is called by Java
threads (not JACK plans) to synchronise on the semaphore.

void signal()

signal() releases the semaphore to the next waiting thread or plan.

A program illustrating the use of semaphores in a JACK application is provided in the
solutions to the practical exercises. This code can be found in the doc/practicals/

solutions/practical1/semaphore directory of the JACK distribution tree.

aos.jack.util.thread.TaskJunction
A task junction is a synchronisation resource for plans. It allows a monitoring plan to wait

until a group of plans are complete. The TaskJunction class has a single constructor:

TaskJunction()

The task junction which is constructed is initially idle: that is, there are no executing plans
associated with it.

The TaskJunction class provides the following methods which enable a plan to attach and
detach from a task junction, and to determine when a task junction becomes idle:

void join()

This method is called by a plan in order to join the task junction.

void leave()

This method is called by a plan in order to leave the task junction.

Cursor idle()

Appendix B: Utility Classes
Introduction

Agent Manual
Release 5.3
10-June-05 211
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

This method returns aCursor object to observe when the task junction becomes idle.

It is sometimesusefulfor a joinedplanto leaveataskjunctionandthento rejoinatsomelater
datewhenaparticularconditionis satisfied.For example,in asimulationonemightuseatask
junction to keep track of all plans which are initiated within a given timestep – when the task
junctionbecomesidle, wethenmoveto thenext timestep.However, it maywell bethatnotall
plans are able complete their execution within a single timestep, in which case we want the
plan to leave the task junction and to then rejoin it when the plan is about to complete
execution. This functionality is proved by the following method:

Cursor escape()

escape() returns aCursor object that lets a joined plan escape the task junction while in an
@wait_for statement. Theescape() cursor should be used in conjunction with the actual
condition waited for, and the Cursor ensures that the plan rejoins the task junction during the
plan step which makes the actual condition come true.

Cursor escape(Cursor c)

In this variant ofescape() a joined plan escapes the task junction only until the argument
cursor (a triggered cursor) becomes true. This variant is safe with respect to external thread
triggering; the task junction is re-joined immediately when the cursor triggers.

aos.jack.util.thread.Monitor
Monitor is aconvenienceclassfor allowing eventhandlingto bemonitoredvia aprimarytask
junction. The Monitor class goes together with theTaskMonitoring interface. They support
task execution reflection so that an agent can know whether it is busy or idle with respect to
monitored events.

The following constructors are provided:

Monitor(Event e,String tj)

Monitor(Event e,Agent a,String tj)

Monitor(Event e,TaskJunction tj)

Monitor(Event e)

Appendix B: Utility Classes
Introduction

AgentManual
Release5.3

212 10-June-05
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

aos.jack.util.thread.TaskMonitoring
 This interface is to be implemented by an agent in order to provide access to a primary task
junction for Monitor objects. It consists of the following method:

TaskJunction getTaskMonitor()

Appendix C: JACK Properties

Agent Manual
Release 5.3
10-June-05 213
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

Appendix C: JACK Properties
A numberof propertiesareprovidedfor customisationof theruntimebehaviour of JACK tools
and applications. Developers are of course free to provide their own application specific
properties if required.

This appendix lists the effect of usage, possible values and default setting of each publicly
available JACK compiler and runtime environment property. A complete list of the publicly
availableJACK properties,includingpropertiesusedto customisetracinganddebuggingtools
can be found in theTracing and Logging Manual.

Several JACK properties are accessible from the JDEPreferences window. Refer to the
Development Environment Manual for instructions on how to set these properties. JACK
propertiescanalsobeusedwhenrunningaJACK application.In thiscase,thepropertyname
must be preceded by a-D and entered either on the command line or in theJava Args field in
theRun Application tab of the of the JDECompiler Utility.

JACK Compiler Properties

Table C-1: JACK Compiler Properties

Property Description Type Default

jack.compiler.emit.imports Generates full package paths to
class names in Java code
instead of import statements.

boolean false

jack.compiler.errors Specifiesthemaximumnumber
of errors to be displayed by
JackBuild.

int 10

Appendix C: JACK Properties
JACK Runtime Environment Properties

AgentManual
Release5.3

214 10-June-05
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

JACK Runtime Environment Properties

Table C-2: JACK Runtime Environment Properties

Property Description Type Default

jack.args Enables the specified value to
beusedasif it waspassedfrom
the command line to the
application.

String null

jack.portal.name Specifiesthenameof theportal
for the application.

