
Agent Practicals

JACK™ Intelligent Agents
Agent Practicals



AgentPracticals
Release5.0

2 10-June-05
Copyright © 2012, Agent Oriented Software Pty. Ltd.

Copyright

Copyright © 2012, Agent Oriented Software Pty. Ltd.

All rights reserved.

No part of this document may be reproduced, transferred, sold, or otherwise disposed of,
without the written permission of the owner.

US Government Restricted Rights

The JACK™ Modules and relevant Software Material have been developed entirely at private
expense and are accordingly provided with RESTRICTED RIGHTS.  Use, duplication, or
disclosure by Government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of
DFARS 252.227-7013 or subparagraph (c)(1) and (2) of the Commercial Computer Software
Restricted Rights and 48 CFR 52.2270-19, as applicable.

Trademarks

All the trademarks mentioned in this document are the property of their respective owners.



Agent Practicals
Release 5.0
10-June-05 3
Copyright © 2012, Agent Oriented Software Pty. Ltd.

Publisher Information

If you find any errors in this document or would like to suggest improvements, please let us
know.

Agent Oriented Software Pty. Ltd.

P.O. Box 639,

Carlton South, Victoria, 3053

AUSTRALIA

Phone: +61 3 9349 5055

Fax: +61 3 9349 5088

Web: http://www.agent-software.com



AgentPracticals
Release5.0

4 10-June-05
Copyright © 2012, Agent Oriented Software Pty. Ltd.

The JACK™ documentation set includes the following manuals and practicals:

Document Description

Agent Manual Describes the JACK programming language and
infrastructure.JACK canbeusedto developapplications
involving BDI agents.

Teams Manual Describes the JACK Teams programming language
extensions. JACK Teams can be used to  develop
applications that involve coordinated activity among
teams of agents.

Development Environment

Manual

Describes how to use the JACK Development
Environment (JDE). The JDE is a graphical
development environment that can be used to develop
JACK agent and team-based applications.

JACOB Manual Describes how to use JACOB. JACOB is an object
modelling language that can be used for inter-process
transport and object initialisation.

WebBot Manual Describes how to use the JACK WebBot to develop
JACK enabled web applications.

Design Tool Manual Describes how to use the Design Tool to design and
build an application within the JACK Development
Environment.

Graphical Plan Editor Manual Describes how to use the Graphical Plan Editor to
develop graphical plans within the JACK Development
Environment.

JACK Sim Manual Describes how to use the JACK Sim framework for
building and running repeatable agent simulations.

Tracing and Logging Manual Describes the tracing and logging tools available with
JACK.

Agent Practicals A set of practicals designed to introduce the basic
concepts involved in JACK programming.

Teams Practicals A set of practicals designed to introduce the basic
concepts involved in Teams programming.



Agent Practicals
Release 5.0
10-June-05 5
Copyright © 2012, Agent Oriented Software Pty. Ltd.

Table of Contents
Practical 1 Introduction to JACK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Introductory notes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
JACK  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
The JACK Agent Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
JACK execution  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
The Agent class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13

Agent template . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
Agent base members . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
Agent base methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
An example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15

The Event class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
Normal events  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
BDI events  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
Event template . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
Event base members . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
Event methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
An example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19

The Plan class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
Plan template . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
Plan base members . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
Plan base methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
An example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21

Building our example  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
The Capability class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22

Capability template . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
Capability methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
An example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23

The Beliefset class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23
Exercise 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24

Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24
Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24

Exercise 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28
Instructions:  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28
Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30

Exercise 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32
Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33
Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35



AgentPracticals
Release5.0

6 10-June-05
Copyright © 2012, Agent Oriented Software Pty. Ltd.

Exercise 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36
Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36

Exercise 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40
Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40
Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41

Exercise 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42
Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42

Exercise 7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47
Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47
Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52

Exercise 8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53
Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53
Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57

Exercise 9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58
Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58
Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58

Exercise 10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59
Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61

Exercise 11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62
Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63

Practical 2 JACK Beliefset Relations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Introductory notes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69

JACK beliefs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69
JACK  beliefset  definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71
An example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72

Exercise 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75
Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75

Exercise 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .78
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .78
Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .78
Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79

Exercise 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80



Agent Practicals
Release 5.0
10-June-05 7
Copyright © 2012, Agent Oriented Software Pty. Ltd.

Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80
Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80

Exercise 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .81
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .81
Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .81

Exercise 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83
Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83

Practical 1 Solutions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Program solutions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85
Answers to questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85

Exercise 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85
Exercise 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85
Exercise 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85
Exercise 7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85
Exercise 8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85
Exercise 9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85

Practical 2 Solutions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Answers to questions in introductory notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87
Program solutions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87
Answers to questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88

Exercise 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88



AgentPracticals
Release5.0

8 10-June-05
Copyright © 2012, Agent Oriented Software Pty. Ltd.



Practical 1 Introduction to JACK

Agent Practicals
Release 5.0
10-June-05 9
Copyright © 2012, Agent Oriented Software Pty. Ltd.

Practical 1 Introduction to JACK
Practical 1 provides an introduction to JACK agents, plans, events and capabilities. The notes
are based on the material in theJACK™ Intelligent AgentsAgent Manual and provide a
summary of the features that you need to be familiar with to complete the programming
exercises. For more details refer to theAgent Manual. When the prerequisite information has
been covered for a particular exercise, it is indicated explicitly in the notes. In some cases
additional information is provided in the introduction for the exercise. It is assumed that you
are familiar with Java and are able to develop and run Java applications in your computing
environment.

The Practical exercises will be developed using the JACK Development Environment. It is
assumedthatthereaderis familiarwith theoverallstructureandoperationof theJDE.If this is
not the case then at least Chapters 1 and 2 of theJACK™ Intelligent AgentsDevelopment
EnvironmentManualshouldbereadbeforecommencingtheexercises.No additionalmaterial
regarding the JDE is provided in these notes.

Introductory notes

JACK

JACK™ IntelligentAgents(JACK) is anagent-orienteddevelopmentenvironmentbuilt ontop
of and fully integrated with the Java programming language. JACK consists of the key
components described below.

The JACK Agent Language

The JACK Agent Language (JAL) is a programming language that can be used to develop
agent-based systems. JAL is a 'super-set' of Java – encompassing the full Java syntax while
extending it with agent-oriented constructs.

The JACK Agent compiler

The JACK Agent Compiler pre-processes JAL source files and converts them into Java. This
Java source code can then be compiled into Java virtual machine code to run on the target
system.

The JACK Agent kernel

TheJACK Agentkernelis theruntimeenginefor programswritten in JAL. It providesasetof
classes that give JAL programs their agent-oriented functionality. Most of these classes run
behind the scenes and implement the underlying infrastructure and functionality that agents
require. Others are used explicitly in JAL programs. They are inherited from and
supplemented with callbacks as required to provide agents with their own unique
functionality.



Practical 1 Introduction to JACK
Introductory notes

AgentPracticals
Release5.0

10 10-June-05
Copyright © 2012, Agent Oriented Software Pty. Ltd.

The JACK Development Environment

The JDE is a cross-platform graphical development environment that can be used to develop
JACK agent applications. In addition to providing support for code generation, tools are
provided to support the design process and the tracing of agent execution.



Practical 1 Introduction to JACK
Introductory notes

Agent Practicals
Release 5.0
10-June-05 11
Copyright © 2012, Agent Oriented Software Pty. Ltd.

The JACK Ag ent Langua ge

JAL extends Java by:

• Providing new base classes, interfaces and methods.

• Extending Java syntax to support the new classes, definitions and statements.

• Providing semantic extensions that change theexecution engine to support an agent-
oriented execution model.

Class-level constructs

Agent, Event, Plan, Beliefset, View andCapability class-level constructs are provided in
JACK. Each of these are implemented as Java classes.

To create your own agent, theAgent class is extended and the particular details required for
your specific agent are included. A similar approach is used to create your own events, plans,
beliefsets and capabilities.

JACK declarations

Theseprovideasetof statementsthatdefinepropertiesof aJAL typeanddeclarerelationships
between the classes above. They are preceded by a# symbol.

JACK reasoning method statements (@-statements)

Reasoning statements are JAL statements that can only appear in reasoning methods.
Reasoningmethodsarefoundinsideaplan.Reasoningmethodstatementsareprecededby an
@ symbol.

Semantic extensions

JAL provides semantic extensions that support theBelief Desire Intention (BDI) execution
model.

JACK execution

When an agent is instantiated in a system, it will wait until it is given a goal or it experiences
an event to which it must respond. When it receives an event (or goal), the agent initiates
activity to handle the event. If it does not believe that the goal or event has already been
handled, it will look for the appropriate plan(s) to handle it. The agent then executes the plan
or plans depending on the event type. The handling of the event may be synchronous or
asynchronous relative to the posting. The plan execution may involve interaction with an
agent's beliefset relations or other Java data structures. The plan being executed can in turn
initiate other subtasks, which may in turn initiate further subtasks (and so on). Plans can
succeed or fail. Under certain circumstances, if the plan fails, the agent may try another plan.



Practical 1 Introduction to JACK
Introductory notes

AgentPracticals
Release5.0

12 10-June-05
Copyright © 2012, Agent Oriented Software Pty. Ltd.

Within a single process you can have multiple agents and each agent potentially has multiple
task queues. A task queue is generated when an asynchronous event is received by the agent
(either from itself or from another agent). The task queue contains the processing steps (or
tasks) that are required for the agent to handle the event – these steps are specified in a plan.
Task execution can result in further event posting. If the event is posted synchronously, the
resulting tasks are added to the head of the task queue that generated the event. If the event is
posted asynchronously, a new task queue will be generated.

TheJACK kernelis responsiblefor giving eachagenta 'turn'.Within anagent,a taskmanager
is responsible for cycling through the task queues (exactly how will depend on the task
manager being used by the agent). This is all managed by the JACK kernel within the JACK
thread of execution. Note that this does not prevent other threads in the Java program from
callingagentmethods.Youwill seeexampleswhereanagentmethodis invokedfrom theJava
main thread in the exercises.

Of course, you can also have agents in different processes and on different machines
communicating with one another.



Practical 1 Introduction to JACK
Introductory notes

Agent Practicals
Release 5.0
10-June-05 13
Copyright © 2012, Agent Oriented Software Pty. Ltd.

The Agent class

TheAgent  class embodies the functionality associated with a JACK intelligent agent. To
define your own agents, the JACK Agent  class is extended by adding members and methods
that are applicable to your agent's specific problem domain.

Agent template

In a file calledAgentType.agent :

agent AgentType extends Agent {implements interface}
  {
     // JAL declaration statements - the following declarations may be
     // used in an agent definition (when required).

#{private,agent,global} data Type Name (arglist);

     // The agent handles events of type EventType.
#handles event EventType;

     // The agent uses a plan of PlanType.
#uses plan PlanType;

     // The round robin task manager is to be used - there are others.
#uses taskManager SimpleRRTaskManager(steps);

     // The agent posts events of type EventType to itself.
#posts event EventType reference;

     // The agent sends events of type EventType to other agents.
#sends event EventType reference;

     // The agent has a capability of type CapabilityType.
#has capability CapabilityType reference;

     // Data members (Java data structures).

     // Constructor method.
     AgentType(arglist)
     {
       super("agent name");
        :
        :
     }

     // Java methods that implement agent functionality.
     // (These may be called from within the agent's plans.)
  }

Agent base members

Timer timer

Specifies which clock the agent uses to measure the passage of time.



Practical 1 Introduction to JACK
Introductory notes

AgentPracticals
Release5.0

14 10-June-05
Copyright © 2012, Agent Oriented Software Pty. Ltd.

Agent base methods

Constructor

To construct an agent, follow the normal convention for constructors used in Java. JACK
agents require a name (of typeString).

finish()

Used to terminate an agent. It causes all event processing within the agent to be terminated
immediately, and removes the agent from the JACK runtime network.

postEvent(EventName)

This allows an agent to post an event to itself. The event is handled asynchronously by the
agent. The parameter is an instance of an event. As event posting methods are responsible for
the creation of an instance of an event,postEvent() is often invoked with an argument that
involves the event's posting method as shown below.

postEvent(eventRef.eventPostingMethod(args))

Note thateventRef must have been declared to be an event that is handled by the agent
(#handles event EventType eventRef;), and the event must also have a corresponding
posting method. TheEventName parameter that is found in the methods described below is
often replaced by an argument that involves the event's posting method.

postEventAndWait(EventName)

This is similar topostEvent() except that it is posted synchronously. The event is still
executed as a separate task, but the calling method must wait until this task has been
completed before continuing.

Note: Unlikeanagent'sotherbasemethods,postEventAndWait() mustnotbecalledfrom any
of anagent'stasksasit will block theagent.It canonly beusedfrom methodsusedby normal
Javaprogramsor otherJava threadsthatareintegratedwith yourJACK application.While the
agenthandlesthisevent,thecalling threadmustwait until theagentreturnsits result.Youwill
be usingpostEventAndWait() in the exercises.

send(name, EventName)

This method is used to send messages/events to other agents. The first parameter (name) is of
typeString and is the name of the destination agent. The second parameter is the message
event to be sent to the destination agent. Only certain event types can be used for inter-agent
communication. This will be discussed later in this document.



Practical 1 Introduction to JACK
Introductory notes

Agent Practicals
Release 5.0
10-June-05 15
Copyright © 2012, Agent Oriented Software Pty. Ltd.

reply(receivedMessageEvent, SendEventName)

reply() is used to send a message back to an agent from which a previous message has been
received.reply() doesnotspecifythedestinationagent– this informationis containedin the
message that it received.

The reply message arrives as a data object on the reply queue of the original message event.
Thismeansthatthemessageeventthatis sentbackusingreply doesnot triggeranew taskor
plan.

name()

This method can be used to retrieve the agent's name as aString.

