
JACOB Manual

JACK Intelligent Agents®
JACOB Manual

JACOBManual
Release5.5

2 18-May-06
Copyright © 2000-2012, Agent Oriented Software Pty. Ltd.

Copyright
Copyright © 2000-2012, Agent Oriented Software Pty. Ltd.

All rights reserved.

No part of this document may be reproduced, transferred, sold, or otherwise disposed of,
without the written permission of the owner.

US Government Restricted Rights
The JACK™ Modules and relevant Software Material have been developed entirely at private
expense and are accordingly provided with RESTRICTED RIGHTS. Use, duplication, or
disclosure by Government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of
DFARS 252.227-7013 or subparagraph (c)(1) and (2) of the Commercial Computer Software
Restricted Rights and 48 CFR 52.2270-19, as applicable.

Trademarks
All the trademarks mentioned in this document are the property of their respective owners.

JACOB Manual
Release 5.5
18-May-06 3
Copyright © 2000-2012, Agent Oriented Software Pty. Ltd.

Publisher Information

If you find any errors in this document or would like to suggest improvements, please let us
know.

C++ Platforms
The JACOB libraries to interface with C++ applications are not delivered as part of the JACK
productandmustbepurchasedseparately. TheC++ librariesareavailableprecompiledfor the
following list of platforms. Other platforms can be made available on request.

JACOB C++ libraries

Agent Oriented Software Pty. Ltd.

P.O. Box 639,

Carlton South, Victoria, 3053

AUSTRALIA

Phone: +61 3 9349 5055

Fax: +61 3 9349 5088

Web: http://www.agent-software.com

Operating System Compiled With

 Linux g++ 2.95

 Linux g++ 3.0

 Windows 9x VC++ 6.0 or greater (static/dynamic/multi-threaded)

 Windows NT/2000/XP VC++ 6.0 or greater (static/dynamic/multi-threaded)

JACOBManual
Release5.5

4 18-May-06
Copyright © 2000-2012, Agent Oriented Software Pty. Ltd.

The JACK™ documentation set includes the following manuals and practicals:

Document Description

Agent Manual Describes the JACK programming language and
infrastructure.JACK canbeusedto developapplications
involving BDI agents.

Teams Manual Describes the JACK Teams programming language
extensions. JACK Teams can be used to develop
applications that involve coordinated activity among
teams of agents.

Development Environment

Manual

Describes how to use the JACK Development
Environment (JDE). The JDE is a graphical
development environment that can be used to develop
JACK agent and team-based applications.

JACOB Manual Describes how to use JACOB. JACOB is an object
modelling language that can be used for inter-process
transport and object initialisation.

WebBot Manual Describes how to use the JACK WebBot to develop
JACK enabled web applications.

Design Tool Manual Describes how to use the Design Tool to design and
build an application within the JACK Development
Environment.

Graphical Plan Editor Manual Describes how to use the Graphical Plan Editor to
develop graphical plans within the JACK Development
Environment.

JACK Sim Manual Describes how to use the JACK Sim framework for
building and running repeatable agent simulations.

Tracing and Logging Manual Describes the tracing and logging tools available with
JACK.

Agent Practicals A set of practicals designed to introduce the basic
concepts involved in JACK programming.

Teams Practicals A set of practicals designed to introduce the basic
concepts involved in Teams programming.

JACOB Manual
Release 5.5
18-May-06 5
Copyright © 2000-2012, Agent Oriented Software Pty. Ltd.

Table of Contents
1 Introduction . 9
1.1 Uses of JACOB .9
1.1.1 Object Initialisation .9
1.1.2 Object Communication .9
1.2 Dictionary Files. .10
1.3 Compiling Dictionaries .10
1.4 Building Object Structures .10
1.5 JACOB File Formats. .11
1.6 The JACOB Object Browser. .11
1.7 Using JACOB .12
1.7.1 JACOB Objects .12
1.7.2 Using JACOB to transport objects .13

2 Packages . 15

3 JACOB Object Browser . 17
3.1 Introduction. .17
3.2 The Browser Environment .17
3.2.1 Menu Bar .17

File Menu .17
Option Menu .18
Help Menu .19

3.2.2 Work Area .19
Object Tree Pane .20
Object Field Pane .20

3.2.3 Context-sensitive Menus .21
3.3 Using the Browser .21
3.3.1 Creating Data Files. .21
3.3.2 Loading Data Files .21
3.3.3 Adding a Dictionary to a Data File .22
3.3.4 Adding Objects to Data Files .23
3.3.5 Adding Data to Objects .24
3.3.6 Replacing Object Pointers .25
3.3.7 Removing Objects .26
3.3.8 Aggregate Objects .26
3.3.9 Deleting Top-Level Objects. .28
3.3.10 Reverting to Saved Data Files .29
3.3.11 Saving Data Files .29
3.3.12 Closing Data Files .29
3.3.13 Exiting the Editor .30

JACOBManual
Release5.5

6 18-May-06
Copyright © 2000-2012, Agent Oriented Software Pty. Ltd.

4 JACOB Object Modelling . 31
4.1 JACOB Data Definition Language .31
4.1.1 Syntax Definition .31

Class. .32
Field .33
Enum .35
Member .35
Code. .35
Include .35

5 Running JACOB . 37
5.1 JACOB Build .37
5.2 Command Line Options .37
5.2.1 -Wlang .37
5.2.2 -lang .37
5.2.3 -pkg .37
5.2.4 -syntax. .38
5.2.5 -dj .38
5.2.6 -dos .38
5.2.7 -v .38
5.2.8 -h .38
5.2.9 -convert. .39

6 Functional Components of JACOB . 41
6.1 Compiler .41
6.1.1 JACOB Data Definition Language .41
6.1.2 Mappings in JAVA. .41
6.1.3 Mappings in C++ .42
6.2 Writer .42
6.2.1 Java Writer Classes .42
6.2.2 C++ Writer Classes .43
6.2.3 Writing Objects .43
6.3 Reader .43
6.3.1 Java Reader Classes .43
6.3.2 C++ Reader Classes .43
6.3.3 Reading Objects. .44
6.4 Initialisation. .44
6.4.1 Dictionary file .44
6.5 JACOB File Formats. .45
6.5.1 ASCII .45
6.5.2 Binary .45
6.5.3 JDBC .45

JACOB Manual
Release 5.5
18-May-06 7
Copyright © 2000-2012, Agent Oriented Software Pty. Ltd.

6.5.4 XML .46

7 Sample Applications. 47
7.1 Object Initialisation example. .47
7.1.1 Development steps. .47
7.1.2 Waypoint Initialiser code and description .47

Java development steps .48
C++ development steps .51

7.2 Object Communication example .56
7.2.1 Development steps. .56
7.2.2 Client/Server code and description .56

Java development steps .56
C++ development steps .63

Index. 71

JACOBManual
Release5.5

8 18-May-06
Copyright © 2000-2012, Agent Oriented Software Pty. Ltd.

Introduction

JACOB Manual
Release 5.5
18-May-06 9
Copyright © 2000-2012, Agent Oriented Software Pty. Ltd.

1 Intr oduction
The JACOB™ Object Modeller (JACOB) is a system providing machine and language
independent object structures that can be stored or transmitted.

JACOB provides distributed objects in a similar way to CORBA, COM or Java object
serialisation but the emphasis is on simplicity, portability, efficiency and low overheads.

Language specific code can be generated from JACOB object structures, allowing code in the
target language to create, manipulate, send and receive JACOB objects easily.

JACOB consists of four major components:

• Compiler

• Writer

• Reader

• Initialisation

These components are explained in theFunctional Components of JACOB chapter of this
document.

1.1 Uses of J ACOB
JACOB is useful in situations that require data structures that are machine and language
independent. Two important uses of JACOB are:

• as an object initialisation tool

• as an object communication tool.

1.1.1 Object Initialisation
JACOB can be used to initialise objectswithin an application. JACOB-generated code
together with user written code allows applications to read and/or write objects to and from a
data file or stream.

An example of object initialisation can be found in theSample Applications chapter.

1.1.2 Object Comm unication
JACOBmaybeusedto allow communicationbetweendifferentprocesses.JACOB-generated
codetogetherwith userwrittencodeallowspopulatedobjectsto besentandreceivedbetween
different processes.

Introduction

JACOBManual
Release5.5

10 18-May-06
Copyright © 2000-2012, Agent Oriented Software Pty. Ltd.

For example,JACOBmaybeusedto transportdatabetweenaJavaclassandaC++ class,or a
JACK Agent and a C++ class. Populated objects are sent and received between the processes
via a socket. JACOB code is inserted into each class to allow objects to be sent and/or
received.

Figure 1-1: Communication between a JACK Agent and a C++ process using JACOB

An example of transporting objects can be found in the Sample Applications section below.

1.2 Dictionary Files
JACOB object structures that are stored and transported contain objects that are defined in
dictionary files, using the JACOB Data Definition Language. A dictionary file defines the
structure and legal fields of one or more objects, and usually has an.api extension.

Note: A dictionary associated with a data file may consist of a one or more dictionary files.

1.3 Compiling Dictionaries
Once one or more objects are defined in a dictionary file, the dictionary file is compiled using
JACOBBuild. JACOBBuild cangenerateeitherJavaor C++ code(Javacodeis generatedby
default). Once code is generated, the resulting classes can then be compiled and used for
object initialisation and transportation.

1.4 Building Object Structures
JACOB object structures may be created using objects defined in a dictionary, and stored in a
data file. Object structures can be created and edited by opening a data file in the JACOB
Object Browser, which provides a graphical environment, or a text editor.

JACOB object structures may be used to store objects in applications. The types of objects
allowed in an application are defined in a dictionary. The objects used in the application may
be stored in one or more data files, which can be edited in the JACOB Object Browser.

Introduction

JACOB Manual
Release 5.5
18-May-06 11
Copyright © 2000-2012, Agent Oriented Software Pty. Ltd.

1.5 JACOB File Formats
Data files containing JACOB object structures may currently be in one of four formats:

• ASCII

• Binary

• JDBC

• XML

Datafilesmaybeconvertedto anotherformatusingtheConvertoptionin JACOBBuild. Note
that currently only ASCII and Binary formats can be used with C++ code.

JACOB dictionary files can be compiled to generate Java or C++ code. Code in other
languages may be generated if a new driver is defined for that language.

1.6 The JACOB Object Br owser
The JACOB Object Browser provides a graphical environment which allows users to view or
edit JACOB object structures contained in data files. Data files that contain objects defined
according to a dictionary file may be created, edited and saved. Objects can be edited by
opening a data file and loading the associated dictionary file. New objects, object copies and
objectreferencesmaybeaddedto adatafile. TheJACOBObjectBrowsermayalsobeusedto
delete objects from a data file.

Figure 1-2: The JACOB Object Browser Window

Introduction

JACOBManual
Release5.5

12 18-May-06
Copyright © 2000-2012, Agent Oriented Software Pty. Ltd.