String "%portal"

jack.portal.host Specifies the host of the portal
for the application.

String "local

host"

jack.portal.port Specifiestheportnumberof the
portal for the application.

int Next
available
port number.

jack.property.file Specifies the name of a file that
contains JACK property
settings.

String null

jack.run.nthreads Specifies the number of JACK
threads to be made available to
the scheduler. Note that having
more JACK threads than CPUs
on a machine does not benefit
performance.

int 1

jack.run.timeslice Specifies how many
millisecondsareto beallocated
to an agent on a JACK thread
before the scheduler should
intervene.

int 100

jack.run.repeatable Equivalent to setting
jack.run.timeslice to 1 hour.
This will stop agent tasks from
being suspended and restarted
at arbitrary points.

boolean false

Agent Manual
Release 5.3
10-June-05 215
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

Index

Symbols
#agent data 27, 43, 46, 57, 196
#chooses for event 26, 73, 105
#complex query 26, 179, 184, 185, 195,

196, 197
#exports data 26, 57
#function query 26, 179, 185, 187, 195, 196
#global data 27, 44, 47, 57, 196
#handles event 23, 26, 37, 56, 73, 91, 101,

106, 107, 108, 122, 125, 126, 162
#handles external (event) 26, 56
#has capability 26, 40, 58, 59
#imports data 26, 58
#indexed query 27, 179, 181, 182, 183
#key field 27, 177, 179, 180
#linear query 27, 179, 181, 183, 184
#modifies data 28, 111, 173, 196
#posted as 27, 86
#posted when 27, 79, 88
#posts 89, 126, 128, 129, 133
#posts event 27, 31, 38, 49, 56, 108, 179,

187, 188, 189, 196
#posts external 27, 56
#private data 27, 41, 42, 45, 57, 196
#propagates changes 27, 179, 188
#reads data 28, 110, 111, 173, 196
#reasoning method 28, 113, 114

fail 28, 115
pass 28, 115

#sends 89, 126, 128, 129, 133
#sends event 28, 39, 49, 57, 91, 109
#set behavior 28, 74

ApplicableChoice 76
ApplicableExclusion 76
ApplicableSet 75
OnError 77
PlanBindings 77
PlanChoiceEvent 78
PostPlanChoice 78
Recover 75
RuleBehavior 72
RuleFailure 72

#set transport 28, 89
#use behaviour ruleBehavior 72
#uses agent implementing 23, 28, 100, 112
#uses data 28, 79, 88, 110, 173, 195
#uses interface 28, 100, 112
#uses plan 28, 38, 40, 58, 91
#uses taskManager 29, 48
#value field 27, 179, 181
@achieve 29, 32, 71, 84, 98, 127, 128, 130,

132, 147
@action 29, 119
@determine 29, 32, 71, 84, 98, 131, 132,

147, 156, 158
@insist 29, 32, 71, 84, 98, 128, 129, 132,

147
@maintain 29, 118, 120, 147
@parallel 29, 133

exception handling 136
notification exception attribute 134
optional monitor attribute 135
success condition attribute 134

ParallelFSM.ALL 134
ParallelFSM.ANY 134
ParallelFSM.FIRST 134
ParallelFSM.LAST 134

termination condition attribute 134
@post 30, 31, 63, 68, 86, 89, 121, 122, 124,

125
@reply 30, 31, 82, 84, 123
@send 30, 64, 69, 91, 123, 124, 125
@sends 48
@sleep 30, 47, 127
@subtask 29, 30, 31, 86, 98, 120, 125, 126,

154
@test 30, 32, 71, 84, 98, 130, 131, 132, 147
@wait_for 30, 47, 48, 85, 116, 117, 118,

119, 127, 147
__ns 59

A
accessor 157

AgentManual
Release5.3

216 10-June-05
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

action cursor 146
add() 33, 174, 177, 190, 196, 197
addfact() 188
addTask() 135
adjustTime() 143
after() 30, 100, 104
afterMillis() 100, 104
again cursor / again 140
agent 13, 14, 15, 21, 24, 32, 35

BDI 14
beliefset 36
Beliefsets 41
construction 50
definition 35

example 37
Event

external 36
internal 36
post 36
send 36

interfaces 36
introduction 35
JACK intelligent agents 14
name 31, 40, 51, 52, 59
Plan 36
task manager 47
termination 50
view 36
What is an agent? 14
Why program using agents? 15