An example

In MyAgent.agent:

agent MyAgent extends Agent
  {

#handles event MyEvent;
#uses plan MyPlan;
#posts event MyEvent myEventRef;

    MyAgent(String name)
    {
      super(name);
    }

    public void method1(String exampleMessage)
    {
      // Java code to do something useful

      // In this example, we illustrate how to post an event from
      // within an agent.
      // The posting method will be discussed in the section on events.
      // In this case, the posting method takes a single argument of
      // type String.
      // Note that myEventRef has been declared earlier in the agent.

postEvent(myEventRef.myPostingMethod(exampleMessage));
    }
  }

Note: You may attempt exercise 1 now.



Practical 1 Introduction to JACK
Introductory notes

AgentPracticals
Release5.0

16 10-June-05
Copyright © 2012, Agent Oriented Software Pty. Ltd.

The Event class

Events are the originators of all activity within JACK. There are a number of Event classes in
JACK. They can be categorised into the two broad categories of normal events and BDI
events.

Normal events

Normal events correspond to events in conventional event-driven programming. They are
transitoryandinitiateasingleimmediateresponse.Onreceiptof theevent,theagentselectsan
appropriate plan which either succeeds or fails. If the chosen plan fails, the agent does not try
another plan.The normal event classes are:

BDI events

These are used to represent a change in belief or circumstance that give the agent a sense of
purpose. The agent desires not to react to information, but rather to achieve something. By
default, all BDI agents can involve meta-level reasoning (i.e. reasoning about plan selection).
Depending on the type of BDI event (and the event's behaviour attributes) the agent may try
alternative plans and may even perform recalculation of theapplicable plan set before
selecting another plan to try. The BDI event classes are described in the following table.

Event Type Description

Event Base class for all normal events. Can only be posted internally.

MessageEvent Can be used to send events between agents.

Event Type Description

BDIFactEvent This type of event can only arise internally. By default, on
receipt of aBDIFactEvent, the agent can perform meta-level
reasoning, but it does not allow reconsideration of alternative
plans if the plan fails.

BDIMessageEvent This type of event can be used to send BDI events between
agents.By default,onreceiptof aBDIMessageEvent, theagent
can perform meta-level reasoning, but it does not allow
reconsideration of alternative plans if the plan fails.

BDIGoalEvent This type of event represents a goal or objective that an agent
wishes to achieve. It offers all the BDI features – meta-level
reasoning, recalculation of the applicable plan set and plan re-
selection if a plan fails. It can originate from within an agent
using@post, @subtask etc. In addition, it can originate as a
result of executing@achieve, @insist, @test and@determine
statements.



Practical 1 Introduction to JACK
Introductory notes

Agent Practicals
Release 5.0
10-June-05 17
Copyright © 2012, Agent Oriented Software Pty. Ltd.

Note that there are two other event classes to consider.

The brief descriptions given above of the BDI events are of the default behaviours that occur
when the event arises. This default behaviour can be modified by setting the behaviour
attributes of an event using#set behavior statements in the event to set the values of
particular attributes.InferenceGoalEvents can also be customised by setting behaviour
attributes. Details of the attributes can be found in theAgent Manual.

Event template

To define your own events, extend the appropriate JACK event class. Then add any members
requiredaspartof theeventstructure.Thesememberscanthenbeusedto convey information
to the agent when it receives the event. It is also necessary to specify at least one posting
method for the event.

Wewill illustratetheeventtemplateusingthebaseclassEvent. Notethatto defineaneventto
extend one of the other event types described earlier, you would replaceEvent with the
specific event type required: i.e.MessageEvent, BDIFactEvent, BDIMessageEvent,
BDIGoalEvent, InferenceGoalEvent or PlanChoice.

In a file calledEventType.event:

event EventType extends Event
  {
    // Any members required as part of the event structure.

    // Any declarations required to give the agent access to data or
    // beliefsets within the enclosing agent or capability.

#uses data DataType data_name;

    // Any #posted when declarations required so that the event
    // will be posted automatically when certain belief states arise.

#posted when { condition }

    // Declarations specifying how the event is posted within an agent.
    // You can have as many posting methods as you require.

#posted as postingMethodName(parameter list)
    {
      // method body
    }
  }

Event Type Description

InferenceGoalEvent This is an event that usesRule behavior which extends
BDI behavior by processing all applicable plans.

PlanChoice Thisis themechanismtheagentusesto performmeta-level
reasoning.



Practical 1 Introduction to JACK
Introductory notes

AgentPracticals
Release5.0

18 10-June-05
Copyright © 2012, Agent Oriented Software Pty. Ltd.

A posting method is executed whenever an instance of the event needs to be created. The
posting method describes everything that the agent needs to do to construct an instance of the
event.

Event base members

The actual base members will depend on the specific event type. They are:

Event methods

Cursor replied()

This method returns a cursor which can betrue or false depending on whether or not an
agenthasreceivedany repliesto agivenmessageevent.A cursoris aspecialtypeprovidedby
JACK. Cursors can be tested multiple times, and each time they are tested they may return a
differenttruthvalue.They arediscussedin moredetailin theAgent Manual, but at thispoint it
is sufficient to understandthatthismethodcanallow theagentto wait for areply to amessage
before it continues with a given task.

MessageEvent getReply()

Thiscomplementsreplied(). It allowsyou to retrieveareferenceto amessageeventthathas
been sent as a reply. If there are no replies it returns null. Again this method is only provided
for message events.

Member Description

String from This member contains the address of the agent from which the
event was sent. It is only present in the events that are used for
inter-agent communication e.g. MessageEvents.

String message This member is found inMessageEvent andBDIMessageEvent
events. The information in message is used in the interaction
diagram display.

String mode This member is only found in BDIGoalEvents. It indicates
whether the event arose from@achieve, @insist, @test or
@determine.



Practical 1 Introduction to JACK
Introductory notes

Agent Practicals
Release 5.0
10-June-05 19
Copyright © 2012, Agent Oriented Software Pty. Ltd.

An example

In MyEvent.event

  // Compare this with the earlier agent example.

event MyEvent extends BDIGoalEvent
  {
    String text; // For example.

#posted as
    myPostingMethod(String s)
    {
      text = s;
    }
  }

The Plan class

A plandescribesasequenceof actionsthatanagentcantakewhenaneventoccurs.Eachplan
is capableof handlingasingleevent.Whenanagentexecutesaplan,it startsby executingthe
plan'sbody() method – i.e. its top level reasoning method.

Reasoning methods are not the same as normal Java methods. Each statement in a reasoning
method is treated as a logical statement that can either pass or fail. Unless the plan explicitly
catersfor thepossibilityof astatement'sfailure(through,for example,anif-else construct),
failure of a statement causes a reasoning method to fail. If an agent reaches the end of a
reasoning method, then the reasoning method has succeeded. If it reaches the end of the
body() reasoning method, then the plan has succeeded.



Practical 1 Introduction to JACK
Introductory notes

AgentPracticals
Release5.0

20 10-June-05
Copyright © 2012, Agent Oriented Software Pty. Ltd.

Plan template

The template below can be used for any plans that do not involve meta-level reasoning.

In a file calledPlanType.plan

plan PlanType extends Plan
  {
    // JAL declarations

#handles event EventType eventref;

    // The following JAL declarations may be used in a plan definition
    // (as required).

#posts event EventType eventref2;
#sends event MessageEventType eventref3;
#uses data Type ref;
#reads data Type ref;
#modifies data Type ref;
#uses agent implementing InterfaceName agentref;
#uses interface InterfaceName ref;

#reasoning method methodName(parameter-list)
    {
      //Body of the reasoning method.
    }

#reasoning method pass()
    {
      // Post-processing and clean up steps when the plan has succeeded.
    }

#reasoning method fail()
    {
      // Post-processing and clean up steps when the plan has failed.
    }

static boolean relevant (EventType eventref)
    {
      // Code to determine when the plan is relevant to eventref.
    }

context()
    {
      // Logical condition to determine which plan instances are
      // applicable.
    }

    // The main reasoning method. All plans must have a body().
body()

    {
      // The plan body – the actual steps performed when
      // the plan is executed.
    }
  }

Note that reasoning methods can include special reasoning statements preceded by@.  They
are@achieve , @determine , @insist , @maintain , @post, @reply , @send, @sleep , @subtask ,
@test  and@waitFor . These reasoning statements can only be used inside plans. For more
details regarding the reasoning statements, refer to theAgent Manual.



Practical 1 Introduction to JACK
Introductory notes

Agent Practicals
Release 5.0
10-June-05 21
Copyright © 2012, Agent Oriented Software Pty. Ltd.

Plan base members

Agent agent

Identifies the agent to which the plan belongs

Plan base methods

An example

In a fileMyPlan.plan

  // Compare this with the example event and agent classes.
plan MyPlan extends Plan

  {
#handles event MyEvent me;

body()
    {
      System.out.println(me.text);
    }
  }

Building our example

We could test the example (which consists ofMyAgent.agent, MyEvent.event and
MyPlan.plan) with the following main program:

  public class Program
  {
    public static void main(String args[])
    {
      MyAgent agent1 = new MyAgent("agent1");
      agent1.method1("data to be posted");
    }
  }

Note: You may attempt exercises 2 to 5 now.

Method Description

relevant() This was shown in the template and is discussed in the
exercises.

context() This was shown in the template and is discussed in the
exercises.

getInstanceInfo() This is used to retrieve information about the instance of the
planit is calledon. It hasbeenprovidedfor usein meta-level
reasoning plans. It is not discussed further in this practical.



Practical 1 Introduction to JACK
Introductory notes

AgentPracticals
Release5.0

22 10-June-05
Copyright © 2012, Agent Oriented Software Pty. Ltd.

The Capability class

Capabilities represent functional aspects of an agent that can be 'plugged in' as required.
Capabilities are built in a similar fashion to simple agents – constructing them involves
declaringtheJAL elementsrequired.Events,beliefsets,plans,Javacodeandothercapabilities
can all be combined to make a capability.

Capability template

In a file calledCapabilityType.cap:

capability CapabilityType extends Capability [implements Interface]
  {
    // JAL declarations specifying the functionality associated with
    // the capability. The following declarations may be used in a
    // capability definition.

#handles event EventType;
#handles external {event} EventType;
#posts event EventType {reference};
#posts external event EventType {reference};
#private data Type name({args});
#exports data Type name({args});
#imports data Type name();
#uses plan PlanType;
#has capability CapabilityType reference;

    // Other data members and method definitions.
  }

Capability methods

String toString()

Capabilitiesdonothaveanamein thesensethatagentsdo,but they canbereferredto through
thechainof referencenamesusedin the#has capability statements.Thereferencenamecan
be retrieved by calling thetoString() method.

void postEvent( Event event )

The postEvent method is used to post events within capability code.

Agent getAgent()

If this method is called on a capability, it returns the containing agent.

protected void autorun()

This method can be overridden in order to provide some initialisation when the capability is
actually brought into being.



Practical 1 Introduction to JACK
Introductory notes

Agent Practicals
Release 5.0
10-June-05 23
Copyright © 2012, Agent Oriented Software Pty. Ltd.

An example

In a file calledMyCapability.cap:

capability MyCapability extends Capability
  {

#handles event MyEvent;
#uses plan MyPlan;

  }

The Beliefset class

JACK provides aBeliefset class which has been specifically designed to work within the
agent-oriented paradigm. The JACK Beliefset class is described in detail in the notes
provided with practical 2.

Note: You may now complete the practical 1 exercises 6 to 11.



Practical 1 Introduction to JACK
Exercise 1

AgentPracticals
Release5.0

24 10-June-05
Copyright © 2012, Agent Oriented Software Pty. Ltd.

Exercise 1
MakeabasicrobotagentthatcontainsaJavamethodthatprintsamessageto indicatethatthe
robot is painting a part.

Introduction

The aim of this exercise is to demonstrate how to build, compile and run a JACK program
using the JACK Development Environment (JDE). Consequently, no agent-oriented
programming concepts other than agent creation are involved.

Note: Thepracticalswill makeuseof thedesigntool to producedesigndiagramsandto create
initial skeleton type definitions for the application. The JDE supports multiple ways to add
detailto thetypedefinitions.However, to avoid confusionduringthepracticalswewill always
use theEdit as JACK File option to add type definition details.

Instructions

1. Make sure thatCLASSPATH is set to includejack.jar and the root path for your application.

2. In a new directory (calledex1) start the JDE using the following command:

   java -Xmx90m aos.main.Jack

3. Create a new project as follows:

– Left-click on theFile menu at the top left corner of the screen.

– Left-click onNew Project.

– A New Project File dialog box will appear.

– Name the project filePaintRobot and click on theNew button. The project file suffix
(.prj) will be added automatically.

– TheNew Project File dialog box will close and return the user to the JDE screen.

– In thetopleft cornerof thebrowserwindow, thenameof thenew projectwill appearin
red text.

4. We will now develop our application using the design tool. In this application we will
develop the following types of diagrams:

– A top level agent diagram which includes the details of messages sent/handled by an
agent.

– An agent-capability hierarchy diagram for each agent.

– A Data-Event-Plan (DEP) diagram for each capability.



Practical 1 Introduction to JACK
Exercise 1

Agent Practicals
Release 5.0
10-June-05 25
Copyright © 2012, Agent Oriented Software Pty. Ltd.

Note that when we add new components to a design diagram, the skeleton for the type
definition is automatically created and added to the browser. Links created between
components on the design canvas result in the corresponding declarations being added to the
typedefinitionsin thebrowser. Removing a link from adesigndiagramremovesthelink from
theunderlyingmodelandthechangewill bereflectedin thebrowser. Removing acomponent
from thedesigndiagramdoesnot remove it from theunderlyingmodel.It will still exist in the
browser and can be dragged back on to the design canvas to view its relationships with other
components in the diagram.

5. Create the top level agent diagram using the design tool.

– To accessthedesigntool, right-click on theDesign Views folder in theJDE.A pop-up
menu will appear.