1.7 Using JACOB
To use JACOB to initialise and/or transport data structures, the user must first define the
objects in the structure in one or more dictionary files. Objects and their fields are defined in
dictionary files using the JACOB Data Definition Language.

After defining objects in one or more dictionary files, the dictionary files must be compiled
with JACOB Build.

1.7.1 JACOB Objects
JACOB dictionary files contain definitions of objects and their fields. The contents of a data
file or data stream may only include objects of the types that are defined in one or more
dictionary files.

An example objectMyData is defined below.

 <Class :name "MyData"
 :fields (
 <Field :name "objectID" :type :int>
 <Field :name "objectName" :type :string>
 <Field :name "description" :type :string>
)
 >

A correspondingMyData object in a data file would be :

 <MyData
 :objectID 12
 :objectName "ExampleObject"
 :description "An example of a MyData object"
 >

Introduction

JACOB Manual
Release 5.5
18-May-06 13
Copyright © 2000-2012, Agent Oriented Software Pty. Ltd.

1.7.2 Using JACOB to transport objects

Figure 1-3: Development steps for JACOB object transportation

To use JACOB for communication between processes, JACOB-generated code together with
user written code must be used to transport JACOB objects. A dictionary written in the
JACOBDataDefinitionLanguageis compiledinto sourcecodefor transportableclassesusing
JACOB Build. Either Java or C++ source code may be generated. The source code is then
compiled into classes with a standard Java or C++ compiler.

The transportable classes generated are able to read and write object structures to and from
streams. Additional code must be written by the user to provide and manage streams for
transportingobjects.Thestreamsusedmaybefilesor sockets,or aJDBCconnection(for Java
only). The streams may also be any other kind of byte stream interprocess communication
infrastructure.

To send objects, code written by the user must be included in either existing or new classes.
The code must decide which stream to use, and then use it to send objects.

Introduction

JACOBManual
Release5.5

14 18-May-06
Copyright © 2000-2012, Agent Oriented Software Pty. Ltd.

Codewrittenby theuserfor receiving objectsmustalsobeincludedin existingor new classes.
Thecodefor receiving JACOBobjectsmustdecidewhichdictionaryto use(adictionarymay
include definitions from multiple dictionary files). The code must also construct and initialise
thechosendictionary. Onceadictionaryhasbeenchosen,thecodemustdecidewhichstream
and associate it with the dictionary. The stream may then be used to receive objects.

Once the classes containing the user-written sender and receiver code have been compiled,
they can be used to send and receive objects.

Packages

JACOB Manual
Release 5.5
18-May-06 15
Copyright © 2000-2012, Agent Oriented Software Pty. Ltd.

2 Packages
Each JACOB component is installed automatically during the installation of JACK. The
JACOB components can be found in the following locations:

Table 2-1: JACOB Packages

Component Location

Runtime aos.apib.*

Compiler aos.main.JacobBuild

Browser aos.main.Jacob

Packages

JACOBManual
Release5.5

16 18-May-06
Copyright © 2000-2012, Agent Oriented Software Pty. Ltd.

JACOB Object Browser

JACOB Manual
Release 5.5
18-May-06 17
Copyright © 2000-2012, Agent Oriented Software Pty. Ltd.

3 JACOB Object Br owser
3.1 Intr oduction
The general form of the command to start the browser is

 java aos.main.Jacob [[<data-file>]* [-t <dict-file>]*]*

where<data-file> is a data file or a collection of data files, and<dict-file> is a dictionary
or multiple dictionaries associated with the preceding data file(s). If the command ends with
one or more data files, the last collection of data files will be associated with the preceding
dictionary set (if any). The JACOB Object Browser may also be started with multiple groups
of data file collections with associated dictionaries.

Note that both<data-file> and<dict-file> are optional. The browser can also be started as

 java aos.main.Jacob

3.2 The Br owser En vir onment
Objects defined in the JACOB Object Modelling language can be viewed and modified using
the JACOB Object Browser. Each object structure consists of two parts:

• adictionary which defines the structure and legal fields in an object hierarchy; and

• adata file which contains objects defined according to this dictionary.

3.2.1 Menu Bar
The JACOB editor has a menu bar at the top of the work area. The following menus are
available from the menu bar.

3.2.1.1 File Men u

Use this menu to perform operations on the current project.

JACOB Object Browser

JACOBManual
Release5.5

18 18-May-06
Copyright © 2000-2012, Agent Oriented Software Pty. Ltd.

Figure 3-1: The JACOB Object Browser File Menu

• New: Createsanew datafile in theeditor. Initially thisdatafile is emptywith nostructure.
This file can be populated by first adding a dictionary (.api) to it and adding entities
defined in the dictionary as required.

• Open: Loads an existing data file from disk. Until a dictionary (.api) file is added to this
datafile, it is unstructuredandcannotbeviewed.Addingadictionaryfile is describedin a
later section.

• Save: Saves the current data file to disk under the current name.

• Save As: Saves the current data file to disk, allowing a new name to be specified.

• Exit: Quits the JACOB Editor. If the project currently open in the editor is unsaved, the
option to save is given before quitting.

3.2.1.2 Option Men u

Use this menu to change JACOB Editor options.

Figure 3-2: The JACOB Object Browser Option Menu

JACOB Object Browser

JACOB Manual
Release 5.5
18-May-06 19
Copyright © 2000-2012, Agent Oriented Software Pty. Ltd.

• Read/Write Multiple Objects: Turns the Read/Write Multiple Objects option on or off.
This option is off by default.

When this options is on, a list of multiple objects with unique identity numbers is written. A
list of multiple objects that is read or written may have references between the objects. Note
that this option is not supported for binary files.

Note: The best way to write multiple objects is to wrap them in a parent container.

3.2.1.3 Help Men u

Use this menu to access the About JACOB screen.

Figure 3-3: The JACOB Object Browser Help Menu

• About: Displays information about the JACOB Object Browser in the work area of the
browser.

3.2.2 Work Area
Objectsandtheir contentsaremanipulatedin thework area of theJACOBbrowser. Thework
area is depicted below.

Figure 3-4: The JACOB Object Browser Work Area

The work area consists of two panes: the Object Tree pane and the Object Field pane. These
panes are explained below.

Note: Thedividerbetweeneachof thepanescanbemovedbackandforth asrequiredto resize
the panes.

JACOB Object Browser

JACOBManual
Release5.5

20 18-May-06
Copyright © 2000-2012, Agent Oriented Software Pty. Ltd.

3.2.2.1 Object Tree Pane

The left pane in the main work area is the Object Tree pane. This pane is depicted below.

Figure 3-5: The Object Tree Pane

This is where new object files appear when loaded or created. Once a dictionary is added to a
data file, the browser in the Object Tree pane can be used to navigate the object structure.

3.2.2.2 Object Field Pane

The right pane in the main work area is the Object Field pane. This pane is depicted below.

Figure 3-6: The Object Field Pane

This is where the fields that an object contains are displayed and manipulated. These can
include text and numeric fields as well as pointers to other objects.

The arrow in the top left-hand corner is used to go up a level in an object structure.

JACOB Object Browser

JACOB Manual
Release 5.5
18-May-06 21
Copyright © 2000-2012, Agent Oriented Software Pty. Ltd.

3.2.3 Context-sensitive Menus
Context-sensitive menus are available extensively throughout the editor environment. These
menus are invoked by moving the pointer over an item and clicking the right mouse button.
This presents options that are relevant to the current object or work space in the current
context.

Note: On some platforms there is no right button on the mouse. On these platforms, context-
sensitive menus are invoked by pressing a key and the mouse button in combination.

The context-sensitive menus introduce some new functionality and duplicate some options
available in the File menu.

3.3 Using the Browser

3.3.1 Creating Data Files
Selecting New from the file menu creates a new Data File which appears in the Object Tree
pane. Initially this file is unstructured and empty.

Adding a dictionary to an empty file such as this will allow new objects to be declared.

3.3.2 Loading Data Files
Datafilescanbeloadedby selectingOpenfrom thefile menu.Thesefilesappearin theObject
Tree pane, but their structure is not known so they cannot be browsed or edited until a
dictionary is added to them.

When loading data files, make sure that the file name filter in the dialog is set to All Files so
that data files are visible.

JACOB Object Browser

JACOBManual
Release5.5

22 18-May-06
Copyright © 2000-2012, Agent Oriented Software Pty. Ltd.

3.3.3 Adding a Dictionary to a Data File
Invoking the context-sensitive menu for a Data File presents the menu below.

Figure 3-7: Add Dictionary in a data file context-sensitive menu

In orderto populateaDataFile oneor moredictionary(.api) filesmustbeattachedto it. This
is achievedby selectingAdd Dictionaryfrom theabovemenuandloadingtheappropriatefile
from disk.

This dictionary defines what objects and fields exist in each data file, and describes how they
are structured. Once an appropriate dictionary has been added to a data file, its structure and
contents can be viewed in the browser.

Once a set of dictionary files has been attached to a Data File, the set cannot be edited. The
only way to change a set of associated dictionary files is to close the Data File, open it again
and then add dictionary files.

Note: The dictionary is applied only for the current session and must be added to the data file
each time it is loaded.

JACOB Object Browser

JACOB Manual
Release 5.5
18-May-06 23
Copyright © 2000-2012, Agent Oriented Software Pty. Ltd.

3.3.4 Adding Objects to Data Files
A sub-menu named Add Top-Level Object is available in the context-sensitive menu for a
Data File. An example of this menu is depicted below.

Figure 3-8: Add Top-Level Object in a data file context-sensitive menu

Note: This option is also available in the context-sensitive menu for top-level objects.

Thismenudisplaysall of thetop-level objectsthataredeclaredin thecurrentdictionaryfile in
alphabetical order. Selecting any of these objects adds a new object of that type to the current
data file.

Additionally, eitherareferenceto or acopy of thecurrentlyselectedobjectcanbeaddedto the
data file by selecting Add Reference or Add Copy (respectively).

Objects can contain fields and object pointers, which are references to other entities. Object
pointers are initially null, but can be made to point to newly created objects.

In the example above, if Address is selected, an object of that type would be added to the
current data file. TheAddress object has three fields;Name, Email andPhone. It also has a
pointerto aComments objectwhichcanbeaddedoptionallyto includeextra informationabout
a person.

JACOB Object Browser

JACOBManual
Release5.5

24 18-May-06
Copyright © 2000-2012, Agent Oriented Software Pty. Ltd.

See the section entitledReplacing Object Pointers for details on how to make object pointers
non-null.

3.3.5 Adding Data to Objects
Once an object has been added to a data file, its fields can be modified. In the example above,
anAddress object is added to the data file, which would result in the following appearing in
the Object Field pane:

Figure 3-9: An Address object in the Object Field pane

Any changes made to the above fields are mirrored in the Object Tree pane if the dictionary
file declares these fields as visible there.

Clicking on theComments object pointer will display any comments pertaining to this address
book entry. Clicking the arrow in the top left-hand corner of the Object Field pane will return
to the previous fields view.

JACOB Object Browser

JACOB Manual
Release 5.5
18-May-06 25
Copyright © 2000-2012, Agent Oriented Software Pty. Ltd.