Agent class 25, 35, 112
declarations 36

#agent data 43, 46
#global data 44, 47
#handles event 37
#has capability 40
#posts event 38
#private data 41, 45
#sends event 39
#uses plan 40
#uses taskManager 48

members 30, 49
Timer / timer 30, 52

methods 30, 49

finish() 30, 50
name() 31, 52
postEvent() 31, 50
postEventAndWait() 31, 51
reply() 31, 51
send() 31, 51

Agent Interaction Diagram 32
agent oriented concepts 13
agent.timer 105
alternative plan 65
aos.jack.jak.agent.Agent.timer 140, 141
aos.jack.jak.core.Jak.timer 140, 141
aos.jack.jak.logic.Variable 148, 186
aos.jack.jak.util.timer.DilatedClock 140,

141
aos.jack.jak.util.timer.SimClock 140, 142
aos.jack.util.cursor.Action 146
aos.util.PathEntry 207
aos.util.Properties 208
aos.util.Redirector 209
aos.util.thread.Monitor 211
aos.util.thread.Semaphore 209
aos.util.thread.TaskJunction 210
aos.util.thread.TaskMonitoring 212
aos.util.ThreadPool 209
aos.util.timer.RTClock 140, 141
aos.util.timer.RTClock.timer 140, 141
aos.util.timer.Timer 105
applicable plans 62, 65, 66
Array cursor 138
array cursor 138, 150
ArrayCursor 138, 150
as_boolean() 157
as_byte() 157
as_char() 157
as_double() 157
as_float() 157
as_int() 157
as_long() 157
as_object() 157
as_short() 157
as_string() 157
automatic events 79
autorun() 34, 58, 59

Agent Manual
Release 5.3
10-June-05 217
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

B
BDI events 61, 65

BDIFactEvent 67
BDIGoalEvent 67
BDIInferenceEvent 67
BDIMessageEvent 67
PlanChoice 67

BDIBehavior 71
BDIFactEvent 30, 38, 67, 68, 70
BDIGoalEvent 29, 30, 32, 38, 67, 70, 83,

132
BDIInferenceEvent 67
BDIMessageEvent 30, 32, 39, 51, 67, 68,

70, 123
behaviour attribute 38, 74
Belief desire intention (BDI) 14, 15, 65
BeliefSet 22, 25, 49

construction 174
members 174
methods 33, 174

add() 33, 177
nFacts() 33, 178
postEvent() 177
remove() 33, 177

Beliefset 171
callbacks 188
closed world 173
declarations

#complex query 184
#function query 185
#indexed query 181
#key field 179
#linear query 183
#posts event 187
#value field 181

definition 172
iteration 191
manipulating relations 190
open world 174

beliefset 24, 41
beliefset callback 188
beliefset cursor 138, 147, 171
beliefset cursor expression 149, 163
beliefset iteration 191

beliefset keyword 173
beliefset relation 41, 42, 43, 44, 45, 171
BeliefSetException 177, 178, 192
body() 33, 100, 103, 147, 154
boolean member 163

C
Capability 21, 24, 25, 53, 59

as component 53
beliefset 55
concept 53
construction 58
declarations 55

#agent data 57
#exports data 57
#global data 57
#handles event 56
#handles external (event) 56
#has capability 58
#imports data 58
#posts event 56
#posts external 56
#private data 57
#sends event 57
#uses plan 58

definition 53
Events

external 55
internal 55
post internal 55
send external 55

interfaces 54
introduction 53
keyword 53
members 58
methods 58

autorun() 34, 59
getAgent() 34, 59
postEvent() 34, 59

plans 55
reference name 59
view 55

change cursor 143
CLASSPATH 16

AgentManual
Release5.3

218 10-June-05
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

clock 52, 138, 139, 140
closed world 33, 130, 154, 171

relation 173
composite logical expression 149, 159
connect() 94
connections 93
context() 33, 62, 100, 102, 147, 156, 159,

163
create() 94
cursor 117, 118, 137, 139, 140, 143, 149,

150, 156
cursor statement 140

D
data structures

user defined 45
DCI 91

command-line 93
in code 94

DCI class 94
Dci class

methods
connect() 94
create() 94
nameserver() 94
setTimeout() 95

DCI network 64, 69, 82
declarations (#) 23, 25, 26, 49, 54, 58, 105,

154
delfact() 188
dilated clock 52, 139, 141, 142
DilatedClock 140, 141
doRedirection() 209