– SelectAdd New Design View from the menu. A pop-up dialog box will appear
requesting a name for the design diagram.

– Give the design a name (Robot_AD) and click on theAdd New button.

– Thedesigntool canvaswill appear. Left-click ontheOpen design palette buttononthe
design tool menu bar.

– Drag the Agent icon from the design tool palette to the design tool canvas.

– Fill in thepop-updialogboxwith detailsof theRobot agent.MakesurethattheRobot
agent is in a package calledrobot. Click on theAdd New button. (The agent will now
be displayed in the browser in theAgent Types folder inside theAgent Model.)

– Youcanchooseto bein eitherSelectionmodeor Link mode.To enterSelectionmode,
click theChange to selection mode button on the design tool tool bar (theChange to
selection mode button displays an arrow icon). In Selection mode, you can click on
entities on the canvas and change their location on the diagram. Selected entities or
links can also be removed by first selecting them, then pressing theDelete selected
objects button. TheDelete selected objects button is the button displaying a cross
icon.To enterLink mode,click on theChange to link mode button(theChange to link
mode button displays a diagonal line). In Link mode you can make connections
between the entities on your diagram. Note that the direction of a link is significant.

6. In the browser, edit theRobot agent by right-clicking on the robot agent and selectingEdit
as JACK file. Add a Java method calledpaintPart() that contains the statement

System.out.println("Painting part now").

Close the robot agent file to ensure that there are no conflicts between editing the file in the
JDE browser and as a JACK file. In the editor window of the robot agent file, click theSave
button and then theClose button.



Practical 1 Introduction to JACK
Exercise 1

AgentPracticals
Release5.0

26 10-June-05
Copyright © 2012, Agent Oriented Software Pty. Ltd.

7. Use the browser to add the main program. This is added in the Other Files folder at the top
level of the browser hierarchy. Right-click on the Other Files folder and select Add New File
from the pop-up menu. Add the code for the main program in the Edit File window which
appears. Save the main program with the name Program.java. The following main program
can be used to test the paint robot:

   import robot.Robot;

   public class Program {
      public static void main( String args[] ) {
         Robot robot1 = new Robot("robbie");
         robot1.paintPart();
         System.exit(0);
      }
   }

8. Save the project. This can be achieved by selecting the Save Project option from the File
menu in the top left hand corner of the JDE.

The JDE window should look similar to the following:

Figure 1: The JDE window with project browser, Robot_AD design, design palette and
Program.java windows



Practical 1 Introduction to JACK
Exercise 1

Agent Practicals
Release 5.0
10-June-05 27
Copyright © 2012, Agent Oriented Software Pty. Ltd.

9. Compile and run the program within the JDE.

– Click on theTools menu and selectCompiler Utility from the drop-down menu.

– Click on theCompile Application tab and click theCompile button. If there are any
errors, they can be viewed in theOutput/Errors tab in theCompiler Utility.

– Whenyouhavesuccessfullycompiledtheapplication,click ontheRun Application tab
in theCompiler Utility. Click onProgram.class from the contents window and then
click ontheSelect File button.TheRun buttoncanthenbeselectedto startrunningthe
program.

Figure 2: TheRun Application tab of theCompiler Utility



Practical 1 Introduction to JACK
Exercise 2

AgentPracticals
Release5.0

28 10-June-05
Copyright © 2012, Agent Oriented Software Pty. Ltd.

Exercise 2
Extend the robot agent to use a JACK plan.

Introduction

In thisexercise,therobotagent'spaintPart() methodwill postaPaint event,thusallowing a
plan to be chosen to respond to this event. At this stage we will only have one plan,
PaintSpecifiedCurrentColour, whichhandlesthePaint event.Theplanwill print amessage
to indicate that the robot is painting a part a particular colour. Note that the plan
PaintSpecifiedCurrentColour would be more appropriately namedPaintSpecifiedColour
at this stage in the practical. However, this plan will be used to paint a part a specified colour
which matches the robot's current paint colour in later exercises, and it was felt that it would
be less confusing if the name was not changed.

As before,paintPart() is invoked from a Javamain() method (and runs on the Java main
thread) and is followed by aSystem.exit(0) call.

Plans and events are described in theIntroduction to JACK notes.  If necessary, read these
before beginning the exercise.

Instructions:

1. Use the design tool to add aPaint event to the application.

– If necessary, open theRobot_AD canvas by right-clicking onRobot_AD in theDesign
Views folder and selectingEdit "Robot_AD" from the pop-up menu.

– Drag an event from the design palette onto the canvas.

– Fill in thepop-updialogboxwith detailsof thePaint event.MakesurethatthePaint
event is in therobot package.

– Click on theAdd New button. (The event will now be displayed in the browser in the
Event Types folder inside theAgent Model.)

2. On thedesigncanvas,createaposts link from theRobot agentto thePaint event.Observe
thatadeclarationis addedautomaticallyby theJDEin theExternal Events folderof theRobot
agent.

3. On the design canvas, create ahandles link from thePaint event to theRobot agent.

4. Add aPaintSpecifiedCurrentColour plan to theRobot_AD canvas. The plan must also be
in therobot package.

5. On the design canvas, create auses link from theRobot agent to the
PaintSpecifiedCurrentColour plan.



Practical 1 Introduction to JACK
Exercise 2

Agent Practicals
Release 5.0
10-June-05 29
Copyright © 2012, Agent Oriented Software Pty. Ltd.

6. On the design canvas, create ahandles link from thePaint event to the
PaintSpecifiedCurrentColour plan. Your design diagram should now be similar to the
following diagram:

Figure 3: TheRobot_AD design diagram with one plan,PaintSpecifiedCurrentColour

7. In the browser, right-click on thePaint event and selectEdit as JACK file from the pop-up
menu. Complete thePaint event by making it:

– ExtendBDIGoalEvent;

– ContainaString datamember(field)calledcolour (this is theinformationthatwill be
carried with the event); and

– Include a posting method,paint(String c).  The parameterc is to be assigned to the
event data membercolour inside the posting method. The completedPaint event
follows:



Practical 1 Introduction to JACK
Exercise 2

AgentPracticals
Release5.0

30 10-June-05
Copyright © 2012, Agent Oriented Software Pty. Ltd.

   package robot;

   public event Paint extends BDIGoalEvent {
      public String colour;

      #posted as
      paint(String c)
      {
         colour = c;
      }
   }

Close the file to ensure that there are no conflicts between editing the file in the JDE browser
and as a JACK file. In the editor window of the file, click theSave button and then theClose
button.

8. Using theEdit as a JACK File option, edit theRobot agent and

– modify the#posts event Paint declaration so that it becomes:

        #posts event Paint pev;

– modify thepaintPart() method in theRobot agent so that it uses the
postEventAndWait() method to post aPaint event with the colour "white" as follows:

      postEventAndWait(pev.paint("white"));

Close the file to ensure that there are no conflicts between editing the file in the JDE browser
and as a JACK file. In the editor window of the file, click theSave button and then theClose
button.

9. Using theEdit as a JACK File option edit thePaintSpecifiedCurrentColour plan as
follows:

– check that the reference to thePaint event handled by the plan isev

– add the following statement to the plan'sbody reasoning method:

      System.out.println("Painting the part the requested colour: " +
                          ev.colour);

Close the file to ensure that there are no conflicts between editing the file in the JDE browser
and as a JACK file. In the editor window of the file, click theSave button and then theClose
button.

10. Save, compile and run the application.

Questions

1. What would happen if you usedpostEvent() insidepaintPart() instead of
postEventAndWait()? Try it!



Practical 1 Introduction to JACK
Exercise 2

Agent Practicals
Release 5.0
10-June-05 31
Copyright © 2012, Agent Oriented Software Pty. Ltd.

If you did not observe any difference, add @sleep(2) before the print the statement in the
PaintSpecifiedCurrentColour plan. Run the program using postEventAndWait() in the
paintPart() method. Replace the postEventAndWait with postEvent() and run the program
again. Explain your observations. Remove the @sleep(2) from the plan before you begin the
next exercise.

Make sure you change postEvent() back into postEventAndWait() before you begin the next
exercise.

2. postEventAndWait() should only be called from the Java main thread or from other Java
threads that are external to JACK. While the agent handles this event, the calling thread is
blocked and must wait until the agent returns its result. What problem would you envisage if
postEventAndWait() was called from an agent task?



Practical 1 Introduction to JACK
Exercise 3

AgentPracticals
Release5.0

32 10-June-05
Copyright © 2012, Agent Oriented Software Pty. Ltd.

Exercise 3
Enable the robot agent to select between multiple plans through relevance.

Introduction

In this example, the agent has two plans that can handle aPaint event:PaintAnyColour and
PaintSpecifiedCurrentColour.

ThePaintAnyColour plan prints the string"No colour specified. Painting the part."

ThePaintSpecifiedCurrentColour plan prints the string"Painting part the requested
colour:" followed by the colour that was requested in thePaint event.

Wheneveraneventis postedandanagentbeginsa taskto handletheevent,thefirst thing that
the agent must do is find an applicable plan to handle the event. Note that each plan is only
capable of handling a single event type which is identified by the plan's#handles event

declaration. It is possible (as in this example) that there is more than one plan capable of
handling a particular event type. To decide which of the plans are applicable, JACK employs
the following steps.

1. Identify the plans which handle the event type.

2. Use therelevant() method to check additional information regarding the event.

3. Use thecontext() method to check information stored as part of the agent's beliefs.

4. If there are still multiple plans left in the applicable plan set, additional means are used to
select one of them. At this stage, we will only be consideringprominence (or declaration
order). For more details, refer to theAgent Manual.

We will be looking at therelevant() method in this example. The
PaintSpecifiedCurrentColour planwill containarelevant() methodto ensurethattheplan
is only selectedif thereis acolourspecifiedin thecolour datamemberof thePaint event.If a
plan does not specify arelevant() method, the plan is relevant for all instances of the event.
Therelevant() method takes the following form:

   static boolean relevant(EventType eventref)
   {
      // Code to determine when the plan is relevant to this event.
   }

The next level of 'filtering' in plan selection (assuming the plan can handle the event and is
relevant for a particular instance of the event) is thecontext() method. This is discussed in
Exercise 4.

Note that the order of plan declarations within the agent (or capability) also has a bearing on
planselection.Theorderis calledprominence,andthemostprominentapplicableplanwill be
selected first. This means that ifPaintAnyColour is declared before



Practical 1 Introduction to JACK
Exercise 3

Agent Practicals
Release 5.0
10-June-05 33
Copyright © 2012, Agent Oriented Software Pty. Ltd.

PaintSpecifiedCurrentColour, it will alwaysbetheplanselectedto handlePaint eventsasit
does not have arelevant() or acontext() method associated with it.

Instructions

1. Use the design tool to add a new plan calledPaintAnyColour to theRobot_AD design
diagram.

– Add a link from theRobot agent to the new plan.

– Add a link from thePaint event to the new plan. Your design diagram should be
similar to the following diagram:

Figure 4: TheRobot_AD design diagram with thePaintSpecifiedCurrentColour and
PaintAnyColour plans



Practical 1 Introduction to JACK
Exercise 3

AgentPracticals
Release5.0

34 10-June-05
Copyright © 2012, Agent Oriented Software Pty. Ltd.

2. Use theEdit as a JACK File option to modify thePaintSpecifiedCurrentColour plan so
thatits relevant() methodperformsa testthatrecogniseseventswith non-emptystrings.For
example,

   static boolean relevant(Paint ev)
   {
      return (ev.colour != null && ev.colour.length() > 0);
   }

This plan will be used to paint a part the colour that was requested in thecolour member of
thePaint event. Note that if the robot is not currently painting with the requested colour an
alternative plan will be required. We will not write that plan or test for that condition in this
exercise – that is deferred until the next exercise.

Close the file to ensure that there are no conflicts between editing the file in the JDE browser
and as a JACK file. In the editor window of the file, click theSave button and then theClose
button.

3. UseEdit as a JACK File to edit thenew planto addthefollowing print statementto its body

reasoning method:

   System.out.println("No specified colour. Painting the part");

This is the plan to be used when aPaint event does not include a specific colour request. The
colour string will be null or empty. In this case the part will be painted with the colour being
used by the robot at the time of the paint request.

Close the file to ensure that there are no conflicts between editing the file in the JDE browser
and as a JACK file. In the editor window of the file, click theSave button and then theClose
button.

4. The#uses plan PaintAnyColour declaration should appear after the
PaintSpecifiedCurrentColour plandeclaration.Checktheorderby editingtheRobot agent.
If necessaryswapthedeclarationsvia theprojectbrowseror by editingthefile asaJACK file.

If editing the file as a JACK file, save and close the file before continuing.

5. Edit theRobot and modify itspaintPart() method so that it now takes aString argument
(the colour) and passes it to thepaint posting method.

If editing the file as a JACK file, save and close the file before continuing.

6. Edit themain() method inProgram.java, so that thepaintPart() method is invoked with
the first program argument, if any, and null otherwise. For example:

   robot1.paintPart( (args.length==0) ? null : args[0] );

Save and close the file to apply the changes before continuing.



Practical 1 Introduction to JACK
Exercise 3

Agent Practicals
Release 5.0
10-June-05 35
Copyright © 2012, Agent Oriented Software Pty. Ltd.

7. Save the project.

8. Compile and run the program a few times with and without command line arguments. The
command line arguments are added in theExtra Args text box of theCompiler Utility'sRun
Application window.

9. Swap the plan declarations within the agent. Compile and run the program again (with and
without command line arguments).

10. Swap the plan declarations back to normal before moving on to Exercise 4.

Questions

1. How is JACK choosing which plan to use when both plans are applicable?



Practical 1 Introduction to JACK
Exercise 4

AgentPracticals
Release5.0

36 10-June-05
Copyright © 2012, Agent Oriented Software Pty. Ltd.