3.3.6 Replacing Object Pointers
If anobjectpointeris null, it mustto bereplacedwith a referenceto anobjectbeforedatacan
be added to it. This can be achieved by invoking the context-sensitive menu on the object
pointer and selecting Refer to New. This menu is depicted below.

Figure 3-10: Refer to New in an object pointer context-sensitive menu

This menu displays objects of the correct type that can be added in place of the current value.

In the example in Figure 2.10, theComments object pointer can be set to point to a newly
createdComments object.Oncecreated,thecontentsof thisobjectcanbechangedandsavedto
disk like any other field.

In addition to this, an object pointer can be replaced with a pointer to the object currently
selected in the Object Tree pane by selecting Refer to Selection. This would allow, for
example, the object pointer for two differentAddress entries to point to the sameComments
object. Further, an object pointer can be replaced with a pointer to acopy of the currently
selected object by selecting Refer to Copy.

JACOB Object Browser

JACOBManual
Release5.5

26 18-May-06
Copyright © 2000-2012, Agent Oriented Software Pty. Ltd.

3.3.7 Removing Objects
To removeanobjectpointer, invokethecontext-sensitivemenuonanobjectpointerandselect
Remove Object. This menu is depicted below.

Figure 3-11: Remove Object in an object pointer context-sensitive menu

This deletes the reference to that object and makes the object pointer null.

3.3.8 Aggregate Objects
An aggregate object is a 'container' into which other objects can be placed. Aggregate objects
can be empty, or they can contain one or more objects.

Figure 3-12: An unexpanded aggregate object

An 'empty'aggregateobjectdoesnothaveanexpansioncontrolnext to it; in theimageabove,
'directives' and 'implements' are empty aggregate objects.

JACOB Object Browser

JACOB Manual
Release 5.5
18-May-06 27
Copyright © 2000-2012, Agent Oriented Software Pty. Ltd.

To put something into an aggregate object, open the contextual menu for the aggregate object.

Figure 3-13: Insert New in an aggregate context-sensitive menu

With the Insert New submenu, the user can put in a new object of any type the aggregate can
hold. Alternatively, you can choose Insert Reference or Insert Copy to put either a reference to
or a copy of the currently selected object into the aggregate object.

The user can expand an aggregate object to see its contents. Each object contained in an
aggregate object behaves just as if it were a top-level object. The user can also use the
contextual menu for an object contained in an aggregate object to add further objects to the
aggregate.

Figure 3-14: Add New in an object context-sensitive menu

JACOB Object Browser

JACOBManual
Release5.5

28 18-May-06
Copyright © 2000-2012, Agent Oriented Software Pty. Ltd.

TheAdd New, Add ReferenceandAdd Copy menuitemsbehavemuchthesameastheInsert
New, Insert Reference and Insert Copy menu items in the contextual menu for the aggregate
objectitself. However, whereastheInsertitemsaddanobjectat thetopof theaggregate'slist,
the Add items place the newly added object immediately after the object from whose
contextual menu the item was chosen. For example, in the image above, if you choose Add
New and Field, the new field will be placed after thehard_lab field already in the aggregate.

Items can be deleted from aggregate objects by choosing Delete from the item's contextual
menu. You cannot, however, delete the aggregate objects themselves (except by deleting the
top-level object of which they are a part).

3.3.9 Deleting Top-Level Objects
To delete a top-level object, invoke the context-sensitive menu on an object and select Delete.
This menu is depicted below.

Figure 3-15: Delete in an object context-sensitive menu

This causes the selected object to be deleted from the current Data File.

JACOB Object Browser

JACOB Manual
Release 5.5
18-May-06 29
Copyright © 2000-2012, Agent Oriented Software Pty. Ltd.

3.3.10 Reverting to Saved Data Files
If all changes from an editing session need to be discarded, then invoke the context-sensitive
menuonaDataFile in theObjectTreepaneandselectRe-Open.Thismenuis depictedbelow.

Figure 3-16: Re-Open in a data file context-sensitive menu

Thisoptionallows theversionof thedatafile mostrecentlysavedto disk to beloadedinto the
editor. A dialog appears to confirm that this action is what was intended.

Note: If OK is clicked, all changes are discarded and the original file is reloaded.

3.3.11 Saving Data Files
Selecting Save from the file menu or the context-sensitive menu on a Data File, causes the
current data file to be saved to disk. If the data file was newly created, the user is given the
opportunity to change the default name before saving the file to disk.

The editor automatically creates backup files by copying the original file to a file with a.bak
extension. The current file is then written to disk.

3.3.12 Closing Data Files
Selecting Close from the context-sensitive menu on a Data File closes the current data file.
The user is given the option to save any changes before closing the file.

JACOB Object Browser

JACOBManual
Release5.5

30 18-May-06
Copyright © 2000-2012, Agent Oriented Software Pty. Ltd.

3.3.13 Exiting the Editor
Selecting Exit from the File menu causes the JACOB editor to quit. The user is given the
option to save any changes before exiting the editor.

JACOB Object Modelling

JACOB Manual
Release 5.5
18-May-06 31
Copyright © 2000-2012, Agent Oriented Software Pty. Ltd.

4 JACOB Object Modelling
4.1 JACOB Data Definition Langua ge
This section describes the JACOB Data Definition Language in Extended Backus-Naur Form
(BNF) and describes the purpose of each of the fields and keywords.

4.1.1 Syntax Definition
In this syntax definition, non-terminal tokens are written as words within angle brackets, like
<Object> , and square and curly brackets mark repeated (zero or more) and optional (zero or
one) parts respectively. Terminal tokens are enclosed by single-quotes, and a vertical bar
separates alternatives.

The JACOB Data Definition Language has a syntax as defined below.

<Stream> ::= [<Object>] <EOF>

<Object> ::= '<' <Ident> { '=' <Number> } { <Object> } [<Field>] '>' |
'<' '&' <Number> '>'

<Field> ::= <Fieldname> <Value>

<Value> ::= <Number> | <String> | <Object> | <Aggregation>

<Aggregation> ::= '(' [<Object>] ')'

The lexical level defines<Ident> , <Fieldname> , <Number>, <String> and<EOF> as follows:

• <Ident> is a sequence of letters, digits and underscores, beginning with a letter or an
underscore.

• <Fieldname> is an<Ident> immediately preceded by a colon character. A <Fieldname> is
not case-sensitive.

• <Number> is an optional minus, followed by either one or more digits and an optional
periodor aperiodandadigit, followedby zeroor moredigits, thenoptionallyanupperor
lower casee, an optional minus and one or more digits (i.e. standard scientific notation).

• <String> is asequenceof charactersenclosedby double-quotes,whereback-slash("\ ") is
a meta character, also recognising unicode character encoding.

• <EOF> denotes 'end-of-file', which means to say that the input file must be a (possibly
empty) sequence of complete<Object> , otherwise the compiler will complain.

There may also be Java-style comments interspersed with definitions in the usual way, i.e.
each comment is treated as a token separator.

All string values to be used as identifiers in generated code must adhere to the appropriate
identifier syntax of the target language, and must not be any of its reserved words.

JACOB Object Modelling

JACOBManual
Release5.5

32 18-May-06
Copyright © 2000-2012, Agent Oriented Software Pty. Ltd.

A JACOB Data Definition Language file is itself a sequence of objects in the language
described above. There are six different types of objects to use:

• Class for defining a new class.

• Field for defining fields within classes.

• Enum for defining an enumeration of symbolic values.

• Member for defining identifiers of enumerations.

• Code for defining in-line code to be transferred to the output source being generated.

• Include for declaring code from a file to be transferred to the output source being
generated.

4.1.1.1 Class

Objects of typeClass are definitions of new classes. The fields of such objects are:

• :name – a:string identifying the transport name of the defined class.

• :comment – a:string thatis treatedasauserlevel (short)descriptionof thedefinedclass.
The:comment is in particular available when objects of the defined class are written, and
may, for example, be written to the output to increase its readability.

• :classname – a:string identifying the name of the class to define. If omitted,:name will
be used.

• :target – a:string identifying the name of the class to construct. If this field is not
defined, the constructed class will be named by the:classname field.

• :extends – a:string that identifies the base class of the defined class.

• :fields – an:aggregation of Field objects defining the fields of the defined class.

• :directives – an:aggregation of Directive objectsdefiningcompiletimedirectivesfor
JACOB.

• :tostring – aformatstringto implementtheJavatoString method.Thestringmustbein
the form of"%(field-name)" wherefield-name is the name of any of the fields of a
JACOB object.

• :usedeepequals – a boolean field used to generate code to do deep equality comparison
(Java only). It is"true" by default.

• :javaconstrcode – Java code to be inserted into the Java constructor.

• :icon – the icon to display when showing this class.

• :implements – a collection specifying the interface it implements (Java only).

• :api_extends – a collection of extra JACOB classes it extends. (C++ only).

• :other_extends – a collection of extra non-JACOB classes it extends. (C++ only).

JACOB Object Modelling

JACOB Manual
Release 5.5
18-May-06 33
Copyright © 2000-2012, Agent Oriented Software Pty. Ltd.

4.1.1.2 Field

Objects of typeField are used for defining the fields of a class. The fields of aField object
are:

• :name – a:string identifying the transport name of the field being defined.

• :comment – a:string that is treated as a user level (short) description of the field. The
:comment is in particular available when objects of the defined class are written and may,
for example, be written to the output to increase readability.

• :fieldname – a:string identifying theactualnameof thefield defined.If omitted,:name
will be used.

• :type – a token that marks the type of the field being defined. The token must be one of
:char, :short, :int, :long, :bool, :enum, :float, :double, :string, :class or
:aggregation. The token determines the data representation associated with the field
according to the list below. Certain data representations are only available on certain
platforms, and will cause an error on the attempt to transfer to a platform where the data
representation is not supported.

– :char field holds a character value; thechar type in Java is 16-bit unicode, and the
char value in C++ is 8-bit.

– :short field holdsa16-bitinteger valuein standard2-complementrepresentation;the
short type in Java.

– :int field holds a 32-bitinteger value in standard 2-complement representation; the
int type in Java.

– :long field holdsa64-bitinteger valuein standard2-complementrepresentation;the
long type in Java.

– :bool field holds a 1-bit logical truth value, marked by one of the tokens:true or
:false; theboolean type in Java.

– :enum field holds an enumeration member as value.

– :float field holds a 32-bit single precision real number; thefloat type in Java.

– :double field holds a 64-bit single precision real number; thedouble type in Java.

– :string field holds an arbitrary length string of 8-bit characters in the ISO-8859-1
representation.

– :class field holds a reference to another object.

– :aggregation field holds an aggregation of references to other objects. There is a
default implementation, but an application program may register its own aggregation.

• :subtype – astring identifying theenumerationtypefor an:enum, the(base)classof the
referred object for a:class, and the element class for an:aggregation.

JACOB Object Modelling

JACOBManual
Release5.5

34 18-May-06
Copyright © 2000-2012, Agent Oriented Software Pty. Ltd.