E
elapsed() 30, 100, 105
elapsedMillis() 100, 105
endfact() 189
enumeration cursor 138, 149
Error 85
escape() 211
escape(Cursor c) 211
Event 22, 24, 25, 30, 38, 49, 61

BDI event 65

BDIFactEvent 67
BDIGoalEvent 70
BDIInferenceGoalEvent 71
BDIMessageEvent 68
BDITracedMessageEvent 70
behaviour attributes 74
declarations 86

#posted as 86
#posted when 88
#uses data 88

definition 80
Event class 63
how agents handle

BDI events 65
normal events 62

members 32, 81
from 32, 82
message 32, 83
mode 32, 83

MessageEvent class 64
methods 32, 81

getAgent() 82
getReply() 32, 85
replied() 32, 84

motivations 61
normal events 62
PlanChoice 73
posting 89
sending 89
stimuli

external 61
internal 61

TracedMessageEvent 65
What are Events? 61

external
keyword 56

F
fail() 28
finalize() 30
finish() 30, 50
Finite State Machine (FSM) 98, 115, 116

statement 98, 156
from 32, 82

Agent Manual
Release 5.3
10-June-05 219
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

G
getAgent() 34, 59, 82, 100
getBitMapProperty() 208
getBooleanProperty() 208
getDoubleProperty() 208
getInstanceInfo() 33, 100, 104
getIntProperty() 208
getLongProperty() 208
getReply() 32, 85, 124
getStringProperty() 208
getTaskMonitor() 212
getTime() 141, 142, 143

I
idle() 210
implements interface 35, 36, 53, 54, 55
InferenceGoalEvent 71, 72
inter-agent communication 91

DCI 93
local communication 91
remote communication 91

J
JACK

compilation 18
components 15
developing an application 16
environment 16
execution 18
source code creation 17

JACK Agent Compiler 16
JACK Agent Kernel 16, 31
JACK Agent Language 15
JACK Agent Language (JAL) 21
JACK agent language (JAL)

base members 30
base methods 30
BDI events 67
classes 25
cursor 117
declarations (#) 25
Event 63
extensions

class 21

interface 21
method 21
semantic 23
syntactic 22

levels of extension
class definition 23
declaration 23
statement 23

logical expression 97, 163
logical member 24, 163
MessageEvent 63
multi-threading 24
normal events 63
overview 21
reasoning method statements (@) 25
summary 24

JACK Development Environment (JDE) 16
JACK Intelligent Agents 13

background 13
introduction 13

jack.args 214
jack.compiler.emit.imports 213
jack.compiler.errors 213
jack.portal.host 214
jack.portal.name 214
jack.portal.port 214
jack.property.file 214
jack.run.debug.options 208
jack.run.nthreads 214
jack.run.repeatable 214
jack.run.timeslice 214
Java

finalize() 30
java 16
javac 16
join() 210

L
leave() 210
loadObject() 208
local communication 91
logical expression 155, 159, 163
logical member 24, 147, 148, 156, 157, 163
logical statement 154

AgentManual
Release5.3

220 10-June-05
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

components 155

M
message 32, 83
message event 39
MessageEvent 30, 32, 39, 51, 63, 64, 69,

82, 84, 85, 123
meta-level plans 106, 153
meta-level reasoning 33, 65, 66, 67, 74, 105
moddb() 189
mode 32, 83, 84
modfact() 189
Monitor 211
multiPingOk() 95

N
name() 31, 40, 52, 100
nameserver() 94
name-servers 93
NameSpace 59
New Executor 147
newfact() 188, 190
next() 138, 192
nFacts() 33, 178
normal event 61, 62

O
open world 33, 130, 154, 171

relation 173, 174
open() 207

P
ParallelFSM.ALL 134
ParallelFSM.ANY 134
ParallelFSM.FIRST 134
ParallelFSM.LAST 134
ParallelMonitor 135
ParallelMonitor Class 136

addTask() 136
changed() 136
findTaskIndex() 137
finished() 136
getException() 137
getStatus() 137

hasFinished() 137
nTasks() 137
throwTo() 137

pass() 28
PATH 16
PathEntry 207
ping() 95
pingOk() 95
Plan 22, 24, 25, 49, 97

#handles event 97
applicable 97
Beliefset Cursor 147
body() 97, 99
composite logical expression 159
context() 97
cursor 137
declarations 23, 105