Exercise 4
Enable the robot agent to select between multiple plans throughcontext, as well as relevance.

Introduction

Thecontext() method provides the next level of 'filtering' afterrelevant(). If a plan is
relevantto aparticularevent,thecontext() methoddetermineswhethertheplanis applicable
giventheagent'scurrentknowledge.Thecontext() methoddoesnot takeany argumentsand
its bodyis alwaysasingleJACK Agent Language logical expression. (JAL logicalexpressions
are composed of boolean members, logical members and beliefset cursor expressions which
can,in general,bindto multiplevalues.Logicalexpressionsandcursorsarediscussedin more
detail in theAgent Manual.) When evaluating thecontext() method, the agent will consider
all possible alternatives. Note that for every possible set of values that can satisfy the
context() method, a separate instance of the plan will be generated and will be available for
execution. This concept of multiple possible bindings and plan instances is illustrated in the
introductory beliefset exercise found in Practical 2.

Thecontext() method takes the following form:

context()
   {
      // Logical condition to determine which plan instances are
      // applicable (in this example test the value of paintColour).
   }

To illustrate the use ofcontext() in a plan, the robot agent will have aString data member
calledpaintColour, which stores the colour being used.

In this example we will also use

#uses interface Robot self;

within a plan. This statement gives the plan access to the members and methods in theRobot

class interface. In this particular example, it will allow the plan to access the robot's
paintColour member (self.paintColour).

Instructions

1. Use the design tool to add a new plan calledPaintSpecifiedNewColour to theRobot_AD
diagram. This plan is to deal withPaint events that request a specific colour, but which could
not be handled by thePaintSpecifiedCurrentColour plan, as the colour requested is not the
same as the agent's currentpaintColour. In thePaintSpecifiedNewColour plan, the agent's
paintColour member must first be changed to the new colour. In addition, when the colour
changes, it is necessary to give the part two coats of paint to ensure that no trace of the
previous colour remains. Use the design tool to add the required links between the plan, the
agent and thePaint event as follows:

– create a link from thePaint event to the plan



Practical 1 Introduction to JACK
Exercise 4

Agent Practicals
Release 5.0
10-June-05 37
Copyright © 2012, Agent Oriented Software Pty. Ltd.

– create a link from theRobot agent to the plan

Your design diagram should be similar to the following diagram:

Figure 5: TheRobot_AD design diagram with thePaintSpecifiedCurrentColour,
PaintAnyColour andPaintSpecifiedNewColour plans

2. UseEdit as a JACK File to modify theRobot agent to:

– containapaintColour memberof typeString with initial valueblack (thisstoresthe
colour currently being used by the robot); and

– contain a methodsetColour(String colour) that changespaintColour to colour.

Ensure that the plans are declared in the following order:

    #uses plan PaintSpecifiedCurrentColour;
    #uses plan PaintSpecifiedNewColour;
    #uses plan PaintAnyColour;

Close the file to ensure that there are no conflicts between editing the file in the JDE browser
and as a JACK file. In the editor window of the file, click theSave button and then theClose
button.



Practical 1 Introduction to JACK
Exercise 4

AgentPracticals
Release5.0

38 10-June-05
Copyright © 2012, Agent Oriented Software Pty. Ltd.

3. Use theEdit as a JACK File option to make the following changes to the new
PaintSpecifiedNewColour plan:

– check that it has the following declaration withev used as the reference to the event:

      #handles event Paint ev;

– modify therelevant() method to check that thePaint event's colour is a non-empty
string;

– add a#uses interface Robot self declaration so that it can access the robot's
setColour method to change the colour;

– invoke thesetColour method to change the robot'spaintColour to the colour
requested by thePaint event. This must be invoked inside the plan'sbody() method
before the 'painting' begins; and

– print thestring"Painting part the requested colour: "+self.paintColour using
an appropriate print statement inside thebody() method of the plan. This message
should appear twice, indicating that the part received two coats of paint.

Close the file to ensure that there are no conflicts between editing the file in the JDE browser
and as a JACK file. In the editor window of the file, click theSave button and then theClose
button.

4. Use theEdit as a JACK File option to edit thePaintSpecifiedCurrentColour plan.

– add a#uses interface Robot self declaration so that it can access the robot's
setColour method to change the colour;

– modify thecontext() method to test the agent's currentpaintColour as follows:

      context()
      {
         self.paintColour.equals(ev.colour);
      }

– change the print statement inbody() to

      System.out.println("Painting part the current colour "+
                            self.paintColour);

This will make it easier to distinguish between the alternative plans in the program output.

Close the file to ensure that there are no conflicts between editing the file in the JDE browser
and as a JACK file. In the editor window of the file, click theSave button and then theClose
button.

5. Modify thePaintAnyColour plan so that it now prints the string"No colour specified.
Painting the part" followedby therobot'scurrentpaintColour. To accessthepaintColour
member inside the plan, add a#uses interface Robot self declaration at the beginning of
the plan.



Practical 1 Introduction to JACK
Exercise 4

Agent Practicals
Release 5.0
10-June-05 39
Copyright © 2012, Agent Oriented Software Pty. Ltd.

If editing the file as a JACK file, save and close the file before continuing.

6. Modify themain()  method inProgram.java  so that it no longer passes a command line
argument to thepaintPart()  method but instead invokes the method several times as follows:

      System.out.println("test with red");
      robot1.paintPart("red");     // Should result in two coats.
      System.out.println("test with no specified colour (null)");
      robot1.paintPart(null);      // Should only be one coat –
                                   // slightly different message.
      System.out.println("test with green");
      robot1.paintPart("green");   // Should result in two coats.
      System.out.println("test with green again");
      robot1.paintPart("green");   // Should only be one coat.

Save and close the file to apply the changes before continuing.

7. Save the project.

8. Compile and run the program. Check that the output is correct.



Practical 1 Introduction to JACK
Exercise 5

AgentPracticals
Release5.0

40 10-June-05
Copyright © 2012, Agent Oriented Software Pty. Ltd.

Exercise 5
Illustrate the reposting of events when a plan fails.

Introduction

The way that an agent handles an event depends on the type of event. For example, when a
normal event is received by an agent, the agent initiates a task to handle the event. This task
involvesselectingandexecutingthefirst planthatis bothrelevantandapplicableto thisevent.
With normal events the initial selection is the only plan that is executed. In the case of BDI
events, the agent can apply more sophisticated reasoning to the plan selection, and can also
attempt to achieve its goal using other applicable plans if a plan fails.

This exercise illustrates how aBDIGoalEvent will attempt every applicable plan until it
succeeds. It will only fail when no more applicable plan instances remain to be tried. The
body() methodin aplanis theplan'smainreasoningmethod.It is executedwheneveraplanis
executed. Reasoning methods do not have the same execution structure as ordinary Java
methods. Each statement in a reasoning method is treated like a boolean expression, and each
semicolon between statements like an AND connector. This means that if any statement fails,
thenthereasoningmethodterminatesimmediatelyandfails.In thisexerciseyoucanmakethe
plan fail by adding the following statement in itsbody() method:

   false;

Instructions

1. Modify thePaintSpecifiedNewColour plan so that it prints the painting message once and
thenfails(addfalse; afterthefirst print statement).To illustratethattheplanactuallystopsat
that point, addSystem.out.println("After false statement"); after thefalse statement.
This print statement should not be executed.

If editing the file as a JACK file, save and close the file before continuing.

2. Save the project.

3. Compile and run the program.

4. Add afail() reasoning method that prints the string"PaintSpecifiedNewColour plan

failed".

If editing the file as a JACK file, save and close the file before continuing.

5. Save the project.

6. Compile and run the program.



Practical 1 Introduction to JACK
Exercise 5

Agent Practicals
Release 5.0
10-June-05 41
Copyright © 2012, Agent Oriented Software Pty. Ltd.

Questions

1. Which plan is now responsible for printing the second paint message that corresponds to the
second coat of paint?



Practical 1 Introduction to JACK
Exercise 6

AgentPracticals
Release5.0

42 10-June-05
Copyright © 2012, Agent Oriented Software Pty. Ltd.

Exercise 6
Provide the robot agent with aPainting capability.

Introduction

The capability concept is a means of structuring reasoning elements of agents into 'clusters'
that implement selected reasoning capabilities. This technique simplifies agent system design
and allows code reuse and encapsulation of agent functionality. In this example, we
encapsulate both the set of plans you have written so far and thePaint event into aPainting
capability.

Capabilities are described in theIntroduction to JACK notes. If necessary, read through the
notes before beginning the exercise.

Instructions

1. Add a new design diagram calledPainting_DEP. This will be the DEP diagram for a new
Painting capability. Then

– Drag a new capability from the design palette onto the new canvas. Call this new
capabilityPainting and add it to therobot package.

– Dragthethreepaintingplansfrom thebrowserontothePainting_DEP designdiagram.

– Drag thePaint event from the browser onto thePainting_DEP design diagram.

– Create links from thePainting capability icon to each of the plans.

– Create ahandles link from thePaint event to thePainting capability.

– The diagram becomes quite cluttered if we keep the capability on its DEP diagram. It
is useful to have it on the diagram to make the links and to check the links. However,
when this task is complete, the capability icon can be removed from the diagram
without changing the links. This is achieved by using the design tool inSelection
mode, selecting the capability icon on the canvas and then selecting theRemove
selected objects from diagram button. Use this procedure to remove the capability
from thePainting_DEP designdiagram.YourPainting_DEP diagramshouldbesimilar
to the following diagram.



Practical 1 Introduction to JACK
Exercise 6

Agent Practicals
Release 5.0
10-June-05 43
Copyright © 2012, Agent Oriented Software Pty. Ltd.

Figure 6: ThePainting_DEP design diagram with thePaintSpecifiedCurrentColour,
PaintAnyColour andPaintSpecifiedNewColour plans

2. Now that the plans and event are encapsulated in the new capability, we should remove the
links from theagentto theplansanddeclarethattheRobot agenthasthePainting capability.
This can be achieved by:

– deleting theuses links between theRobot agent and each of the painting plans on the
Robot_AD designdiagram.Takecarethatyoudonotdeletethelink thatcorrespondsto
the#uses interface Robot self declaration in each of the plans. An alternative
mechanismfor removing thelinks from theRobot to theplansis to edit theRobot type
definition using theEdit as JACK File option.

– deleting thehandles link between thePaint event and theRobot agent on the
Robot_AD design diagram.



Practical 1 Introduction to JACK
Exercise 6

AgentPracticals
Release5.0

44 10-June-05
Copyright © 2012, Agent Oriented Software Pty. Ltd.

– removing the components no longer required on theRobot_AD design diagram (i.e.
remove the three painting plans from the design diagram). YourRobot_AD diagram
should be similar to the following diagram:

Figure 7: TheRobot_AD design diagram with theRobot agent andPaint event

– creating a new design canvas calledRobot_cap_hier, dragging theRobot agent and
Painting capability onto the new design diagram, then creating ahas link from the
Robot agent to thePainting capability. TheRobot_cap_hier should appear similar to
the following diagram:



Practical 1 Introduction to JACK
Exercise 6

Agent Practicals
Release 5.0
10-June-05 45
Copyright © 2012, Agent Oriented Software Pty. Ltd.

Figure 8: TheRobot_cap_hier design diagram with theRobot agent andPainting capability

3. Edit thePainting capabilityandcheckthatthe#uses plan declarationsaredeclaredin the
the following order:

    #uses plan PaintSpecifiedCurrentColour;
    #uses plan PaintSpecifiedNewColour;
    #uses plan PaintAnyColour;

This is thesameorderasthey werepreviouslydeclaredin theagentdeclaration.If editingthe
file as a JACK file, save and close the file before continuing.

4. Save the project.

5. Compileandrun theapplication.Checkthattheoutputis correct.It shouldbesimilar to the
following:

   test with red
   Painting part the requested colour: red
   PaintSpecifiedNewColour plan failed
   painting the part the current colour: red
   test with no specified colour
   No specified colour. Painting the part red



Practical 1 Introduction to JACK
Exercise 6

AgentPracticals
Release5.0

46 10-June-05
Copyright © 2012, Agent Oriented Software Pty. Ltd.

   test with green
   Painting part the requested colour (1st coat) green
   PaintSpecifiedNewColour plan failed
   painting the part the current colour: green
   test with green again
   painting the part the current colour: green



Practical 1 Introduction to JACK
Exercise 7

Agent Practicals
Release 5.0
10-June-05 47
Copyright © 2012, Agent Oriented Software Pty. Ltd.

Exercise 7
Create a multi-agent system consisting of a robot agent and a part agent.

Introduction

In this exercise you will create a part agent that interacts with the robot agent. The part agent
will have aPaintRequesting capability that will enable it to send painting requests to the
robot agent. The part agent will post itselfPaintRequest events (by the invocation of a
submitPaintRequest() method in the main Java thread). ThePaintRequest event will be
handled by the part agent'sSendPaintCommand plan. TheSendPaintCommand plan will send a
Paint event to the robot agent.

Note that thePaint event must now be aBDIMessageEvent (a message event is required if the
event is to be sent between agents). We will also need to add

   #set behavior Recover repost

to thePaint event. BDI events have a default behaviour that determines what happens with
respect to plan reconsideration, applicable plan set recalculation and meta-level reasoning
(reasoning about which plan to choose). These default behaviours can be modified by setting
behaviour attributes. In this example, we set the recover attribute torepost which means that
the event will be reposted on failure. The applicable plan set will be recomputed (with
possibly different results/bindings – in this case our failedPaintSpecifiedNewColour plan
will havechangedtheagent'spaintColour member)andanotherapplicableplanwill betried.
This should become clearer when you run the example.

Instructions

7a – Organise the code into sub-folders in the JDE browser.

Beforewebegin addingthedefinitionsfor ourPart agent,wewill organisethecodesothatall
the code related to theRobot will be in Robot sub-folders in the JDE browser.