• :value – a:string that is written to the generated output as the means for obtaining the
default value for the field.

• :defaultFlag – a:string that defines aboolean member in the generated class to be
associatedwith thisfield to markwhetherthefield valuewasreadfrom theinputstreamor
not. The flag is true by default, and is reset by JACOB upon reading and recognising the
field from the input stream.

• :directives – a list ofDirective objects to be processed in conjunction with generating
the output.

• :implemented_by, which is an attribute for an:aggregation field. Its value is a string
identifying theactualclassby which to implementtheaggregation.Thenamedclassmust
then implement the Aggregate interface, and be available as part of the Reader
functionality in the application. For C++ code, use:implemented_in_cxx_by instead.

• :implemented_in_java_by, is the same as:implemented_by.

• :allowed, which is an attribute for an:aggregation field. Its value is a list ofAPIString
objects identifying a specific classes (derivation of:subtype) allowed as element type. If
this attribute is used, then the aggregation is restricted to only derivations of the allowed
classes, otherwise any derivation of:subtype is allowed.

• :label – aString which stores the label associated with the field.

• :isPublic – a boolean field which denotes whether the field ispublic or not. The default
value is"true".

• :isHidden – a boolean field which denotes whether the field should be hidden when
editing in the JACOB editor. The default value is"false".

• :isStatic – a boolean field which denotes whether the field isstatic or not. The default
value is"false".

• :isTransient – a boolean field which denotes whether the field istransient or not. The
default value is"false".

• :javaInit – aText object that contains the Java initialiser expression for the field.

• :cxxInit – aText object that contains the C++ initialiser expression for the field.

• :inherited – a boolean field which denotes whether this field is inherited from a
superclass or not. The default value is"false".

• :genReader – abooleanfield whichdenoteswhetherthefield hasaget accessormethodor
not. The default value is"false".

• :genWriter – abooleanfield whichdenoteswhetherthefield hasaset accessormethodor
not. The default value is"false".

• :javaReader – aString identifying theget accessor method name for the field.

• :javaWriter – aString identifying theset accessor method name for the field.

JACOB Object Modelling

JACOB Manual
Release 5.5
18-May-06 35
Copyright © 2000-2012, Agent Oriented Software Pty. Ltd.

4.1.1.3 Enum

Objects of typeEnum are definitions of enumeration types. The fields of such objects are:

• :name – a:string identifying the name of the enum type as a whole.

• :comment – a:string that is treated as a user level (short) description of the defined
enumeratedtype.The:comment is in particularavailablewhenobjectsof thedefinedclass
are written and may, for example, be written to the output to increase its readability.

• :members – an:aggregation of Member objects defining the enumeration members.

4.1.1.4 Member

Objects of typeMember are used for defining the members of an enumeration. The fields of a
Member object are:

• :name – a:string stating the member identifier.

• :comment – a:string that is treated as a user level (short) description of the field. The
:comment is in particular available when objects of the defined class are written and may,
for example, be written to the output to increase readability.

• :value – an:int designating a value for the identifier. If the value is omitted, the default
valueis computedas0 for thefirst Member of anenumerationtype,otherwiseasX+1, where
X is the value of the precedingMember of the enumeration type.

• :label – aString which stores the label associated with the member.

• :icon – the icon to display when showing this member.

4.1.1.5 Code

Objects of typeCode are portions of target language source code to be copied to the output 'in
place'. The fields of aCode object are:

• :lang – "java" or "cxx".

• :code – the code that should appear in the output.

A Code object is aDirective object.

4.1.1.6 Include

Objectsof typeInclude declarefilescontainingportionsof targetlanguagesourcecodeto be
copied to the output (usually) 'in place'. The fields of anInclude object are:

• :lang – "java" or "cxx".

• :filename – the file that should be copied into the output.

JACOB Object Modelling

JACOBManual
Release5.5

36 18-May-06
Copyright © 2000-2012, Agent Oriented Software Pty. Ltd.

• :inDeclaration – abooleanfield whichdenoteswhetherthefile shouldbeincludedin the
C++ declaration section or not. This is only used for C++ code. The default value is
"true".

A Include object is aDirective object.

RunningJACOB

JACOB Manual
Release 5.5
18-May-06 37
Copyright © 2000-2012, Agent Oriented Software Pty. Ltd.

5 Running JACOB
JACOB is used to compile*.api files. The compilation procedure results in the generation of
C++ or JAVA files which are then compiled using a standard C++ or JAVA compiler (as
appropriate). The resulting object code defines the JACOB objects.

5.1 JACOB Build
The general form of the command to compile*.api files is

 java aos.main.JacobBuild <dict-file>

where<dict-file> is adictionaryfile. JACOBBuild mayalsoberunwith thecommandline
options below.

5.2 Command Line Options

5.2.1 -Wlang

Displays language warnings.

usage :-Wlang

arguments : none

default value (option not used) : no language warning errors are reported

5.2.2 -lang

Setsthedefaultoutputlanguageof JACOB.ThelanguagemayeitherbeJavaor C++.Another
language may be used if a driver for that language is created.

usage :-lang string

default value : java

5.2.3 -pkg

When Java code is generated, this identifies the location of JACOB classes for the generated
code.

usage :-pkg string

default value :aos.apib

Running JACOB

JACOBManual
Release5.5

38 18-May-06
Copyright © 2000-2012, Agent Oriented Software Pty. Ltd.

5.2.4 -syntax

This defines the file defining the location of the class that initialises JACOB. This effectively
sets the syntax of the JACOB language by allowing an alternative definition of the default
language file.

Another language, such as XML or SQL may be used if a class that initialises the language
exists.

usage :-syntax string

default value :aos.apib.apic.boot.DefReader

5.2.5 -dj

This option identifies the directory where generated files are placed.

usage :-dj string

5.2.6 -dos

Filesgeneratedhave theextension.cpp insteadof .C. Notethatthisoptionmustbeusedwith
the-lang cxx option.

usage:-dos

This option is not used by default.

5.2.7 -v

Displays the version of the JACOB Compiler.

usage:-v or -version

5.2.8 -h

Displays the command line options that may be used with the JACOB Compiler.

usage:-h or -help

RunningJACOB

JACOB Manual
Release 5.5
18-May-06 39
Copyright © 2000-2012, Agent Oriented Software Pty. Ltd.

5.2.9 -convert

Converts data from one format to another format.

usage:-convert -v mode infile outfile typedict

-v (optional): verbose mode prints messages about opening files, and reading and writing
objects.

mode is aninmodeletterimmediatelyfollowedby anoutmodeletter. e.g.AX convertsASCII to
XML.

a,A = ASCII; x,X = XML; b,B = Binary;u,U = unspecified (input only)

baxu uses theread/writeMultipleObjects() interface.AXBU uses theread/writeObject()
interface.

Note that thereadMultipleObjects() interface is not supported for Binary.

typedict (optional):acompiledInit__XXX.class file or any JACOBdefinitionfile. Notethat
the.class extension should not be included.

Running JACOB

JACOBManual
Release5.5

40 18-May-06
Copyright © 2000-2012, Agent Oriented Software Pty. Ltd.

Functional Components of JACOB

JACOB Manual
Release 5.5
18-May-06 41
Copyright © 2000-2012, Agent Oriented Software Pty. Ltd.

6 Functional Components of J ACOB
6.1 Compiler
The JACOB Compilerprocesses one or more definition files, and generates code modules to
link in with an application that intends to use, read and write the classes defined through the
definition files. The compiler is a Java application that takes one or more definition files as
input, and generates one or more Java or C++ files as output.

6.1.1 JACOB Data Definition Langua ge
The definition files input to the compiler are defined using the JACOB Data Definition
Language. The syntax is defined in Extended Baccus-Naur Form (EBNF) in the section
entitledJACOB Object Modelling.

6.1.2 Mappings in J AVA
For generating Java code, the field type mappings are as described in the section entitled
JACOB Object Modelling.

All Enum definitions result in separate classes; one for eachEnum class. Within that class, each
enumeration member is layed out as apublic static final data member. Fields of type
:enum are translated intoint values.

EachClass definition results in its own Java file containing the corresponding Java class
definition. In addition, each class definition is associated with aStreamerSupport extension
class that contains the code for reading and writing objects of the type defined. These
StreamerSupport extension classes are non-public classes appended to the Java files defining
the data classes.

One additional class is also generated for the definition source file. The class is named by
addingtheprefixInit__ to theinputfile name.Thisclassincludesall theinitialisationneeded
for usingthedefinitionsetin anapplication.Further, whencompilingthisclasswith javac, all
classes concerned are compiled automatically.

Inline sourcecodefragmentsfrom Codedirectivesfor Javaarecopiedto theoutputfile asthey
occur among the fields.

The default aggregation is an array. TheAggregate interface includes methods for adding
elements and constructing anEnumeration for accessing elements in order.

Functional Components of JACOB

JACOBManual
Release5.5

42 18-May-06
Copyright © 2000-2012, Agent Oriented Software Pty. Ltd.

6.1.3 Mappings in C++
For generating C++ code, the field type mappings are as described in the section entitled
JACOB Object Modelling, with the exception of the:bool type, which is mapped into
unsigned char such that0 represents:false and1 represents:true.

EachEnum definition is mapped into a class definition as in Java, but the member set is also
reconstructed as an anonymouspublic enum declaration within the class.

All classes of a definition source file are layed out together in a single C++ source file pair
(separating headers from implementation).

The generated code further includes an additional class that includes all the initialisation
needed for using the definition set in an application.

Inline sourcecodefragmentsfrom Code directivesfor C++ arecopiedto theoutputheaderfile
essentially as they occur among the fields; in particular, within apublic: segment.

The default aggregation is a class extendingJACOB_Aggregate. This includes methods for
adding elements and constructing aJACOB_Enumeration for accessing the elements in order.

6.2 Writer
TheWriter is thecombinedfunctionalityof codelibrariesandgeneratedcodeandenablesthe
mappingof anobjectstructureontoastreamrepresentationsothatthesameobjectstructureis
reconstructed when the reader is applied to the stream (see below).

TheWriter functionalityinvolvestheprocessingof anin-coredatastructurefor generatingan
output stream in one of several formats. The algorithm for this is a plain depth-first tree
traversal that is implemented partly by pre-compiled library code and partly by the code
generated for the class definitions. The latter is contained within theStreamerSupport

extension classes, and each such class is therefore (made) capable of accessing the
transportable fields. (In C++ code the class is calledJACOB_StreamerSupport.)

6.2.1 Java Writer Classes
There is a generic class for output streaming, namedOutStream, and there are four separate
extensions of this:

• AsciiOutStream for ASCII file representation.

• BinaryOutStream for binary file representation.

• JDBCOutStream for JDBC file representation.

• XMLOutStream for XML file representation.

Functional Components of JACOB

JACOB Manual
Release 5.5
18-May-06 43
Copyright © 2000-2012, Agent Oriented Software Pty. Ltd.