#chooses for 105
#handles event 107
#modifies data 111
#posts event 108
#reads data 110
#reasoning method 113

fail 115
pass 115

#sends event 109
#uses agent implementing 112
#uses data 110
#uses interface 112

definition 99
definition templates 151

meta-level plans 153
normal plan 152

extends Plan 99
FSM statement 98
keyword 99
logical member 156
logical statements 154
members 32, 99

agent 32
meta-level reasoning 97
methods 33, 99

after() 104
afterMillis 104

Agent Manual
Release 5.3
10-June-05 221
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

body() 33
context() 33, 102
elapsed() 105
getAgent() 100
getInstanceInfo() 33, 104
relevant / relevant() 33, 101

PlanChoice 97
PlanType 99
programming guide 151
reasoning

body() 103
reasoning method statements (@) 98
reasoning methods 97

@achieve 127
@action 119
@determine 131
@insist 128
@maintain 120
@post 121
@reply 123
@send 124
@sleep 127
@subtask 125
@test 130
@wait_for 116

reasoning methods vs sub-plans 154
relevant / relevant() 97
What is a Plan? 97

plan instance 33
PlanChoice 66, 67
PlanChoice event 73
planWait() 210
portal 31, 40, 51, 82, 92, 93
post() 86, 89
postEvent() 31, 34, 40, 50, 59, 63, 68, 177
postEventAndWait() 31, 51, 63, 68
posting method 86

declaration 86
example 87

Properties 208, 213

R
rank 40
readProperties() 208

real time clock 142
reasoning method statements (@) 23, 25,

29, 103, 115, 116
reasoning methods 103
Redirector 209
relative real time clock 142
relevant / relevant() 33, 62, 100, 101
relevant() 163
remove() 33, 174, 177, 178, 190, 196, 197
removeAll() 190, 191
repeat action cursor 147
replied() 32, 84, 85, 124
reply() 31, 32, 51, 82, 84
RTClock 140, 141
RuleBehavior 71, 72
run() 209
Runnable 209

S
Semaphore 209
send() 31, 40, 51, 52, 64, 69, 89, 91
setDilation() 142
setTime() 143
setTimeout() 95
signal() 210
SimClock 52, 140, 142
SimpleRRTaskManager 48, 66
SimpleTaskManager 47
simulation clock 52, 127, 139, 142
subtask 24, 29, 125

T
task 24
task manager 47
TaskJunction 210
TaskMonitoring 212
ThreadPool 209
threadWait() 210
throwTo() 135
time cursor / timeCursor 139
Timer / timer 30, 52, 140, 142
toString() 59
triggered cursor 118, 138

AgentManual
Release5.3

222 10-June-05
Copyright © 1999-2012, Agent Oriented Software Pty. Ltd.

U
unification 156, 158
unify 24, 158
universal real time clock 141
utility classes 207

V
View 22, 24, 195

declarations 195
#complex query 196
#function query 196
#posts event 196
#uses data 195

definition 195
example 197
usage 196

	1 Introduction
	1.1 Background
	1.2 Agent Oriented Concepts
	1.2.1 What is an Agent?
	1.2.2 Why program using Agents?

	1.3 The Components of JACK
	1.3.1 The JACK Agent Language
	1.3.2 The JACK Agent Compiler
	1.3.3 The JACK Agent Kernel

	1.4 Developing a JACK Application
	1.4.1 Setting up your Environment
	1.4.2 Source Code Creation
	1.4.3 Compilation
	1.4.4 Running a JACK Application
	1.4.5 Debugging a JACK Application

	2 JACK Agent Language Overview
	2.1 The JACK Agent Language
	2.1.1 Class, Interface and Method Extensions
	2.1.2 Syntactic Extensions
	2.1.3 Semantic Extensions

	2.2 JACK Agent Language Summary
	2.2.1 JACK Agent Language Classes
	2.2.2 JACK Agent Language Declarations (#-Declarations)
	2.2.3 Reasoning Method Statements (@-Statements)
	2.2.4 Base Members and Methods
	2.2.4.1 Agent Members
	2.2.4.2 Agent Methods
	2.2.4.3 Event Members
	2.2.4.4 Event Methods (for MessageEvents only)
	2.2.4.5 Plan Members
	2.2.4.6 Plan Methods
	2.2.4.7 BeliefSet Methods
	2.2.4.8 Capability Methods