It is useful to organise the project in the browser according to entities that relate to theRobot

andentitiesthatrelateto thePart. Thiscanbeachievedby right-clickingonafolder/container
and selectingAdd Nested Container. The new nested container can be given an appropriate
name(e.g.robotor part).Componentscanbedraggedanddroppedinto theappropriatenested
container (e.g. all the painting plans can be dragged into a nested robot container inside the
Plan Types folder).

1. Organise the remainder of the project in the browser so that each folder has a nested robot
folder containing the definitions related to the robot. (It is not always clear which package an
eventshouldbelongto. Wegenerallyaddthemto thepackageof theagentthatcanhandlethe
event.)



Practical 1 Introduction to JACK
Exercise 7

AgentPracticals
Release5.0

48 10-June-05
Copyright © 2012, Agent Oriented Software Pty. Ltd.

2. Save the project. The browser window should look similar to the following:

Figure 9: The browser window with the project organised into nested containers

3. Compile and run the application.

7b – Create the Part agent and incorporate it into the application

1. Create a new design diagram calledPart_AD and

– Drag a new agent from the design palette onto the new canvas. Name the new agent
typePart and add it to a new part package.



Practical 1 Introduction to JACK
Exercise 7

Agent Practicals
Release 5.0
10-June-05 49
Copyright © 2012, Agent Oriented Software Pty. Ltd.

– Drag a new event from the design palette onto thePart_AD design diagram. Name the
new event typePaintRequest and add it to thepart package.

– On the design canvas, create aposts link from thePart agent to thePaintRequest
event.

2. In the browser create a nested container for the Part agent in theEvent Types folder. Drag
thePaintRequest eventinto thePart folder. As morecomponents(plansetc.)areaddedfor the
Part andRobot, store them in appropriate nested folders in the browser.

3. Create a new design diagram calledPart_cap_hier and

– Drag thePart agent from the browser onto thePart_cap_hier canvas.

– Draganew capabilityfrom thedesignpaletteontothePart-cap_hier canvas.Thenew
capability is calledPaintRequesting and must be added to thepart package.

– Create ahas link from thePart agent to thePaintRequesting capability.

4. Create a new diagram calledPaintRequesting_DEP and

– Drag a new plan from the design palette onto the new PaintRequesting_DEP canvas.
This plan is calledSendPaintCommand and is to be included in thepart package.

– DragthePaintRequest eventfrom thebrowserontothePaintRequesting_DEP canvas.

– Drag thePaint event from the browser onto thePaintRequesting_DEP canvas.

– Create ahandles link from thePaintRequest event to theSendPaintCommand plan on
thePaintRequesting_DEP design diagram.

– Create asends link from theSendPaintCommand plan to thePaint event on the
PaintRequesting_DEP design diagram. Note that it will be necessary to double-click
on the link and change it from the defaultposts link to asends link.

– DragthePaintRequesting capabilityfrom thebrowserontothePaintRequesting_DEP
design diagram. We will only have this on the diagram while we create/check the
required links between the capability and its components, otherwise the design
diagram will become too cluttered. While the capability is on the canvas, create the
following links:

• auses link from thePaintRequesting capability to theSendPaintCommand plan.

• ahandles link from thePaintRequest event to thePaintRequesting capability

• asends event from thePaintRequesting capability to thePaint event.

– Remove thePaintRequesting capability from the diagram. Note that the capability
and the newly created links still remain in the browser. (If you were to drag the
capabilitybackontothedesigndiagram,youwouldseethelinks onthediagram.)Your
PaintRequesting_DEP diagram should be similar to the following design diagram:



Practical 1 Introduction to JACK
Exercise 7

AgentPracticals
Release5.0

50 10-June-05
Copyright © 2012, Agent Oriented Software Pty. Ltd.

Figure 10: ThePaintReqesting_DEP design diagram

5. Edit thePaintRequest event as follows. The event must

– Be aBDIGoalEvent;

– Have two members:

      String robot;     // The name of robot agent to receive the
                        // paint request.
      String colour;    // The colour to paint the part.

– Haveapostingmethodrequest(String r, String c). Insidethepostingmethod,the
parameterr should be assigned to the event data memberrobot, and the parameterc
should be assigned to the event data membercolour.

If editing the file as a JACK file, save and close the file before continuing.



Practical 1 Introduction to JACK
Exercise 7

Agent Practicals
Release 5.0
10-June-05 51
Copyright © 2012, Agent Oriented Software Pty. Ltd.

6. Edit thePart agent and add asubmitPaintRequest(String robot, String colour)
methodthatwill postaPaintRequest eventcontainingthenameof therobotto sendthepaint
request to and the colour that the part is to be painted. UsepostEventAndWait() to post the
event.

If editing the file as a JACK file, save and close the file before continuing.

7. Edit theSendPaintCommand plan as follows:

– Change the name of thePaintRequest event being handled by the plan topreqev.

– Change the reference to thePaint event type in thesends declaration topev.

– Thebodyof thisplanmustusethe@send reasoningstatementto sendaPaint eventto
preqev.robot using thePaint event'spaint() posting method.preqev.colour is
passed as the argument to thepaint() posting method. The send statement to be
included in thebody is therefore:

         @send(preqev.robot, pev.paint(preqev.colour));

If editing the file as a JACK file, save and close the file before continuing.

8. Edit thePaint event to extendBDIMessageEvent, and set itsRecover behaviour attribute to
berepost (#set behavior Recover repost).

If editing the file as a JACK file, save and close the file before continuing.

9. Edit theRobot agent and remove thepaintPart() method and the#posts event Paint
declaration.

If editing the file as a JACK file, save and close the file before continuing.

10. Modify themain() method inProgram.java so that it:

– Creates a part agent as well as a robot agent;

– Invokesthepart'ssubmitPaintRequest(), with thenameof therobotandtherequired
colour (instead of invoking the now defunctpaintPart() method). The code should
contain tests similar to the following:

      System.out.println("test with red");
      part1.submitPaintRequest("robbie","red");
      System.out.println("test with no specified colour (null)");
      part1.submitPaintRequest("robbie",null);
      System.out.println("test with green");
      part1.submitPaintRequest("robbie","green");
      System.out.println("test with green again");
      part1.submitPaintRequest("robbie","green");

– Includes animport part.Part; statement.



Practical 1 Introduction to JACK
Exercise 7

AgentPracticals
Release5.0

52 10-June-05
Copyright © 2012, Agent Oriented Software Pty. Ltd.

11. Comment out theSystem.exit(0); statement inProgram.java.

Save and close the file to apply the changes before continuing.

12. Save the project.

13. Compile the program.

14. Predict what you would expect to be output by the program. Run the program. Are your
predictions correct?

Questions

1. What would happen if you had not added#set behavior Recover repost to thePaint
event?Testyourpredictionby commentingoutthe#set behavior statement.Why wasn'tthis
required when thePaint event was aBDIGoalEvent?

2. Explain the order of the output statements.



Practical 1 Introduction to JACK
Exercise 8

Agent Practicals
Release 5.0
10-June-05 53
Copyright © 2012, Agent Oriented Software Pty. Ltd.

Exercise 8
Make the part/robot messaging protocol two-way and demonstrate the use of the JACK
Interaction Diagram.

Introduction

In this exercise the robot agent will send a message to the part agent when it has finished
painting the part. The part agent will use aDisplayFinished plan to handle theFinished
event and will print a message to indicate that it has been painted.

Instructions

1. Now that we have illustrated the reposting of events, modify the
PaintSpecifiedNewColour plansothatit nolongerfails,but insteadhastwo paintingprint
statements (to provide two coats of paint).

1. Open thePaintRequesting_DEP.

– draganew eventontothedesigndiagram.Thisnew eventis to becalledFinished and
is to be in thepart package. AFinished event is sent by the robot to indicate that it
has finished painting the part the specified colour.

– Draganew planontothecanvas.Thisnew planis calledDisplayFinished andis to be
in thepart package. TheDisplayFinished plan is to handle aFinished event sent to
thePart agent by theRobot agent when it has finished painting the part. This will
allow us to view the interaction between the agents on the interaction diagram.

– Create ahandles link from theFinished event to theDisplayFinished plan.

– Drag thePaintRequesting capability from the browser onto the design diagram.

– Create auses link from thePaintRequesting capability to theDisplayFinished plan.

– Create ahandles link from theFinished event to thePaintRequesting capability.

– Remove thePaintRequesting capability from the design diagram. Your
PaintRequesting_DEP diagram should be similar to the following:



Practical 1 Introduction to JACK
Exercise 8

AgentPracticals
Release5.0

54 10-June-05
Copyright © 2012, Agent Oriented Software Pty. Ltd.

Figure 11: ThePaintReqesting_DEP design diagram with theDisplayFinished plan

2. Edit theFinished event and complete its definition. It must:

– extendBDIMessageEvent;

– have aString data member calledcolour;

– have a posting methodfinished(String c)which assignsc to thecolour data
member;

As this is a message event, it can display information on an interaction diagram – include the
following statement in the posting method

      message = "finished painting " + c;

wherec is the colour passed to the posting method andmessage is the (inherited)String data
member that will be displayed on the interaction diagram.

If editing the file as a JACK file, save and close the file before continuing.



Practical 1 Introduction to JACK
Exercise 8

Agent Practicals
Release 5.0
10-June-05 55
Copyright © 2012, Agent Oriented Software Pty. Ltd.

3. Edit theDisplayFinished plan as follows:

– change the reference for theFinished event tofev

– add a#uses interface Part self; declaration to the plan

– add the following print statement to thebody reasoning method of the plan:

      System.out.println(self.name() + " has been painted " +
                         fev.colour);

If editing the file as a JACK file, save and close the file before continuing.

4. Open thePainting_DEP design diagram and

– Drag theFinished event from the browser onto the canvas.

– Create asends link from each of the three painting plans to theFinished event.
Remember that the default link type isposts – this will need to be changed  tosends.

– Drag thePainting capability from the browser onto the design diagram and create a
sends link from thePainting capability to theFinished event.

– Remove thePainting capability from thePainting_DEP design diagram. Your
diagram should be similar to the following:



Practical 1 Introduction to JACK
Exercise 8

AgentPracticals
Release5.0

56 10-June-05
Copyright © 2012, Agent Oriented Software Pty. Ltd.

Figure 12: ThePainting_DEP design diagram

5. Modify thePaintAnyColour, PaintSpecifiedCurrentColour  and
PaintSpecifiedNewColour planssothatwhenthey havefinishedpaintingapart,they send
the part involved aFinished event using:

      @send(ev.from, fev.finished(self.paintColour));

whereev is thereferenceto thePaint eventbeinghandledby theplan,andfev is thereference
used in the#sends event Finished fev declaration in the plan.from is an inheritedString
data member.

If editing the file as a JACK file, save and close the file before continuing.



Practical 1 Introduction to JACK
Exercise 8

Agent Practicals
Release 5.0
10-June-05 57
Copyright © 2012, Agent Oriented Software Pty. Ltd.

6. Edit thePaint event, so that themessage member contains information about the paint
colour. InsidethepostingmethodassignaString to message, composedof Paint colour

plus the colour passed to the posting method. The inheritedString data membermessage
will be displayed on the interaction diagram.

If editing the file as a JACK file, save and close the file before continuing.

7. Modify themain() method inProgram.java, so that instead of one part agent there are
four. Modify the code so that eachsubmitPaintRequest() is associated with a different
part.

Save and close the file to apply the changes before continuing.

8. Save the project.

9. Predict what you would expect to be output by the program. Compile and run your
program to test your predictions. When all the parts have been painted, press theStop
button to stop the application.

10.Run the program with the interaction diagram. This is achieved by running the program
with -Djack.tracing.idisplay.type=id set in theJava Args text box in theCompiler
Utility'sRun Application window.

Questions

1. Explaintheorderof theoutputfrom tracestatementsfrom themainprogramandtheJACK
agents.



Practical 1 Introduction to JACK
Exercise 9

AgentPracticals
Release5.0

58 10-June-05
Copyright © 2012, Agent Oriented Software Pty. Ltd.

Exercise 9
Modify the behaviour of the robot agent so that painting takes a specific period of time to
complete.

Introduction

In the previous exercise, parts were painted the requested colours. However, painting only
tooktheamountof timerequiredto print outastatementindicatingthattherobotwaspainting
the part a particular colour. We will discover some interesting effects if we allow the plans
involved to 'sleep' for a short time while the robot paints the part. To achieve this, we use the
reasoning method statement@sleep.

The@sleep statement takes the following form:

   @sleep(double timeout);

timeout representstheperiodof timethattheagentmustwait beforecontinuingwith theplan.
The time-out period is specified in 'ticks' on the agent's clock. The actual time depends on the
Timer thattheagentis using.If thetimer is thereal-timeclock (thedefault), thenit represents
a sleep period in seconds.

Note: @sleep only causes the current task to sleep. Any other tasks that the agent is currently
executing proceed as normal.

Instructions

1. Modify the 'painting' plans so that they contain an@sleep(5) statement to sleep for 5
seconds after they print the message to indicate that they are painting a part.

If editing the files as JACK files, save and close them before continuing.

2. Save the project.

3. Compile and run the program with the interaction diagram.

Questions

1. How do you explain the output?

2. How can you ensure that the robot does not begin a new task to start painting another part
while it is still 'busy'?



Practical 1 Introduction to JACK
Exercise 10

Agent Practicals
Release 5.0
10-June-05 59
Copyright © 2012, Agent Oriented Software Pty. Ltd.

Exercise 10
Synchronise the message protocol between the part and the robot.