6.2.2 C++ Writer Classes
The generic C++ class for output streaming isJACOB_OutStream. This class currently has the
separate extensionsJACOB_AsciiOutStream for ASCII file representation and
JACOB_BinaryOutStream for binary file representation.

6.2.3 Writing Objects
Thewriting of objectsis generatedaspartof theStreamerSupport or JACOB_StreamerSupport
derivations as straightforward depth-first tree traversal. TheAsciiOutStream or
JACOB_AsciiOutStream identifies and keeps track of objects written out (including the one in
progress);uponthesecondandsubsequentoccurrenceof anobjectits identificationnumberis
written out, preceded by an& character instead of traversing the object. The identification
number is unique within the object structure.

6.3 Reader
The Reader is the combined functionality of code libraries and generated code, and enables
the processing of an object stream and the reconstruction of the corresponding runtime object
structuresit represents.TheReaderfunctionalityinvolvestheprocessingof aninputstreamin
one of several formats into a corresponding in-core data structure, by using aTypeDict of
definitions regarding which objects the input stream may contain.

6.3.1 Java Reader Classes
There is a generic class for input streaming, namedInStream, and there are separate
extensions of this,AsciiInStream for the ASCII file representation described earlier,
JDBCInStream for JDBC file representation,XMLInStream for XML file representation and
BinaryInStream for a compact binary file representation. TheInStream constructor uses
reflection to find the class of an object if it is not known.

To open a JACOB stream regardless of the format, use the static method

 InStream.open(InputStream stream, TypeDict dict)

which will inspect the start of the stream, and return the correct derivation of InStream after
resetting the input stream.

6.3.2 C++ Reader Classes
ThegenericC++ classfor inputstreamingis namedJACOB_InStream. Thisclasscurrentlyhas
the separate extensionsJACOB_AsciiInStream for ASCII file representation and
JACOB_BinaryInStream for binary file representation.

To open a JACOB stream, the format must first be determined. The correct derivation of
JACOB_InStream can then be opened (e.g. a new JACOB_AsciiInStream for ASCII data).

Functional Components of JACOB

JACOBManual
Release5.5

44 18-May-06
Copyright © 2000-2012, Agent Oriented Software Pty. Ltd.

Note: When reading from or writing to data streams in Windows, a corresponding JACOB
function must be registered. These functions are:fileRead, fileWrite, socketRead and
socketWrite. An example of registering a read or write function can be seen in the C++
examples in the Sample Applications section.

6.3.3 Reading Objects
Reading is invoked by a stream methodreadObject. This reader recognises the<Object>
introduction phrase (the angle bracket and the class name of the object to come in the input
stream).This is sufficient to constructablankobjectof theindicatedtype,andinvoketheread
method of the associatedStreamerSupport (or JACOB_StreamerSupport for C++).

6.4 Initialisation
The Initialisation is the combined functionality of code libraries, generated code, and user-
written code by which the reading/writing capability is enabled in an application program.

The JACOB functionality is enabled in an application, apart from any linking of object files,
by constructing aTypeDict object. TheTypeDict object defines the mapping between class
names occurring in transport streams and actual class definitions generated by the JACOB
utility.

WhenJACOBprocessesadefinitionfile, it alsoconstructsadefinitiongroupclasswith astatic
methodaddGroup(TypeDict d), which at runtime adds all the definition classes of the
definition file into the given dictionary (TypeDict). The generated definition group class is
named after the definition file.

TheapplicationprogramthusconstructsandbuildstheTypeDict objector objectsaspartof its
initialisation. TheTypeDict object is then passed to the reader method of the input stream for
reading the input file.

6.4.1 Dictionar y file
A dictionary file defines the object(s) to be manipulated. When JACOB is run on an.api file,
sayfilename.api, two files are generated. If Java code is generated, one of the files is called
Init__filename.java. If C++codeis generated,oneof thefiles is aheaderfile, containingan
Init__filename class definition.

TheInit_filename code implements the dictionary specification for the object. Objects are
read using the dictionary specified during the input of the stream. The Sample Application
section contains examples demonstrating the implementation of dictionaries.

Functional Components of JACOB

JACOB Manual
Release 5.5
18-May-06 45
Copyright © 2000-2012, Agent Oriented Software Pty. Ltd.

6.5 JACOB File Formats
Apart from the simple ASCII language described earlier, JACOB can read and write files in
several other formats. These formats encode exactly the same information but may be
preferred for other reasons.

There are currently four supported JACOB file formats:

• ASCII

• Binary

• JDBC

• XML.

Note: Only the ASCII and Binary formats are currently supported for C++.

6.5.1 ASCII
ASCII is aconciseandreadableformatwhichcanbeeditedby handquiteeasilyif necessary.
Theinputstreameris calledAsciiInStream andtheoutputstreameris calledAsciiOutStream.

6.5.2 Binar y
The binary format is an extremely compact object representation. It can be used when the
speed of object transfer is paramount or if it is desirable to make the stream not human-
readable. The input streamer is calledBinaryInStream and the output streamer is called
BinaryOutStream.

6.5.3 JDBC
The JDBC format is a representation of data in tabular form such as a relational database or
spreadsheet. JACOB objects in JDBC format are in the form of multiple tables. These tables
are in generic form. If multiple JACOB object structures are stored in a database with other
data, they are identified as distinct JACOB object structures by 'stream identifiers'. Stream
identifiers are used to uniquely identify JACOB objects transported in a JDBC output
streamer.

Theinputstreamerfor JACOBobjectsin JDBCformatis calledJDBCInStream andtheoutput
streamer is calledJDBCOutStream. Both of these classes use methods from theJDBCSupport

class.

See the JDBC API documentation (http://java.sun.com/products/jdbc) for further
information.

Functional Components of JACOB

JACOBManual
Release5.5

46 18-May-06
Copyright © 2000-2012, Agent Oriented Software Pty. Ltd.

6.5.4 XML
The XML format is very similar to the default ASCII representation.

Where the ASCII representation would write:

 <Derived
 <InBetween
 <BaseClass :name "ash">
 :ibw 999>
 :x 2
 :base "foobar"
 :y 100
 :doc <Other :foo 10>
 >

The XML representation would be:

 <?xml version="1.0"?>
 <jacob version="3.0">

 <object type="Derived" id="0">
 <base type="InBetween">
 <base type="BaseClass">
 <field name="doc">
 <object type="Other" id="1">
 <field name="foo">10</field>
 </object>
 </field>
 <field name="name">ash</field>
 <field name="base">foobar</field>
 </base>

 <field name="ibw">999</field>
 </base>

 <field name="x">2</field>
 </object>

The XML format is useful if you want to use XML tools to manipulate the JACOB objects or
object definitions. The input streamer is calledXMLInStream and the output streamer is called
XMLOutStream.

SampleApplications

JACOB Manual
Release 5.5
18-May-06 47
Copyright © 2000-2012, Agent Oriented Software Pty. Ltd.

7 Sample Applications
JACOB was designed to be used for two primary application types:

1. An object initialisation tool, allowing flexible and consistent initialisation of data objects.

2. An object communication device, allowing populated objects to be sent between different
processes.

The first example provides code used to initialise an array of objects using a data file and
JACOB.

Thesecondexampledescribescodecontainedin theJACK distributiondefiningaclient/server
system that sends and receives objects in either binary or ASCII. There is code for the client
and the server in both C++ and Java.

7.1 Object Initialisation example
One of the most common uses of JACOB is as a utility to input data directly into an
application. This section lists and describes some simple code that uses JACOB generated
code to read data into an application. Java code for this example is described in the Java
development steps section. C++ code is included with the JACOB C++ distribution, and is
described in the C++ development steps section.

7.1.1 Development steps
The procedure used consists of the following steps:

1. The object structure must be defined in an.api file using the JACOB Data Definition
Language.

2. The.api file must be compiled using JACOB.

3. The.java or .pp files generated by the compilation of each.api file must be compiled
using a standard Java or C++ compiler.

4. The application input code must be written using the JACOB components (described
below).

5. The data file(s) to be read by the application must be written in the appropriate format.

6. The application can be used.

7.1.2 Waypoint Initialiser code and description
The example in this section reads a list of waypoints from a data file and stores them in the
form of anarrayof objectsof typeWaypoint. Thedatais thenwritten to thescreen,written to
an ASCII file, and written to a binary file. The ASCII and binary files could be read in using
the JACOB code by another application, or at a different time by the current application. This

Sample Applications

JACOBManual
Release5.5

48 18-May-06
Copyright © 2000-2012, Agent Oriented Software Pty. Ltd.

code could of course be combined with components of the client/server code and the object
read in could be sent to other processes.

7.1.2.1 Java development steps

Step One: The waypoint object is defined in the file namedwaypoint.api below.

 <Code :lang "java">

 <Class :name "Waypoint"
 :fields (
 <Field :name "x" :type :int>
 <Field :name "y" :type :int>
 <Field :name "altitude" :type :int>
 <Field :name "speed" :type :int>
 <Field :name "id" :type :bool :value "true">
)
 >

Note that the embedded 'package' statement should be changed to the actual package being
built. Alternatively, this line can be removed entirely if an empty (unnamed) package is being
built.

Step Two: This must be compiled using the command

 java aos.main.JacobBuild waypoint.api

This will generate two files,Waypoint.java andInit__waypoint.java.

Step Three: These two files must be compiled using the command

 javac Waypoint.java Init__waypoint.java

Step Four: Thefollowing is aprintoutof aclasscalledWaypointInitialiser thatreadsa list
of waypointsin theform of theWaypoint class.Thewaypointsarestoredin anarray, printedto
the screen, and written to an ASCII file and a binary file.

Lines 1 to 5 import the required classes.

Lines 7 to 10 identify the class.

Line 11 declares aBase class type.

Line 13 declares an object of typeTypeDict. This is the JACOB dictionary declaration.

Lines 16 to 17 declare the variable waypoints as typeVector.

Lines 20 to 21 initialise the JACOB dictionary using the JACOB generated class
Init__waypoint. This defines the waypoint class.

SampleApplications

JACOB Manual
Release 5.5
18-May-06 49
Copyright © 2000-2012, Agent Oriented Software Pty. Ltd.

Lines24to 70arethemainbodyof thecode.Theentirecodeis containedin thetry beginning
from line 24. While this is not textbook Java, the method was chosen as it simplifies the main
body of the code.

Lines 27 to 30 define a JACOB ASCII input stream as the data filefighter_1.dat. Note that
the stream is associated with the dictionary.

Lines 39 to 42 define the ASCII and binary output streams used for output to the ASCII and
binary files.

Lines 46 to 56 read the data file.

Line 46controlstheloop.Objectsarereadfrom thedatafile until therearenomoreobjectsto
read.

Lines 49 to 52 store each waypoint read in in theVector waypoints.

Lines 54 and 55 write each waypoint object to the binary and ASCII stream as they are read
from the input file.

Lines 58 to 62 store theVector waypoints in an array of typeWaypoint, w.

Lines 63 to 70 extract the data from the arrayw and writes it to the screen

Source code for the application Waypoint Initialiser is listed below.