	3 Agents
	3.1 Introduction
	3.2 Agent Definition
	3.3 Agents and Interfaces
	3.4 Agent Declarations
	#handles event EventType
	#posts event EventType [reference]
	#sends event EventType [reference]
	#uses plan PlanName
	#has capability CapabilityType reference
	3.4.1 Beliefsets
	3.4.1.1 Conceptual Model
	3.4.1.2 Beliefset Declarations
	#private data BeliefType belief_name(arg_list)
	#agent data BeliefType belief_name(arg_list)
	#global data BeliefType belief_name(arg_list)

	3.4.2 Data stored in User-defined Data Structures
	#private data DataType data_name(arg_list)
	#agent data DataType data_name(arg_list)
	#global data DataType data_name(arg_list)

	3.4.3 Task Managers
	#uses taskManager SimpleRRTaskManager(<steps>)

	3.5 Agent Members and Methods
	Agent Construction
	Agent Termination
	void postEvent(Event e)
	boolean postEventAndWait(Event e)
	void send(String s, MessageEvent e)
	void reply(MessageEvent q, MessageEvent r)
	String name()
	Timer timer

	4 Capabilities
	4.1 Introduction
	4.2 Capability Definition
	4.3 Capabilities and Interfaces
	4.4 Capability Declarations
	#handles event EventType;
	#handles external [event] EventType;
	#posts event EventType reference;
	#posts external [event] EventType reference;
	#sends event EventType reference;
	#private data DataType data_name(arg_list);
	#agent data DataType data_name(arg_list);
	#global data DataType data_name(arg_list);
	#exports data DataType data_name(arg_list);
	#imports data DataType data_name();
	#uses plan PlanType;
	#has capability CapabilityType reference;

	4.5 Capability Members and Methods
	Capability Construction
	public void postEvent(Event e)
	public Agent getAgent()
	protected void autorun()

	5 Events
	5.1 What are Events?
	5.2 Normal Events
	5.2.1 How an Agent handles Normal Events
	5.2.2 Normal Events in the JACK Agent Language
	5.2.2.1 The Event Class
	5.2.2.2 The MessageEvent Class
	5.2.2.3 The TracedMessageEvent Class

	5.3 BDI Events
	5.3.1 How an Agent handles BDI Events
	5.3.1.1 Meta-level Reasoning
	5.3.1.2 Reconsidering Alternative Plans on Plan Failure
	5.3.1.3 Recalculating the Applicable Plan Set

	5.3.2 The BDI Events in the JACK Agent Language
	5.3.2.1 The BDIFactEvent Class
	5.3.2.2 The BDIMessageEvent Class
	5.3.2.3 The BDITracedMessageEvent Class
	5.3.2.4 The BDIGoalEvent Class
	5.3.2.5 The InferenceGoalEvent Class
	5.3.2.6 The PlanChoice Event Class

	5.3.3 Customising BDI Behaviour with Behaviour Attributes
	#set behavior Recover <value>;
	#set behavior ApplicableSet <value>;
	#set behavior ApplicableChoice <value>;
	#set behavior ApplicableExclusion <value>;
	#set behavior PlanBindings <value>;
	#set behavior OnError <value>;
	#set behavior PostPlanChoice <value>;
	#set behavior PlanChoiceEvent MyPlanChoice();

	5.4 Automatic Events
	5.5 Event Definition
	5.6 Event Members and Methods
	public Agent getAgent()
	public String from
	public String message
	public String mode
	Cursor replied()
	MessageEvent getReply()

	5.7 Event Declarations
	#posted as methodName(parameters)
	#uses data DataType data_name
	#posted when (condition) optional_method_body
	#set transport format

	5.8 Posting and Sending Events

	6 Inter-agent Communications
	6.1 Introduction
	6.2 Local Communication
	6.3 Remote Communication
	6.3.1 DCI from the Command-line
	6.3.2 DCI Command Line Summary
	6.3.3 DCI in Code
	void create(String name, String desc)
	void connect(String lname, String rname, String rdesc)
	void nameserver(String rdesc)
	void setTimeout (int seconds)
	boolean pingOk (String agent)
	int ping (String agent)
	boolean multiPingOk (String agent)
	boolean multiPingOk (String agent, int timeout, int interval)
	int multiPing (String agent, int timeout, int interval)