Introduction

In thepreviousexample,we foundthatwhile therobotwaspaintingapart,it waspossiblefor
it to receive requeststo performothertasks.If thereis nothingin theplansto make themwait
until the robot is not busy, the robot may begin a new task and changepaintColour before it
has finished painting a particular part. There are various schemes you may have thought of to
dealwith this.Someof themmayrequirefeaturesin JACK thatwehavenotyetcovered,such
asusingabeliefsetto storetherobotstateandwaitinguntil therobotis no longerbusybefore
servicing the next request.

In this exercise, we illustrate the use of@reply to set up a protocol between the part and the
robot. The part sends the request to the robot, then waits for a reply before continuing to the
endof theSendPaintCommand plan.TheSendPaintCommand planis executedin responseto the
PaintRequest event that is posted usingpostEventAndWait() inside the
submitPaintRequest() method. As it usespostEventAndWait(), the method will not return
until theSendPaintCommand plan has completed. This means that the next
submitPaintRequest() in the main thread will not be invoked until the part involved in the
previous request has received a reply to indicate that it has been painted.

Of course, if any otherPaint events are sent to the robot from elsewhere, it is still possible to
have the problems we experienced in Exercise 9. In Exercise 11, we will use an alternative
solution to avoid this problem.

The@reply statement takes the form:

   @reply(OriginalMessageEvent, ReplyMessageEvent)



Practical 1 Introduction to JACK
Exercise 10

AgentPracticals
Release5.0

60 10-June-05
Copyright © 2012, Agent Oriented Software Pty. Ltd.

The @reply  statement is used by an agent to reply to a message that it has received from
another agent. It replies to the sending agent with a message event which arrives as a data
object on the reply queue of the original message. This is illustrated in the following code
fragment:

   // In the part's sending plan.

plan SendPaintCommand extends Plan
   {

#sends event Paint pev;
         :
         :

body()
      {
         // Need to have an instance of the MyMessage event to use
         // with replied() and getReply()
         Paint q = pev.paint(...);

         //Send to robot1
         @send("robot1",q);

@waitFor(q. replied());

         // Finished is an event defined in your system
         Finished fev = (Finished) q. getReply();

         // Do something with reply
           :
           :
      }
   }

   // In the robot's receiving plan
plan PaintCurrentColour extends Plan

   {
#handles event Paint pev;
#sends event Finished rev;

                :
                :

body()
      {
                :
                :

@reply(pev, rev.finished(...));
                :
                :
      }
   }

Note that the message event that is returned using @reply  does not trigger a new task or plan.



Practical 1 Introduction to JACK
Exercise 10

Agent Practicals
Release 5.0
10-June-05 61
Copyright © 2012, Agent Oriented Software Pty. Ltd.

Instructions

1. RemovetheDisplayFinished planfrom theprojectby removing it from theplansfolder in
the browser. This is achieved by right-clicking on the plan and selectingRemove
"DisplayFinished" from the pop-up menu. Note that you also need to remove the#handles
external event Finished declaration from thePaintRequesting capability.

2. Modify theSendPaintCommand plan so that after it sends aPaint message to the robot it
waitsfor a reply. Whenit receivesthereply it usesgetReply() to accessthereply (whichwill
beaFinished event).It mustthenprint amessageto indicatethatit (theagentname),hasbeen
painted a particular colour. The colour is available from the reply (i.e. theFinished event).

If editing the file as a JACK file, save and close the file before continuing.

3. Modify the robot's paint plans, so that when they complete painting a part they use@reply
to reply with aFinished event (which conveys the colour that the part was painted). Remove
the@send statements that were used to send theFinished event in the earlier exercises.

If editing the file as a JACK file, save and close the file before continuing.

4. Save the project.

5. Compile and run the program with the interaction diagram.



Practical 1 Introduction to JACK
Exercise 11

AgentPracticals
Release5.0

62 10-June-05
Copyright © 2012, Agent Oriented Software Pty. Ltd.

Exercise 11
Use a semaphore to ensure that the robot only attempts to paint one part at a time.

Introduction

In Exercise10,themainprogramonly sentanew paintrequestto therobotwhentheprevious
part had been painted. This was because thesubmitPaintRequest methods invoked from the
main Java thread used thepostEventAndWait method. ThesubmitPaintRequest method did
not return until the part had received a reply to indicate that the paint process had been
completed.If thiswasguaranteedto betheonly waythatpaintrequestsweresentto therobot,
noconflictwouldarise.However, if any otherpaintrequestsweresentfrom theJACK thread,
the robot could attempt to paint more than one part at the same time.

An alternative technique to ensure that the robot only attempts to paint one part at a time is to
use a semaphore. A semaphore is a synchronisation resource which can be used to establish
mutual exclusion regions of processing in JACK plans and threads.  A semaphore is a binary
resourcethatplansandthreadsmaywait for andsignalonwhenthey havecompleted.Waiting
entities queue on the semaphore and acquire the semaphore in FIFO order.

The semaphore has a single constructor:

   Semaphore()

Methods are provided to grab and release the semaphore.signal() is used to release the
semaphore. The semaphore is grabbed initially by the constructing thread (or plan) and must
thus be released by a call tosignal(). To grab the semaphore from within a plan, use
planWait(). TheplanWait() method returns a special JACK type, theCursor.

The cursor concept originates from relational databases, where a query can return multiple
tuples in the form of a result set. Access to the elements in this set is then provided through a
cursor. In JACK, theseconceptshavebeenextendedto providecursorswhichnotonly operate
in the conventional manner but also operate on the temporal evolution of a query. The latter
typeof cursoris typically usedin JACK applicationsto determinewhenaparticularcondition
becomestrue.Cursorswhichprovide thisadditionalcapabilitywithin JACK areimplemented
astriggered cursors. Triggered cursors are not checked using a busy-wait loop – rather, they
are only tested when the agent performs a modification action that impacts on the cursor. The
cursor returned by theplanWait() method is triggered when the semaphore is grabbed by the
plan.

This means that a plan can use the@waitFor reasoning statement to wait until the plan has
been able to grab the semaphore before it begins painting the part.

In thisexerciseweintroduceanew ProcessPaintRequest plan.Thisplancanonly paintapart
when it has the semaphore.  If it does not have the semaphore, it must wait until it gets the
semaphore before it paints the part.



Practical 1 Introduction to JACK
Exercise 11

Agent Practicals
Release 5.0
10-June-05 63
Copyright © 2012, Agent Oriented Software Pty. Ltd.

Instructions

1. Create the named data of typeSemaphore that is to be used to prevent the robot from
attempting to paint more than one part at a time.

– Open theData Model container.

– Right-click on theExternal Classes folder and selectAdd New External Class.

– In the pop-up window that appears enterSemaphore as the name of the external class
and enteraos.jack.util.thread as the package.

– Click on theAdd New button.

– In theAgent Model container, right-click on theNamed Data folder and selectAdd
New Named Data from the menu.

– In the pop-up window entermutex as the name of the data and select
aos.jack.util.thread.Semaphore as its type.

– Click on theAdd New button.

2. Open thePainting_DEP design diagram and

– Remove thesends links from the three 'painting' plans to theFinished event.

– Draganew planfrom thedesignpaletteontothePainting_DEP designdiagramcanvas.
The new plan is calledProcessPaintRequest and is to be part of therobot package.

– Create a new link from theProcessPaintRequest event to theFinished event.

– Drag a new event from the design palette onto thePainting_DEP design diagram
canvas. The new event is to be calledStartPainting and is to be part of therobot
package.

– Remove the links between thePaint event and the three 'paint' plans.

– Create a new link from thePaint event to theProcessPaintRequest plan.

– Create aposts event link from theProcessPaintRequest plan to theStartPainting
event.

– Createhandles links from theStartPainting event to each of the three 'painting'
plans.

– Drag themutex named data onto the canvas.

– Create a link from theProcessPaintRequest plan to themutex named data.

– Drag thePainting capability onto thePainting_DEP design diagram.



Practical 1 Introduction to JACK
Exercise 11

AgentPracticals
Release5.0

64 10-June-05
Copyright © 2012, Agent Oriented Software Pty. Ltd.

– Create the following links:

• A uses link from thePainting capability to theProcessPaintRequest plan.

• A handles link from theStartPainting event to thePainting capability.

• A posts link from thePainting capability to theStartPainting event.

• A #private link from thePainting capability to themutex data.

– Remove thePainting capability from thePainting_DEP design diagram. Your
Painting_DEP should be similar to the following diagram:

Figure 13: ThePainting_DEP design diagram with theProcessPaintRequest plan,
StartPainting event andmutex named data

3. Edit theStartPainting event so that it:



Practical 1 Introduction to JACK
Exercise 11

Agent Practicals
Release 5.0
10-June-05 65
Copyright © 2012, Agent Oriented Software Pty. Ltd.

– ExtendsBDIGoalEvent.

– Has aString membercolour and aString memberfrom.

– Has a posting method calledstartPainting:

      startPainting(String c, String f)
      {
         colour = c;
         from = f;
      }

If editing the file as a JACK file, save and close the file before continuing.

4. As thesemaphoreis grabbedinitially by theconstructingthread,it mustalsobereleasedby
a call tosignal(). The#private data Semaphore mutex(); declaration constructs the
semaphore in the capability. Painting capability. To release the semaphore after it has been
constructed, edit the capability and override itsautorun method as follows:

      protected void autorun()
      {
         mutex.signal();
      }

5. Edit theProcessPaintRequest plan as follows:

– Edit thedeclarationsat thebeginningof theplanto usethefollowing eventreferences:

      #handles event Paint pev;
      #posts event StartPainting spev;
      #sends event Finished fev;

– Edit thebody of theplan.Thisplanwaitsuntil it ownsthesemaphorebeforeit subtasks
the appropriate 'painting' plan to paint the part. When the 'painting' subtask is
complete,theProcessPaintRequest planmustsendaFinished eventbackto thepart.
In addition, when the subtask is complete, this plan must release the semaphore. The
body should therefore be as follows:

      @waitFor(mutex.planWait()); // Wait for semaphore (mutex).

      try {
         @subtask(spev.startPainting(pev.colour, pev.from));
         @send(pev.from, fev.finished(pev.colour));
      }
      finally {
         mutex.signal(); // Release semaphore (mutex).
      }

If editing the file as a JACK file, save and close the file before continuing.

6. Use the browser to remove the@reply statements from the three 'painting' plans.

7. Remove the@waitFor reply and associated statements from thePart agent's
SendPaintCommand plan.



Practical 1 Introduction to JACK
Exercise 11

AgentPracticals
Release5.0

66 10-June-05
Copyright © 2012, Agent Oriented Software Pty. Ltd.

8. Open thePaintRequesting_DEP design diagram and

– Drag a new plan from the design palette onto thePaintRequesting_DEP design
diagramcanvas.Thenew planis to becalledDisplayFinished andis to bepartof the
part package.

– Create ahandles link from theFinished event to theDisplayFinished plan.

– Drag thePaintRequesting capability onto thePaintRequesting_DEP design diagram
canvas.

– Create the following links:

• A uses link from thePaintRequesting capability to theDisplayFinished plan.

• A handles link from theFinished event to thePaintRequesting capability.

– Remove thePaintRequesting capability from thePaintRequesting_DEP design
diagram. YourPaintRequesting_DEP diagram should be similar to the following:

Figure 14: ThePaintReqesting_DEP design diagram with theDisplayFinished plan and
Finished event



Practical 1 Introduction to JACK
Exercise 11

Agent Practicals
Release 5.0
10-June-05 67
Copyright © 2012, Agent Oriented Software Pty. Ltd.

9. Edit theDisplayFinished plan and

– modify the#handles declaration to usefev as the reference to theFinished event
handled by the plan.

– Add a#uses interface Part self; declaration.

– Add the details to thebody of the plan. All that this plan needs to do is to display a
messageto indicatethattheparthasbeenpaintedaparticularcolour. It shouldcontain
a print statement similar to the following:

      System.out.println(self.name()+" has been painted "
                         +fev.colour);

wherefev is the reference to theFinished event handled by the plan.

If editing the file as a JACK file, save and close the file before continuing.

10. Save the project.

11. Compile and run the project.



Practical 1 Introduction to JACK
Exercise 11

AgentPracticals
Release5.0

68 10-June-05
Copyright © 2012, Agent Oriented Software Pty. Ltd.



Practical 2 JACK Beliefset Relations

Agent Practicals
Release 5.0
10-June-05 69
Copyright © 2012, Agent Oriented Software Pty. Ltd.

Practical 2 J ACK Beliefset Relations

Intr oductor y notes

JACK beliefs

JACK beliefset relations are intended to be used for the maintenance of agent beliefs, which
arecentralto thenotionof BDI. NormalJavadatastructurescanalsobeusedfor thispurpose,
but JACK beliefsetrelationshavebeendesignedspecificallyto work within theagent-oriented
paradigm, and provide facilities not available with other data storage techniques. These
additional facilities include:

• Automatic maintenance of logical consistency and key constraints.

• A choice of Open World semantics (where a belief is either true, false or unknown) or
Closed World semantics (where a belief is either true or false).

• The ability to post events automatically when beliefs change in the beliefset.

• Support for beliefset cursors and logical members, which enables beliefset access to be
implemented through unification.

NotethatJACK only providestheinfrastructurefor adding,removing andretrieving beliefs.If
othercapabilitiesarerequired(suchasbeliefpropagation),thenthey mustbeimplementedby
the user. Also note that beliefs are associated with one agent only – the notion of a collective
beliefstructurewhich is maintainedby morethanoneagentis notsupported.JACK allowsan
agent's beliefs to be made available to other agents but with major restrictions regarding
population and access.

In JACK, beliefs are modelled as tuples. Every tuple must have a unique key which is
composed of zero or more fields. In addition to the key, the tuple contains zero or more data
fields.If thekey containszerofields,only onetupleis allowedin thebeliefset.It is permissible
for the key to be composed of all fields in the tuple.