 1 import aos.apib.apic.boot.*;
 2 import aos.apib.*;
 3 import java.io.*;
 4 import java.util.Vector;
 5 import java.util.Enumeration;
 6
 7 public class WaypointInitialiser {
 8 public static void
 9 main(String[] args)
10 {
11 Base input_base;
12
13 TypeDict dict;
14
15 // declare the vector waypoints
16 Vector waypoints;
17 waypoints = new Vector();
18
19 //initialise dictionary
20 dict = new TypeDict();
21 dict.initialize("Init__waypoint");
22
23 // Read in waypoint objects from data file
24 try {
25 // Set up input and output streams
26 // Data file
27 InputStream data_file =

Sample Applications

JACOBManual
Release5.5

50 18-May-06
Copyright © 2000-2012, Agent Oriented Software Pty. Ltd.

28 new FileInputStream("fighter_1.dat");
29 InStream in = new AsciiInStream(new BufferedReader(
30 new InputStreamReader(data_file)),dict);
31
32 // Binary output
33 OutputStream binary_output_file = new BufferedOutputStream(
34 new FileOutputStream("waypoint_out_file_Binary.txt"));
35 BinaryOutStream binary_out =
36 new BinaryOutStream(binary_output_file);
37
38 // ASCII output
39 OutputStream ASCII_output_file = new BufferedOutputStream(
40 new FileOutputStream("waypoint_out_file_Ascii.txt"));
41 AsciiOutStream ASCII_out =
42 new AsciiOutStream(ASCII_output_file);
43
44 // read objects from data file and store them, and write
45 // them to an ASCII and a binary file
46 while((input_base = in.readObject()) != null)
47 {
48 // store waypoints in the vector waypoints
49 if (input_base instanceof Waypoint)
50 {
51 waypoints.addElement(input_base);
52 }
53 // write objects to ASCII and binary file
54 binary_out.writeObject(input_base);
55 ASCII_out.writeObject(input_base);
56 }
57 // write data stored in waypoints vector to the screen
58 Waypoint [] w = new Waypoint[waypoints.size()];
59 int i = 0;
60 for(Enumeration e = waypoints.elements();
61 e.hasMoreElements();)
62 w[i++]= (Waypoint)e.nextElement();
63 for (int ii=0; ii<w.length; ii++) {
64 int waypoint_number = ii+1;
65 System.out.println("Waypoint " + waypoint_number + ":"
66 + " x = " + w[ii].x
67 + " y = " + w[ii].y
68 + " altitude = " + w[ii].altitude
69 + " speed = " + w[ii].speed);
70 }
71 }
72 catch (Throwable e) {
73 System.err.println("Caught "+e);
74 e.printStackTrace();
75 // close binary_out and ASCII_out if you want to see the
76 // partially generated output files for debugging purposes
77 System.exit(1);
78 }
79 }
80 }

Sample Applications

JACOB Manual
Release 5.5
18-May-06 51
Copyright © 2000-2012, Agent Oriented Software Pty. Ltd.

Step Five: A sample data file containing a list of six waypoints,fighter_1.dat, is listed
below.

 <Waypoint :x 10 :y 20 :altitude 1000 :speed 100 :id :false>
 <Waypoint :x 40 :y 20 :altitude 1000 :speed 100 :id :false>
 <Waypoint :x 50 :y 60 :altitude 1000 :speed 100 :id :false>
 <Waypoint :x 100 :y 200 :altitude 10000 :speed 100 :id :true>
 <Waypoint :x 150 :y 300 :altitude 10000 :speed 100 :id :true>
 <Waypoint :x 200 :y 200 :altitude 10000 :speed 100 :id :true>

When the above code is executed:

• The data filefighter_1.dat is read.

• The waypoint data is written to the screen.

• A file, waypoint_out_file_Binary.txt, is created containing the waypoint data as
generated by JACOB in binary form.

• A file, waypoint_out_file_Ascii.txt, is created containing the waypoint data as
generated by JACOB in ASCII form.

The code has demonstrated the reading of an ASCII file, and the writing of ASCII and binary
files. The reading of binary files is also possible using a similar method to the ASCII read.

7.1.2.2 C++ development steps

Thecodein thisexamplehasbeentestedunderLinux andVC++ but it maystill requiresome
changes, depending on the C++ environment and where the JACOB libraries are installed.

TheC++ objectinitialisationexamplemaybecompiledwith theprovidedMakefileby typing
'make', or by following the steps below.

Step One: The waypoint object is defined in the file namedwaypoint.api below.

 <Class :name "Waypoint"
 :fields (
 <Field :name "x" :type :int>
 <Field :name "y" :type :int>
 <Field :name "altitude" :type :int>
 <Field :name "speed" :type :int>
 <Field :name "id" :type :bool :value "true">
)
 >

Note that this file is the same as thewaypoint.api file in Step One of the Java development
stepssectionapartfrom theCode object.JacobBuildwill ignoreaCode objectif the:lang field
does not match the language of the source code being generated.

Sample Applications

JACOBManual
Release5.5

52 18-May-06
Copyright © 2000-2012, Agent Oriented Software Pty. Ltd.

Step Two: Thewaypoint.api file must be compiled using the command

 java aos.main.JacobBuild -dos -lang cxx waypoint.api

which generates two files,waypoint.h andwaypoint.cpp.

Note that using the-dos command line option creates.cpp files instead of.C files.

Step Three: The generated C++ file must be compiled, either with the provided Makefile,
using an IDE such as Visual Studio or using the command

 g++ -c -Wall -I../.. waypoint.cpp

Step Four: The following is a printout of a file calledWaypointInitialiser.cpp that reads a
list of waypointsin theform of thewaypoint class.Thewaypointsarestoredin anarraythatis
printed to the screen and written to an ASCII file and a binary file.

Lines 1 to 15 include the required header files.

Lines 17 to 19 are the application ID.

Lines 20 to 24 declare theStreams and other parameters used in the application.

Lines 25 to 27 declare the files used in the application.

Line 23 declares aJACOB_Base class type.

Line 24 declares a an object of typeJACOB_TypeDict. This is the JACOB dictionary
declaration.

Lines39to 40constructandinitialise theJACOBdictionaryusingtheJACOBgeneratedclass
Init__waypoint. This defines the waypoint class.

Line 62 defines a JACOB ASCII input stream as the data filefighter_1.dat. Note that the
stream is associated with the dictionary.

Lines108to 111definetheASCII andbinaryoutputstreamsusedfor outputto theASCII and
binary files.

Lines 115 to 129 read the data file.

Line 124 stores each waypoint read in thevector waypoints.

Lines 127 to 128 write each waypoint object to the binary and ASCII stream as they are read
from the input file.

Lines 140 to 152 extract the data from vector and write it to the screen.

SampleApplications

JACOB Manual
Release 5.5
18-May-06 53
Copyright © 2000-2012, Agent Oriented Software Pty. Ltd.

Source code for the application WaypointInitialiser is provided below.

 1 #include <jacob/AsciiOutStream.h>
 2 #include <jacob/AsciiInStream.h>
 3 #include <jacob/BinaryOutStream.h>
 4 #include <jacob/BinaryInStream.h>
 5 #include "jacob/JACOB.h"
 6
 7 #ifndef _WIN32
 8 #include <fcntl.h>
 9 #endif
 10
 11 #include <stdio.h>
 12 #include <stdlib.h>
 13 #include <vector.h>
 14
 15 #include "waypoint.h"
 16
 17 int
 18 main(int ac)
 19 {
 20 JACOB_BinaryOutStream *binary_out = 0;
 21 JACOB_AsciiOutStream *ascii_out = 0;
 22 JACOB_InStream *data_file = 0;
 23 JACOB_Base *input_base = 0;
 24 JACOB_TypeDict *dict = 0;
 25 char *filename = "fighter_1.dat";
 26 char *binaryfilename = "waypoint_out_file_Binary.txt";
 27 char *asciifilename = "waypoint_out_file_Ascii.txt";
 28
 29 #ifdef _WIN32
 30 WSADATA foo;
 31 WSAStartup(1, &foo);
 32 #endif
 33
 34 int infd = 0;
 35
 36 vector<Waypoint*> waypoints;
 37
 38 //initialise dictionary
 39 dict = new JACOB_TypeDict();
 40 Init__waypoint::init(dict);
 41
 42 #ifdef _WIN32
 43 infd = (int)CreateFile(filename, GENERIC_READ,
 44 FILE_SHARE_READ, NULL, OPEN_ALWAYS,
 45 FILE_ATTRIBUTE_NORMAL, NULL);
 46 if ((RW_HANDLE)infd == INVALID_HANDLE_VALUE)
 47 {
 48 fprintf(stderr,
 49 "OpenFile: GetLastError() => %d\n",
 50 GetLastError());
 51 exit(1);
 52 }
 53 #else
 54 infd = open(filename, O_RDONLY);
 55 if(infd < 0)
 56 {
 57 fprintf(stderr, "failed to open %s\n", filename);
 58 exit(1);
 59 }

Sample Applications

JACOBManual
Release5.5

54 18-May-06
Copyright © 2000-2012, Agent Oriented Software Pty. Ltd.

 60 #endif
 61
 62 data_file = new JACOB_AsciiInStream(infd, dict);
 63
 64 data_file->registerReadFunction(JACOB_InStream::fileRead);
 65
 66 #ifdef _WIN32
 67 int binary_output_file = (int)CreateFile(binaryfilename,
 68 GENERIC_WRITE, FILE_SHARE_READ, NULL, CREATE_ALWAYS,
 69 FILE_ATTRIBUTE_NORMAL, NULL);
 70 if ((RW_HANDLE)infd == INVALID_HANDLE_VALUE)
 71 {
 72 fprintf(stderr,
 73 "OpenFile: GetLastError() => %d\n", i
 74 GetLastError());
 75 exit(1);
 76 }
 77
 78 int ascii_output_file = (int)CreateFile(asciifilename,
 79 GENERIC_WRITE, FILE_SHARE_READ, NULL, CREATE_ALWAYS,
 80 FILE_ATTRIBUTE_NORMAL, NULL);
 81 if ((RW_HANDLE)infd == INVALID_HANDLE_VALUE)
 82 {
 83 fprintf(stderr,
 84 "OpenFile: GetLastError() => %d\n",
 85 GetLastError());
 86 exit(1);
 87 }
 88 #else
 89 // open file for Binary output, create file if not present
 90 int binary_output_file = open(binaryfilename,
 91 O_WRONLY | O_CREAT, 0644);
 92
 93 if(binary_output_file < 0)
 94 {
 95 fprintf(stderr, "failed to open %s\n", binaryfilename);
 96 exit(1);
 97 }
 98
 99 // open file for ASCII output, create file if not present
100 int ascii_output_file = open(asciifilename,
101 O_WRONLY | O_CREAT, 0644);
102
103 if(ascii_output_file < 0)
104 {
105 fprintf(stderr, "failed to open %s\n", asciifilename);
106 }
107 #endif
108 binary_out =
109 new JACOB_BinaryOutStream(binary_output_file);
110 ascii_out =
111 new JACOB_AsciiOutStream(ascii_output_file);
112
113 // read objects from data file, store them, and write
114 // them to an ASCII and a binary file
115 for(;;)
116 {
117 input_base = data_file->readObject();
118 if(input_base == 0) break;
119
120 Waypoint *waypt =

Sample Applications

JACOB Manual
Release 5.5
18-May-06 55
Copyright © 2000-2012, Agent Oriented Software Pty. Ltd.