	7 Plans
	7.1 What is a Plan?
	7.2 Finite State Machines
	7.3 Plan Definition
	7.4 Plan Members and Methods
	Agent getAgent()
	relevant(EventType)
	context()
	body()
	PlanInstanceInfo getInstanceInfo()
	Cursor after(double t), afterMillis(long t)
	Cursor elapsed(double t), elapsedMillis(long t)

	7.5 Plan Declarations
	#chooses for event Event1 Event2 ...
	#handles event EventType reference
	#posts event EventType reference
	#sends event MessageEventType reference
	#uses data DataType reference
	#reads data DataType reference
	#modifies data DataType reference
	#uses agent implementing Interface reference
	#uses interface Interface reference
	#reasoning method name(parameters) <body>
	#reasoning method pass() <body>
	#reasoning method fail() <body>

	7.6 Reasoning Method Statements (@-Statements)
	@wait_for(parameters)
	@wait_for(wait_condition)
	@wait_for(wait_condition, sentinel_condition)
	@wait_for(wait_condition, timeout)

	@action(parameters) <body>
	@maintain(logical_condition, event)
	@post(event)
	@reply(original_event, reply_event)
	@send(agent_name, message_event)
	@subtask(event)
	@sleep (timeout)
	@achieve(condition, goal_event)
	@insist(condition, goal_event)
	@test(test_condition, goal_event)
	@determine(binding_condition, goal_event)
	@parallel(parameters) <body>
	Exception Handling within the Parallel Execution Model
	The ParallelMonitor Class

	7.7 Cursors
	7.7.1 Time Cursors and Again Cursors
	aos.util.timer.RTClock.timer
	aos.jack.jak.core.Jak.timer
	aos.jack.jak.agent.Agent.timer
	aos.util.timer.RTClock
	aos.jack.jak.util.timer.DilatedClock
	aos.jack.jak.util.timer.SimClock

	7.7.2 Change Cursors
	Example 1: Monitoring data in a Java class
	Example 2: Monitoring data in a beliefset

	7.7.3 Action Cursors and RepeatAction Cursors
	7.7.4 Beliefset Cursors
	7.7.5 Enumeration Cursors
	7.7.6 Array Cursors

	7.8 Plan Programming Guide
	7.8.1 Plan Definition Templates
	7.8.1.1 Normal Plan Template
	7.8.1.2 Meta-level Plan Template

	7.8.2 Functional Abstraction
	7.8.3 Logical Statements
	7.8.3.1 Components of a Logical Statement

	7.8.4 Logical Members
	7.8.5 Composite Logical Expressions

	8 Meta-Level Reasoning
	8.1 Applicable Set Generation
	8.1.1 Handling the Event Type
	8.1.2 Relevance
	8.1.3 Applicability
	8.1.4 Prominence
	8.1.5 Precedence

	8.2 The Applicable Plan Set
	8.3 Choosing a Plan Instance

	9 Beliefset Relations
	9.1 Introduction
	9.2 Beliefset Definition
	9.2.1 Closed World Relations
	9.2.2 Open World Relations

	9.3 Beliefset Members and Methods
	Beliefset Construction
	void postEvent(Event e)
	void add(parameters)
	void remove(parameters)
	public int nFacts()

	9.4 Beliefset Declarations
	#key field FieldType field_name
	#value field FieldType field_name
	#indexed query methodName(parameters)
	#linear query methodName(parameters)
	#complex query name(parameters) <body>
	#function query ReturnType name(params) <body>
	#posts event EventType handle
	#propagates changes [EventType]

	9.5 Beliefset Callbacks
	9.6 Manipulating Beliefset Relations
	9.7 Beliefset Iteration
	9.8 Extending the OpenWorld or ClosedWorld classes

	10 Views
	10.1 Introduction
	10.2 View Definition
	10.3 View Declarations
	#uses data Type ref
	#complex query methodName(parameters)<statements>
	#function query ReturnType methodName(params)<statements>
	#posts event EventType [reference]

	10.4 Usage
	Using a view to form a query spanning multiple beliefsets
	Using a view to integrate an external process into JACK

	Appendix A: JackBuild
	Description

	Appendix B: Utility Classes
	Introduction
	aos.util.PathEntry
	aos.util.Properties
	aos.util.Redirector
	aos.util.ThreadPool
	aos.jack.util.thread.Semaphore
	aos.jack.util.thread.TaskJunction
	aos.jack.util.thread.Monitor
	aos.jack.util.thread.TaskMonitoring

	Appendix C: JACK Properties
	JACK Compiler Properties
	JACK Runtime Environment Properties

	Index