A JACK beliefset is populated using theBeliefSet add() method. Retraction and retrieval of
beliefs also follow the relational model in that both functions support the notion of tuple
specification. A tuple specification consists of components for each tuple field where each
component can either be a value or a wildcard symbol (e.g. *) which indicates that any value
for that field is acceptable.

In JACK, tuple specification is implemented as an argument list consisting of JACK
expressions (corresponding to values) and unbound logical members (corresponding to
wildcards). Logical members follow the semantic behaviour of variables from logic
programminglanguagessuchasProlog,wherevariablebindingoccursthroughtheprocessof
unification. Unification can potentially provide multiple bindings for the unbound logical
members – JACK provides access to these bindings (if required) through a beliefset cursor.



Practical 2 JACK Beliefset Relations
Introductory notes

AgentPracticals
Release5.0

70 10-June-05
Copyright © 2012, Agent Oriented Software Pty. Ltd.

This access can be transparent to the user (e.g. when a beliefset query appears in a composite
logical expression) or under user control. In the latter case, the cursor methodnext() is
available to provide access to the next binding.

Oncea logicalmemberhasbeenbound,its valuecannotbechangedandanaccessorfunction
(e.g.getValue()) is required to access the value of the bound logical member.

Belief retraction is achieved in JACK through theremove() andremoveAll() methods.  Note
thatremove() is aBeliefSet method (and takes a tuple specification as its argument list)
whereasremoveAll() is aBeliefSetCursor method and takes no arguments.

Belief retrieval is achieved in JACK through user defined query methods which take a tuple
specification as their argument list. Overloading of query methods is permitted. A query
methodwith anargumentlist consistingsolelyof (non-logical)JACK expressionsis valid – it
is usedto determinewhetheror notaparticularbelief is held.JACK alsosupports(throughthe
view construct) the retrieval of beliefs which are constructed from multiple beliefsets.

Once asserted, a JACK belief cannot be modified directly. The only way to change a belief is
to:

• add a revised belief; or

• remove the belief.

JACK supportsthepostingof eventswhenanagent'sbeliefschange(e.g.throughanadd() or
remove()). The following beliefset callbacks are available for this purpose –addfact(),
newfact(), delfact(), endfact() andmodfact(). If this capability is required in a particular
application, the developer must provide implementations for the callbacks that are actually
used.

If you wish to populate a beliefset from a data file, then you can read records from a data file
and explicitly add the records to the beliefset usingadd(). Typically, you would perform this
activity from within the beliefset constructor, with the filename passed as an argument.

Alternatively, you can initialise tuple objects directly using the JACOB Object Modelling
Language,whichis describedin theJACK™ IntelligentAgentsJACOBManual. Beliefsetsare
provided with aread() method which takes a JACOB file as its argument and populates the
beliefset according to the contents of the file. JACOB can be used for initialising any JACK
objects, not just beliefsets and is also used to exchange objects between processes. In this
latter capacity, it provides a lightweight alternative to Java serialization and CORBA.



Practical 2 JACK Beliefset Relations
Introductory notes

Agent Practicals
Release 5.0
10-June-05 71
Copyright © 2012, Agent Oriented Software Pty. Ltd.

JACK  beliefset  definition

The general form for a Closed World JACK beliefset definition is:

beliefset RelationName extends ClosedWorld
  {
    // JAL declarations.
    // The following declarations can be used in a
    // JAL beliefset relation:
    //
    // Zero or more key field declarations.

#key field FieldType FieldName;
    // Zero or more value field declarations.

#value field FieldType FieldName;

    // Declaration of any events that are posted when changes are
    // made to the tuples. This only happens when a beliefset callback
    // is defined.

#posts event EventType ref;

    // Declaration of queries that the agent can perform on a relation.
    // They can include:

#indexed query queryName( parameter list);
#linear query queryName(parameter list);
#complex query queryName(parameter list) {method body}
#function query ReturnType queryName(parameter list) { method body}

    // Note that only the prototype is declared for indexed and linear
    // queries - the actual query class (which will be a beliefset
    // cursor) is generated automatically by the JACK compiler.

    // Beliefset callbacks (if required). The prototypes are:
    public void addfact(Tuple t,BeliefState is)
    // Called when a belief is added.
    public void newfact(Tuple t,BeliefState is,BeliefState was)
    // Called when a new belief is added.
    public void delfact(Tuple t,BeliefState was)
    // Called when a belief is removed.
    public void endfact(Tuple t,BeliefState was,BeliefState is)
    // Called when a belief is removed.
    public void modfact(Tuple t,BeliefState is,

Tuple knocked,Tuple negated)
    // Called when a belief is modified.
    public void moddb()
    // Catch-all.
  }

Theopenworld'sbeliefsetrelationdefinitiontakesthesameform asthatshown for theclosed
world except that in the first line ClosedWorld is replaced with OpenWorld.



Practical 2 JACK Beliefset Relations
Introductory notes

AgentPracticals
Release5.0

72 10-June-05
Copyright © 2012, Agent Oriented Software Pty. Ltd.

An example

The following JACK beliefset could be used to maintain beliefs regarding politicians.

beliefset Politician extends OpenWorld
  {

#key field String name;
#value field String party;
#value field String portfolio;

#indexed query get(
          String name,String party,logical String portfolio);

#indexed query get(
logical String name,String party,String portfolio);

#indexed query get(
          String name,logical String party,logical String portfolio);

#indexed query get(
logical String name,String party,logical String portfolio);

#posts event Elected e;

    // Callback is invoked when a new belief is added.
    public void newfact(Tuple t, BeliefState is, BeliefState was)
    {
       // The Politician__Tuple class is generated by JACK.
       // NB: Politician__Tuple has two underscores.
       Politician__Tuple pt = (Politician__Tuple) t;

       // Only post an event if the politician added is the prime
       // minister.
       if(pt.portfolio.equals("Prime Minister"))

postEvent(e.newPrimeMinister(pt.name,pt.party,pt.portfolio));
    }
  }

An agent can then have read/write access to a beliefset of this type by including a declaration
like the following in the agent definition:

#private data Politician mps();

The agent might populate the beliefset through a plan calledNewMember:

plan NewMember extends Plan
  {

#handles event elected e;
#modifies data Politician mps;

body()
    {
        mps.add(e.name,e.party,e.portfolio);
    }
  }



Practical 2 JACK Beliefset Relations
Introductory notes

Agent Practicals
Release 5.0
10-June-05 73
Copyright © 2012, Agent Oriented Software Pty. Ltd.

Other plans might then access the beliefset in various ways.

  // Example 1.
  // Is Humphrey Bear, a member of the Honey Party, Prime Minister?
  // Note: the following code will only work as intended if there can
  // only be one Prime Minister. Why?

logical String name;
      mps.get(name,"Honey Party","Prime Minister");
      if (name.getValue().equals("Humphrey Bear")
      {
        // Do something
      }

  // Example 2.
  // Are there any elected members of the Honey Party whose first
  // name is Rupert?
  // What happens in this example if the first match found is not
  // Rupert?
  // Refer to the section on Composite Logical Expressions in the
  // Plans chapter in Agent Manual for a more detailed discussion.

logical String name;
logical String portfolio;

      if (mps.get(name,"Honey Party",portfolio) &&
               (name.getValue().indexOf("Rupert") == 0))
      {
        // Do something.
      }

  // Example 3.
  // Have a picnic for all elected members of the Honey Party when
  // Paddington Bear gets elected.

    // Wait until Paddington Bear is elected.
logical String portfolio;
#posts event SendInvitations sie;
@waitFor(mps.get("Paddington Bear","Honey Party",portfolio));
@post(sie.invite("Honey Party"));

  //The sending of invitations is achieved with the following plan
  //and event.
plan PrintInvitations extends Plan

  {
#handles event SendInvitations si;
#uses data Politician mps;
logical String name;
logical String portfolio;

context()
    {
       mps.get(name, si.politicalParty, portfolio);
    }

body()
    {
      System.out.println("send invitation to "+name.getValue());
    }
  }



Practical 2 JACK Beliefset Relations
Introductory notes

AgentPracticals
Release5.0

74 10-June-05
Copyright © 2012, Agent Oriented Software Pty. Ltd.

event SendInvitations extends InferenceGoalEvent
  {
    String politicalParty;

#posted as invite(String p)
    {
      politicalParty = p;
    }
  }

  // Example 4.
  // Sack Little Bear.
    mps.remove("Little Bear", "Honey Party", "Treasurer");

  // Example 5.
  // Sack the entire Honey Party.

logical String name;
logical String portfolio;

    mps.get(name,"Honey Party",portfolio).removeAll();

Note: You may now complete Practical 2 exercises 1 to 5.



Practical 2 JACK Beliefset Relations
Exercise 1

Agent Practicals
Release 5.0
10-June-05 75
Copyright © 2012, Agent Oriented Software Pty. Ltd.

Exercise 1
Set up a Bill of Materials (BOM) beliefset.

Introduction

In this exercise you will create a simplified BOM beliefset to be used within aPlanner agent.
A BOM is a data structure used in manufacturing to describe the component/subcomponent
structure of part assemblies. In this tutorial, the BOM will only capture the component/
subcomponent structure: in practice, it will contain much more information, such as the
number of a particular component that is required, whether the component is made internally
or is outsourced etc.

Youwill alsocreateamainprogramto readBOM dataprovidedby theuser. This information
will be stored in a JACK beliefset which is private to thePlanner agent. An alternative
mechanism for initialising the beliefset is to use a JACOB file. This alternative is used in
Exercise 5.

Instructions

1. Create a directory calledpractical2/ex1. In this directory, start the JDE and open a new
project called BOM.

2. Create a beliefset type calledBOM:

– Open theData Model container in the browser.

– Right-click on theBeliefset Types folder and selectAdd New Beliefset Type from the
pop-upmenu.Call thebeliefsetBOM andaddit to thebom package.It is to havetwo key
fieldsof typeString. Onefield is usedto storeacomponenttype,andtheotherfield is
used to store a subcomponent type. This means that in this beliefset there will ben
entries per component, wheren is the number of subcomponent types that are used to
build that component. Note that we distinguish between subcomponent types and
subcomponents.For example,a tablemayhave two subcomponenttypes(topandleg)
but five subcomponents (one top and four legs).

– Use theEdit as JACK File option to add the two key fields and agetSubcomponent
query to the beliefset. In Exercise 2 thegetSubcomponent query will be used to find a
subcomponent of a given component. This means that the subcomponent field is to be
an output field in the query. Although this query is not required until Exercise 2, it is
added now because a JACK beliefset must have at least one query. YourBOM beliefset
should be similar to the following:



Practical 2 JACK Beliefset Relations
Exercise 1

AgentPracticals
Release5.0

76 10-June-05
Copyright © 2012, Agent Oriented Software Pty. Ltd.

      package bom;

      public beliefset BOM extends OpenWorld {
          #key field String component;
          #key field String subcomponent;
          #indexed query getSubcomponent(String component,
                                  logical String subcomponent);
      }

3. We will now use the design tool to define an agent,Planner, that will store component/
subcomponent tuples in a private beliefset of typeBOM:

– Create a new design diagram calledPlanner_AD.

– Drag a new agent onto thePlanner_AD design canvas. It is to be calledPlanner and it
is to be in thebom package.

– DragtheNamed Data icon from thedesignpaletteontothedesigncanvas.Thenamed
data is to be calledbom and is to be of typebom.BOM.

– Create aprivate link from thePlanner agent to thebom named data on the design
canvas.

4. The beliefset will be populated at agent construction time. Consequently the agent's
constructor will be passed two strings – the agent's name and the name of a file containing
component-subcomponentdetails.Theconstructormustreadeachcomponent-subcomponent
relationfrom thefile, andaddtheinformationto theagent'sBOM beliefset.Thecodeto achieve
this can be added to the agent by using the browser to edit the agent as a JACK file. Sample
code for the constructor follows:

   public Planner(String name, String  filename)
   {
      super(name);

      StringTokenizer tokens;
      String record;
      String t1,t2;
      BufferedReader datafile = null;

      try {
         datafile = new BufferedReader(new FileReader(filename));
      }
      catch (FileNotFoundException e) {
         System.err.println("unable to open file "+e.toString());
         System.exit(1);
      }

      try {
         while ((record = datafile.readLine())!=null) {
            tokens = new StringTokenizer(record);
            t1 = tokens.nextToken();
            t2 = tokens.nextToken();
            bom.add(t1,t2);
         }
      }



Practical 2 JACK Beliefset Relations
Exercise 1

Agent Practicals
Release 5.0
10-June-05 77
Copyright © 2012, Agent Oriented Software Pty. Ltd.

      catch (Exception e) {
         System.err.println("error reading bom data into beliefset");
         System.exit(1);
      }
   }

Make sure that thePlanner agent has the following import statements:

   import java.io.*;
   import java.util.*;

5. Add anew file calledProgram.java to theOther Files folder in thebrowser. It will createa
Planner agent, perhaps as follows:

   import java.io.*;
   import bom.Planner;

   public class Program {
      public static void main( String args[] )
      {
         Planner planner = new Planner("planner1","bom.dat");
         System.exit(0);
      }
   }

If you wish to run the project from within the JDE make sure that you use the full pathname
for bom.dat.

6. Create the filebom.dat and populate it with component/subcomponent records. It could
contain:

   chair back
   chair seat
   chair leg
   chair arm
   table top
   table leg
   cupboard door
   cupboard drawer
   cupboard leg
   cupboard cabinet

7. Compile and run the program. No output is generated by the program at this stage, but it
provides the basis for the remaining exercises.



Practical 2 JACK Beliefset Relations
Exercise 2

AgentPracticals
Release5.0

78 10-June-05
Copyright © 2012, Agent Oriented Software Pty. Ltd.

Exercise 2
Use the indexed query to find a component's subcomponents.