121 reinterpret_cast<Waypoint*>(input_base);
122
123 // store waypoints in the vector waypoints
124 waypoints.push_back(waypt);
125
126 // write objects to ASCII and binary file
127 binary_out->writeObject(input_base);
128 ascii_out->writeObject(input_base);
129 }
130 close(infd);
131 close(binary_output_file);
132 close(ascii_output_file);
133
134 delete binary_out;
135 delete ascii_out;
136
137 delete input_base;
138
139 // write data stored in waypoints vector to the screen
140 for(int i=0; i < (int)waypoints.size(); i++)
141 {
142 int waypoint_number = i+1;
143 fprintf(stderr,
144 "Waypoint %i: x= %d y = %d
145 altitude = %d speed = %d \n",
146 waypoint_number, waypoints[i]->x,
147 waypoints[i]->y,
148 waypoints[i]->altitude,
149 waypoints[i]->speed);
150
151 delete waypoints[i];
152 }
153
154 return 0;
155 }

Step Five: The application can be compiled using

g++ -c -Wall -I../.. WaypointInitialiser.cpp
g++ -o WaypointInitialiser WaypointInitialiser.o -L../../lib/linux/g++-2.95
-ljacob

A sample data file containing a list of six waypoints,fighter_1.dat, is listed in Step Five of
the Java development steps section.

When the above code is executed:

• The data filefighter_1.dat is read.

• The waypoint data is written to the screen.

• A file, waypoint_out_file_Binary.txt, is created containing the waypoint data as
generated by JACOB in binary form.

• A file, waypoint_out_file_Ascii.txt, is created containing the waypoint data as
generated by JACOB in ASCII form.

Sample Applications

JACOBManual
Release5.5

56 18-May-06
Copyright © 2000-2012, Agent Oriented Software Pty. Ltd.

The code has demonstrated the reading of an ASCII file, and the writing of ASCII and binary
files. The reading and writing of binary files is also possible using similar methods to the
ASCII reading and writing methods.

7.2 Object Communication example
The object communication capability of JACOB allows the sending and receiving of data
objectsbetween JAVA and C++ classes. One of the major potential uses of this code is to
implement rapid data transport between C++ and JAVA code. This section lists and describes
some simple code that demonstrates this capability.

Both Java and C++ code for a simple client and server system is included with the JACOB
C++ distribution. Java code for this example is described in the Java development steps
section. C++ code is described in the C++ development steps section.

7.2.1 Development steps
1. The data object structure(s) must be defined in an.api file (or multiple.api files if

desired) using the JACOB Data Definition Language.

2. The.api file(s) must be compiled using JACOB.

3. The.java or .cpp files generated by the compilation of each.api file must be compiled
using a standard Java or C++ compiler.

4. The communication code can be written to use the compiled dictionaries to send and
receive the defined objects.

5. The application can be used.

7.2.2 Client/Server code and description
The example described in this section consists of two applications, a server and a client. The
serverreceivesdataobjectsfrom aclientandsendsthedatabackto theclient.Theclientsends
aspecifieddataobjectto theserver (andreceivestheobjectbackagain)aspecifiednumberof
times.Thiscodecanbeusedastestcodeto obtaintiming informationfor dataobjectsending.
Thedataobjectcanbesentor receivedin eitherASCII or binaryform, or in XML form (Java
only).

7.2.2.1 Java development steps

Step One: Some test data objects are defined in the filemsg.api. This file is partially
reproduced below.

Note: The excluded code (not printed below) contains more data objects exhibiting some of
the more complex features of the JACOB Data Definition Language.

SampleApplications

JACOB Manual
Release 5.5
18-May-06 57
Copyright © 2000-2012, Agent Oriented Software Pty. Ltd.

msg.api

<Class
 :name "RealSimple"
 :tostring "%T@%I %(val)"
 :fields (
 <Field
 :name "val"
 :type :int
 >
)
>

<Class
 :name "Test"
 :fields (
 <Field
 :name "val"
 :type :double
 >
)
>

<Class
 :name "Test10"
 :fields (
 <Field
 :name "val0"
 :type :int
 >
 <Field
 :name "val1"
 :type :int
 >
 <Field
 :name "val2"
 :type :int
 >
 <Field
 :name "val3"
 :type :int
 >
 <Field
 :name "val4"
 :type :int
 >
 <Field
 :name "val5"
 :type :int
 >
 <Field
 :name "val6"
 :type :int
 >
 <Field
 :name "val7"
 :type :int
 >
 <Field
 :name "val8"
 :type :int

Sample Applications

JACOBManual
Release5.5

58 18-May-06
Copyright © 2000-2012, Agent Oriented Software Pty. Ltd.

 >
 <Field
 :name "val9"
 :type :int
 >
)
>
 :
 :
 (The remainder of the file has not been printed)
 :

The three data objects defined above are very simple but can be used to illustrate this
application, as will be shown later in this section in Step Five.

Step Two: This must be compiled using the command

 java aos.main.JacobBuild msg.api

This will generate several files. For each of the objects (ObjectName) defined in themsg.api
file it will generate anObjectName.java. It will also generate anInit__msg.java file.

Step Three: These generated java files must be compiled, for example using the command

 javac *.java

Step Four: The server and client code are printed and explained below.

Server

The server receives data objects sent to it by a client, and sends the objects back to the client.

Lines 1 to 3 consist of the required imports.

Lines 5 to 9 are the class and application ID.

Line 10 declares an object of typeTypeDict (the dictionary).

Lines 11 to 14 declare theStreams and other parameters used in the class.

Lines 16 to 22 check the number of command line arguments.

Line 24 constructs the new dictionary (TypeDict).

Line 25 initialises the dictionary.

Lines 27 to 34 initialise the socket with the user specified port number.

Lines 35 to 73 contain the code that reads the objects and writes them in the appropriate type
(binary, ASCII or XML). This code loops forever, accepting a connection and reading all
objects present on the stream.

SampleApplications

JACOB Manual
Release 5.5
18-May-06 59
Copyright © 2000-2012, Agent Oriented Software Pty. Ltd.

Line 67 declares an object of type Base .

Lines 68 and 69 read the data object and then write the data object back to the client.

Server code

 1 import aos.apib.*;
 2 import java.io.*;
 3 import java.net.*;
 4
 5 public class Server
 6 {
 7 public static void
 8 main(String[] args)
 9 {
 10 TypeDict dict;
 11 Socket sock;
 12 OutStream out = null;
 13 InStream in = null;
 14 ServerSocket serv = null;
 15
 16 if (args.length != 4) {
 17 System.err.println("usage: java Server "+
 18 "<Init__*> <port> <send-format> <recv-format>");
 19 System.err.println(" <send-format> = A, B or X");
 20 System.err.println(" <recv-format> = A, B or X");
 21 System.exit(1);
 22 }
 23
 24 dict = new TypeDict();
 25 dict.initialize(args[0]);
 26
 27 try {
 28 serv = new ServerSocket(Integer.parseInt(args[1]));
 29 }
 30 catch (Exception e) {
 31 System.err.println("Can't accept the connection");
 32 e.printStackTrace();
 33 System.exit(1);
 34 }
 35 for (;;) {
 36 // Loop forever, accepting a connection and reading
 37 // all objects present on the stream.
 38 try {
 39 System.err.println("waiting for a connection...");
 40 sock = serv.accept();
 41 if (args[2].equalsIgnoreCase("A"))
 42 out = new AsciiOutStream(sock.getOutputStream());
 43 else if (args[2].equalsIgnoreCase("B"))
 44 out = new BinaryOutStream(sock.getOutputStream());
 45 else if (args[2].equalsIgnoreCase("X"))
 46 out = new XMLOutStream(sock.getOutputStream());
 47 else {
 48 System.err.println("Bad send format");
 49 System.exit(10);
 50 }
 51 if (args[3].equalsIgnoreCase("A"))
 52 in = new AsciiInStream(sock.getInputStream(),dict);
 53 else if (args[3].equalsIgnoreCase("B"))
 54 in = new BinaryInStream(sock.getInputStream(),dict);

Sample Applications

JACOBManual
Release5.5

60 18-May-06
Copyright © 2000-2012, Agent Oriented Software Pty. Ltd.

 56 else if (args[3].equalsIgnoreCase("X"))
 57 in = new XMLInStream(sock.getInputStream(),dict);
 58 else {
 59 System.err.println("Bad recv format");
 60 System.exit(10);
 61 }
 62 }
 63 catch (Exception e) {
 64 e.printStackTrace();
 65 System.exit(1);
 66 }
 67 Base obj;
 68 while ((obj = in.readObject()) != null) {
 69 out.writeObject(obj);
 70 }
 71 System.err.println("no more objects to read");
 72 }
 73 }
 74 }

Client

The client sends a specified data object to the server (and receives the object back again) a
specified number of times.

Lines 1 to 3 consist of the required imports.

Lines 5 to 8 are the class and application ID.

Line 10 declares an object of typeTypeDict (the dictionary).

Lines 11 to 14 declare theStreams and other parameters used in the class.

Lines 16 to 29 check the number of command line arguments.

Line 31 constructs the dictionary.

Line 32 initialises the dictionary.

Lines34 to 46usethecommandline argumentsto setthehost,inputfile, portnumberandthe
number of times a data object is to be sent by the client.

Lines 50 to 61 set up the input stream to read in the data object.

Line 62 reads the data object intoobj.

Lines67 to 93setup thesocket (usingtheuser-specifiedportnumberandhost),andtheinput
and output streams (ASCII, binary or XML streams as defined by the command line
arguments).

Line 95 records the time at the start.

SampleApplications

JACOB Manual
Release 5.5
18-May-06 61
Copyright © 2000-2012, Agent Oriented Software Pty. Ltd.

Lines 97 to 106 write the data object to the output stream and read the data object when it is
returned. This is repeated the number of times specified by the command line argument.

Lines 107 to 110 print the time taken to send and receive the data object the specified number
of times.