Intr oduction

Thisstepinvolvestheuseof indexedqueriesandaplanwith acontext() methodto print out
one of the subcomponents of a component. Initially we use aBDIGoalEvent so that only the
first successfulapplicableplanis executed.Thismeansthatif wepostonly oneevent(e.g.find
a subcomponent of component X), the first plan to have a context that finds a binding for a
subcomponent of X will be executed. In that case we will only find (at most) one
subcomponent.

Instructions

1. Open thePlanner_AD design diagram and

– Drag a new event from the design palette onto the design canvas. This event is to be
calledFindSubcomponent and is to be added to thebom package.

– Create the following links with thePlanner agent:

• A handles link from theFindSubcomponent event;

• A posts link to theFindSubcomponent event;

2. In thePlanner_AD design diagram:

– Add a new plan calledFindSubcomponentPlan that is in thebom package.

– Create ahandles link between theFindSubcomponent event and the
FindSubcomponentPlan plan.

– Create auses link from the plan to thebom named data.

– Create auses link from thePlanner agent to theFindSubcomponentPlan plan.

3. Edit theFindSubcomponent event so that it:

– extendsBDIGoalEvent;

– has aString data membercomponent; and

– includesapostingmethodfindSubcomponent(String component) thatassignsdatato
thecomponent data member.

4. Edit theFindSubcomponentPlan plan so that it

– Has a logical variablelogical String $subcomp;



Practical 2 JACK Beliefset Relations
Exercise 2

Agent Practicals
Release 5.0
10-June-05 79
Copyright © 2012, Agent Oriented Software Pty. Ltd.

– Includesacontext methodthatusestheBOM beliefset'sgetSubcomponent() queryto
find a subcomponent for the component passed in with the event.$subcomp is passed
into thequery. (Note:theplanwill only beapplicableif thegetSubcomponent() query
can find an entry for thecomponent in the BOM beliefset);

– Includes a print statement similar to the following in the body of the plan:

         System.out.println($subcomp.getValue()+" is a subcomponent of "
                            +ev.component);

5. Modify thePlanner agent so that it contains afindSubcomponent(String component)
method which will post aFindSubcomponent event usingpostEventAndWait().

6. Modify the main program so that it makes several invocations of thePlanner agent's
findSubcomponent() method with the name of a component that is in the agent's BOM
beliefset.Ensurethatfor at leastoneof theinvocationsthecomponentis composedof several
subcomponent types.

7. Compile and run the program.

Questions

1. Why aren't all the component's subcomponents printed out?



Practical 2 JACK Beliefset Relations
Exercise 3

AgentPracticals
Release5.0

80 10-June-05
Copyright © 2012, Agent Oriented Software Pty. Ltd.

Exercise 3
Use theInferenceGoalEvent class instead ofBDIGoalEvent.

Introduction

In this example, you will use anInferenceGoalEvent instead of theBDIGoalEvent. This
illustrates two concepts. The first is the difference between these two types of event (i.e. the
InferenceGoalEvent will cause all applicable plans to be executed). Secondly, it shows that
there is a separate plan instance generated in the applicable set for each of the possible
bindings in the context method. This means that in this example we will see all the
subcomponents being printed. A separate plan instance will be responsible for printing the
message about each subcomponent.

Instructions

1. Modify theFindSubcomponent event so that it is anInferenceGoalEvent and not a
BDIGoalEvent.

2. Compile and test the program. The tests should involve at least one component which is
composed of four or more subcomponents.



Practical 2 JACK Beliefset Relations
Exercise 4

Agent Practicals
Release 5.0
10-June-05 81
Copyright © 2012, Agent Oriented Software Pty. Ltd.

Exercise 4
Use a beliefset callback method.

Introduction

In this exercise you add an order beliefset to yourPlanner agent and use a beliefset callback
method to post aFindSubcomponent event to the agent. This will result in a list of
subcomponents being printed for the required new component.

Instructions

1. UsetheJDEto createanew beliefsettypecalledOrders thatbelongsto thebom package.It
will have one key field (String orderId) and three non-key fields (String component, int
numberRequired, String date). Add at least one query to the beliefset.

2. Open thePlanner_AD design diagram and

– Drag a new named data component from the design palette onto the design diagram
canvas. Call the named dataorders and set its type to bebom.Orders.

– Create aprivate link from thePlanner agent to theorders named data.

3. Modify thePlanner agent so that it contains a new methodaddOrder(String orderId,
String component, int numberRequired, String dueDate) that will add a new order into
theorders beliefset. Note that theadd() method may throw aBeliefSetException, soadd
must be invoked from inside atry/catch block. You will also need to import
aos.jack.jak.beliefset.BeliefSetException. YouraddOrder() method should be similar
to the following:

    public void addOrder(String id, String comp, int n, String dd)
    {
         try {
            orders.add(id,comp,n,dd);
         }
         catch (BeliefSetException e) {
            System.err.println("error entering data in orders db");
            System.exit(1);
         }
    }

4. Edit theOrders beliefset type and

– add a#posts event FindSubcomponent ev; declaration;

– Add an indexed query that accepts the order ID (String), component type (logical
String), number of components required (logical int) and the order date (logical

String).



Practical 2 JACK Beliefset Relations
Exercise 4

AgentPracticals
Release5.0

82 10-June-05
Copyright © 2012, Agent Oriented Software Pty. Ltd.

– Add anewfact callback to theorders beliefset. Each time a new fact is added to the
beliefset, the callback will print a trace message to indicate that a new order has been
added to the beliefset and then post aFindSubcomponent event. An example of a
beliefsetthatincludesanewfact callbackcanbefoundin thePoliticianexamplein the
introductory notes.

5. Modify the main program so that it:

– includes the following import statement:

   import java.util.*;

– no longer invokes thePlanner agent'sfindSubcomponent method;

– no longer exits; and

– reads in the order data from a datafile and invokes thePlanner agent'saddOrder
method to add the details to the beliefset. Sample code for this follows:

       StringTokenizer tokens;
       String record;
       String t1,t2,t3,t4;
       BufferedReader datafile = null;
       Planner planner = new Planner("planner1","bom.dat");

       try {
          datafile = new BufferedReader(new FileReader("orders.dat"));
       }
       catch (FileNotFoundException e) {
          System.err.println("unable to open file "+e.toString());
          System.exit(1);
       }

       try {
          while ( (record = datafile.readLine()) != null ) {
             tokens = new StringTokenizer(record);
             t1 = tokens.nextToken();
             t2 = tokens.nextToken();
             t3 = tokens.nextToken();
             t4 = tokens.nextToken();
             planner.addOrder(t1,t2,Integer.parseInt(t3),t4);
          }
       }
       catch (Exception e) {
          System.err.println("error reading orders data ");
          System.exit(1);
       }

6. Createadatafile thatcontainsseveralorders.At leastoneordershouldbefor acomponent
that has four or more subcomponents.

7. Compile and run the program.



Practical 2 JACK Beliefset Relations
Exercise 5

Agent Practicals
Release 5.0
10-June-05 83
Copyright © 2012, Agent Oriented Software Pty. Ltd.

Exercise 5
Use a JACOB initialisation file to initialise theBOM beliefset.

Introduction

In this exercise, you will modify thePlanner agent's constructor so that it no longer reads the
data from the text file used in the earlier exercises. Instead, you will create a file in JACOB
ASCII format that is read in either when the beliefset is constructed, or by using the beliefset
read method in the agent's constructor.

Instructions

1. Edit thePlanner.agent and remove the code to read the BOM data from the filename
passed into the constructor.

2. Modify the#private data BOM bom() declarationsothatthefilenameis now passedto the
BOM constructor (#private data BOM bom("bom.dat")).

3. Edit the filebom.dat so that it contains the data in JACOB ASCII format. An example data
file is shown below.

   <TupleTable
      :tuples(
         <BOM__Tuple
            :component "table"
            :subcomponent "leg"
         >
         <BOM__Tuple
            :component "table"
            :subcomponent "table_top"
         >
      )
   >

4. Compile and run the program.

5. It is also possible to explicitly invoke the beliefset'sread method to read data in JACOB
ASCII format. This means that the filename can then be passed as a parameter to the agent's
constructor.

– If necessary, modify thePlanner.agent so that the filename is passed in to its
constructor.

– Add the line

 bom.read(filename);

in thePlanner agent's constructor.

– Remove the filename from the#private data BOM bom("bom.dat") declaration.

– Compile and run the program.



Practical 2 JACK Beliefset Relations
Exercise 5

AgentPracticals
Release5.0

84 10-June-05
Copyright © 2012, Agent Oriented Software Pty. Ltd.



Practical 1 Solutions

Agent Practicals
Release 5.0
10-June-05 85
Copyright © 2012, Agent Oriented Software Pty. Ltd.

Practical 1 Solutions

Program solutions
The solutions to the programming exercises can be found in thepracticals/jack_jde/
solutions/practical1 subdirectory. There is a separate directory for each of the exercises.

Answers to questions

Exercise 2

1. ThepaintPart method would return immediately. It would not wait for the event to be
processed. As the program contains aSystem.exit(0), it would exit before any painting
was observed.

2. The agent would be blocked. JACK will produce an error message and prevent this.

Exercise 3

1. Prominence, i.e. the plan declared first.

Exercise 5

1. PaintSpecifiedCurrentColour.

Exercise 7

1. The plan fails after the first coat of paint. The second coat would not be applied because
theeventis not reposted.The#set behavior Recover repost is thedefaultbehaviour for
aBDIGoalEvent.

2. The main thing to notice is that print statements in the main thread that follow
submitPaintRequestscanbeexecutedbeforetheeventssentby submitPaintRequestsare
processed. The JACK processing is in another thread.

Exercise 8

1. Observation of behaviour that is similar to that explained in exercise 7, with additional
trace information caused by theFinished event. In addition to the trace statements,
messages should have been observed on the interaction diagram.

Exercise 9

1. It takes so long to paint a part that the next request is sent (and received) before the
painting process is finished. This means you do not always achieve the desired/expected
output.

2. The solution could make use of a semaphore. This is explored further in exercise 11.



Practical 1 Solutions
Answers to questions

AgentPracticals
Release5.0

86 10-June-05
Copyright © 2012, Agent Oriented Software Pty. Ltd.



Practical 2 Solutions

Agent Practicals
Release 5.0
10-June-05 87
Copyright © 2012, Agent Oriented Software Pty. Ltd.

Practical 2 Solutions

Answers to questions in introductory notes
There are some questions in the comments of the examples.

1. Example 1.

// Example: Is Humphrey Bear, a member of the Honey Party,
// Prime Minister?

// Question:  The following code will only work as intended if there
// can only be one Prime Minister. Why?

// Answer: If there is more than one prime Minister,
// Humphrey Bear will not necessarily be the first match that will
// bind to name.  The fact that name does not equal Humphrey Bear
// does not tell us whether or not there is another entry in the
// beliefset with Humphrey Bear as the Prime Minister.

logical String name;
    mps.get(name,"Honey Party","Prime Minister");
    if (name.getValue().equals("Humphrey Bear")
    {
      // Do something.
    }

2. Example 2.

// Example: Are there any elected members of the Honey Party
// whose first name is Rupert?

// Question: What happens in this example if the first match found is
// not Rupert?

// Answer: The agent does not fail the logical expression at that
// point. It tests it again with a new binding for name, until
// either it finds a binding with Rupert or it has checked all the
// beliefset relations and concluded that Rupert is not in the
// Honey Party.

// Refer to the section on Composite Logical Expressions in the
// Plans chapter in Agent Manual for a more detailed discussion.

logical String name;
logical String portfolio;

    if (mps.get(name,"Honey Party",portfolio) &&
             ((name.getValue().indexOf("Rupert")==0 ))
    {
        // Do something.
    }

Program solutions
The solutions to the programming exercises can be found in the practicals/jack_jde/

solutions/practical2  subdirectory. There is a separate directory for each of the exercises.



Practical 2 Solutions
Answers to questions

AgentPracticals
Release5.0

88 10-June-05
Copyright © 2012, Agent Oriented Software Pty. Ltd.

Answers to questions

Exercise 2

1. Theeventtriggersthefirst applicableplanwhichsuccessfullyprintsout themessage.As it
was successful, there is no reposting or triggering of alternative plans with different
bindings.


	Practical 1 Introduction to JACK
	Introductory notes
	JACK
	The JACK Agent Language
	JACK execution
	The Agent class
	Agent template
	Agent base members
	Agent base methods
	An example

	The Event class
	Normal events
	BDI events
	Event template
	Event base members
	Event methods
	An example

	The Plan class
	Plan template
	Plan base members
	Plan base methods
	An example

	Building our example
	The Capability class
	Capability template
	Capability methods
	An example

	The Beliefset class

	Exercise 1
	Introduction
	Instructions

	Exercise 2
	Introduction
	Instructions:
	Questions

	Exercise 3
	Introduction
	Instructions
	Questions

	Exercise 4
	Introduction
	Instructions

	Exercise 5
	Introduction
	Instructions
	Questions

	Exercise 6
	Introduction
	Instructions

	Exercise 7
	Introduction
	Instructions
	Questions

	Exercise 8
	Introduction
	Instructions
	Questions

	Exercise 9
	Introduction
	Instructions
	Questions

	Exercise 10
	Introduction
	Instructions

	Exercise 11
	Introduction
	Instructions


	Practical 2 JACK Beliefset Relations
	Introductory notes
	JACK beliefs
	JACK beliefset definition
	An example

	Exercise 1
	Introduction
	Instructions

	Exercise 2
	Introduction
	Instructions
	Questions

	Exercise 3
	Introduction
	Instructions

	Exercise 4
	Introduction
	Instructions

	Exercise 5
	Introduction
	Instructions


	Practical 1 Solutions
	Program solutions
	Answers to questions
	Exercise 2
	Exercise 3
	Exercise 5
	Exercise 7
	Exercise 8
	Exercise 9


	Practical 2 Solutions
	Answers to questions in introductory notes
	Program solutions
	Answers to questions
	Exercise 2