Client code

 1 import aos.apib.*;
 2 import java.io.*;
 3 import java.net.*;
 4
 5 public class Client
 6 {
 7 public static void
 8 main(String[] args)
 9 {
 10 TypeDict dict;
 11 Socket sock;
 12 OutStream out = null;
 13 InStream in = null;
 14 ServerSocket serv = null;
 15
 16 if (args.length != 7) {
 17 System.err.println(
 18 "usage: java Client <Init__*> "+
 19 "<host> <port> <file> <count> <send> <recv>");
 20 System.err.println(
 21 " <send> = A, B or X (Ascii, Binary, XML)");
 22 System.err.println(
 23 " <recv> = A, B or X");
 24 System.err.println(
 25 " <file> contains a JACOB object");
 26 System.err.println(
 27 " if <file> = \"-\", reads from stdin");
 28 System.exit(1);
 29 }
 30
 31 dict = new TypeDict();
 32 dict.initialize(args[0]);
 33
 34 int count = 0;
 35 int port = 0;
 36 String host = args[1];
 37 String file = args[3];
 38
 39 try {
 40 port = Integer.parseInt(args[2]);
 41 count = Integer.parseInt(args[4]);
 42 }
 43 catch (Exception e) {
 44 System.err.println("Bad port or count given");
 45 System.exit(10);
 46 }
 47
 48 int tot = count;
 49
 50 try {
 51 if (file.equals("-"))

Sample Applications

JACOBManual
Release5.5

62 18-May-06
Copyright © 2000-2012, Agent Oriented Software Pty. Ltd.

 52 in = new AsciiInStream(new BufferedReader(
 53 new InputStreamReader(System.in)), dict);
 54 else
 55 in = new AsciiInStream(
 56 new BufferedReader(new FileReader(file)),dict);
 57 }
 58 catch (Exception e) {
 59 e.printStackTrace();
 60 System.exit(1);
 61 }
 62 Base obj = in.readObject();
 63 if (obj == null) {
 54 System.err.println("Failed to read an object to send");
 65 System.exit(1);
 66 }
 67 try {
 68 sock = new Socket(host, port);
 69 if (args[5].equalsIgnoreCase("A"))
 70 out = new AsciiOutStream(sock.getOutputStream());
 71 else if (args[5].equalsIgnoreCase("B"))
 72 out = new BinaryOutStream(sock.getOutputStream());
 73 else if (args[5].equalsIgnoreCase("X"))
 74 out = new XMLOutStream(sock.getOutputStream());
 75 else {
 76 System.err.println("Bad send format");
 77 System.exit(10);
 78 }
 79 if (args[6].equalsIgnoreCase("A"))
 80 in = new AsciiInStream(sock.getInputStream(),dict);
 81 else if (args[6].equalsIgnoreCase("B"))
 82 in = new BinaryInStream(sock.getInputStream(),dict);
 83 else if (args[6].equalsIgnoreCase("X"))
 84 in = new XMLInStream(sock.getInputStream(),dict);
 85 else {
 86 System.err.println("Bad recv format");
 87 System.exit(10);
 88 }
 89 }
 90 catch (Exception e) {
 91 e.printStackTrace();
 92 System.exit(1);
 93 }
 94
 95 long start_t = System.currentTimeMillis();
 96
 97 while (count > 0) {
 98 count--;
 99 out.writeObject(obj);
 100 obj = in.readObject();
 101 if (obj == null) {
 102 System.err.println(
 103 "Error with "+count+" messages to be read");
 104 break;
 105 }
 106 }
 107 System.err.println(
 108 (System.currentTimeMillis()-start_t)+
 109 " ms to send and recv "+(tot-count)+" messages");
 110 }
 111
 112 }

SampleApplications

JACOB Manual
Release 5.5
18-May-06 63
Copyright © 2000-2012, Agent Oriented Software Pty. Ltd.

Step Five: The application can be compiled using

 javac *.java

If thedatais beingsentto theserver in ASCII form andbeingsentbackto theclient in ASCII
form then the server may be started using the following command

 java Server Init__msg 8888 A A

The last two command line arguments specify the form in which the data object is sent and
received. This can be either A (ASCII), B (binary) or X (XML). Note that the server can be
started in its own window or it can be executed in the background.

The client may be started using the following command

 java Client Init__msg localhost 8888 data.RealSimple 10 A A

This also specifies that the data is being sent and received to/from the server in ASCII form.
data.RealSimple is the file that contains the data. For example it could contain

<RealSimple :val 10>

7.2.2.2 C++ development steps

Thecodein thisexamplehasbeentestedunderLinux andVC++ but it maystill requiresome
changes depending on the C++ environment and where the JACOB libraries are installed.

The C++ object communication example may be compiled with the provided Makefile by
typing'make',or by following thestepsbelow. Furtherinformationaboutrunningthisexample
is provided in thereadme file in the example directory.

Step One: Sometestdataobjectsaredefinedin thefile msg.api. Partof thisfile is reproduced
in Step One of the Java development steps section.

Step Two: Themsg.api file must be compiled using the command

 java aos.main.JacobBuild -dos -lang cxx msg.api

This will generate two files,msg.h andmsg.cpp.

Step Three: The generated C++ file must be compiled, either with the provided Makefile or
using the command

 g++ -c -Wall -I.. msg.cpp

Step Four: The server and client code are printed and explained below.

Server

The server receives data objects sent to it by a client, and sends the objects back to the client.

Sample Applications

JACOBManual
Release5.5

64 18-May-06
Copyright © 2000-2012, Agent Oriented Software Pty. Ltd.

Lines 1 to 9 include the required header files.

Lines 14 to 20 declare theStreams and other parameters used in the application.

Line 16 declares an object of typeJACOB_TypeDict (the dictionary).

Line 17 declares an object of typeJACOB_Base.

Lines 27 to 30 check the number of command line arguments.

Lines 31 constructs the new dictionary (JACOB_TypeDict).

Line 32 initialises the dictionary.

Line 34 initialises the socket with the user specified port number.

Lines 35 to 82 contain the code that reads the objects and writes them in the appropriate type
(binary or ASCII). This code loops while a connection is accepted.

Lines 71 and 77 read the data object and write the data object back to the client. This code
loops forever, reading all objects present on the stream.

Server code

 1 #include <jacob/AsciiOutStream.h>
 2 #include <jacob/AsciiInStream.h>
 3 #include <jacob/BinaryOutStream.h>
 4 #include <jacob/BinaryInStream.h>
 5 #include <jacob/socket.h>
 6
 7 #include <stdlib.h>
 8
 9 #include "msg.h"
 10
 11 int
 12 main(int ac, char **av)
 13 {
 14 JACOB_OutStream *x;
 15 JACOB_InStream *y;
 16 JACOB_TypeDict *d;
 17 JACOB_Base *b;
 18 int fd;
 19 JACOB_ServerSocket *c;
 20 int port;
 21
 22 #ifdef _WIN32
 23 WSADATA foo;
 24 WSAStartup(1, &foo);
 25 #endif
 26
 27 if (ac != 3) {
 28 fprintf(stderr, "usage: server <port> [AB][AB]\n");
 29 exit(1);
 30 }

SampleApplications

JACOB Manual
Release 5.5
18-May-06 65
Copyright © 2000-2012, Agent Oriented Software Pty. Ltd.

 31 d = new JACOB_TypeDict();
 32 Init__msg::init(d);
 33 sscanf(av[1], "%d", &port);
 34 c = new JACOB_ServerSocket(port);
 35 while ((fd = c->Accept()) >= 0) {
 36 if (av[2][0] == 'A') {
 37 y = new JACOB_AsciiInStream(fd, d);
 38 fprintf(stderr,
 39 "server: opened input stream in ascii mode\n");
 40 } else if (av[2][0] == 'B') {
 41 y = new JACOB_BinaryInStream(fd, d);
 42 fprintf(stderr,
 43 "server: opened input stream in binary mode\n");
 44 } else {
 45 fprintf(stderr,
 46 "%c not a valid input stream type\n", av[2][0]);
 47 exit(1);
 48 }
 49
 50 if (av[2][1] == 'A') {
 51 x = new JACOB_AsciiOutStream(fd);
 52 fprintf(stderr,
 53 "server: opened output stream in ascii mode\n");
 54 } else if (av[2][1] == 'B') {
 55 x = new JACOB_BinaryOutStream(fd);
 56 fprintf(stderr,
 57 "server: opened output stream in binary mode\n");
 58 } else {
 59 fprintf(stderr,
 60 "%c not a valid output stream type\n", av[2][1]);
 61 exit(1);
 62 }
 63
 64 // Needed under Windows
 65 // (doesn't hurt under UNIX but not necessary).
 66 y->registerReadFunction(JACOB_InStream::socketRead);
 67 x->registerWriteFunction(JACOB_OutStream::socketWrite);
 68
 69 int msgs = 0;
 70
 71 for (;;) {
 72 b = y->readObject();
 73 if (b == 0) break;
 74 msgs++;
 75 x->writeObject(b);
 76 delete b;
 77 }
 78 close(fd);
 79 fprintf(stderr, "received %d messages\n", msgs);
 80 delete x;
 81 delete y;
 82 }
 83 return 0;
 84 }

Client

The client sends a specified data object to the server (and receives the object back again) a
specified number of times.

Sample Applications

JACOBManual
Release5.5

66 18-May-06
Copyright © 2000-2012, Agent Oriented Software Pty. Ltd.

Lines 1 to 15 include the required header files.

Lines 20 to 32 declare theStreams and other parameters used in the application.

Line 22 declares an object of typeJACOB_TypeDict (the dictionary).

Lines 41 to 65 check the number of command line arguments.

Lines 42 to 58 use the sixth command line argument to set the input file.

Lines 66 to 68 use the command line arguments to set the port number and the number of
times a data object is to be sent by the client.

Line 69 initialises the socket with the user specified port number and host.

Line 72 constructs the dictionary (JACOB_TypeDict).

Line 73 initialises the dictionary.

Lines 75 to 80 set up the input stream to read in the data object.

Line 82 reads the data object intob.

Lines91to 116setuptheinputandoutputstreams(ASCII or Binarystreamsasdefinedby the
command line arguments).

Line 122 records the time at the start.

Lines 125 to 131 write the data object to the output stream and read the data object when it is
returned.

Line 140 prints the time taken to send and receive the data object the specified number of
times.

Client code

 1 #include <jacob/AsciiOutStream.h>
 2 #include <jacob/AsciiInStream.h>
 3 #include <jacob/BinaryOutStream.h>
 4 #include <jacob/BinaryInStream.h>
 5 #include "jacob/JACOB.h"
 6 #include "jacob/socket.h"
 7
 8 #ifndef _WIN32
 9 #include <sys/time.h>
 10 #include <fcntl.h>
 11 #endif
 12
 13 #include <stdlib.h>
 14

SampleApplications

JACOB Manual
Release 5.5
18-May-06 67
Copyright © 2000-2012, Agent Oriented Software Pty. Ltd.

 15 #include "msg.h"
 16
 17 int
 18 main(int ac, char **av)
 19 {
 20 JACOB_OutStream *x = 0;
 21 JACOB_InStream *y = 0;
 22 JACOB_TypeDict *d = 0;
 23 JACOB_Base *b = 0;
 24 int i;
 25 int fd;
 26 JACOB_ClientSocket *c = 0;
 27 int port;
 28 int n;
 29
 30 #ifndef _WIN32
 31 struct timeval t1, t2;
 32 #endif
 33
 34 #ifdef _WIN32
 35 WSADATA foo;
 36 WSAStartup(1, &foo);
 37 #endif
 38
 39 int infd = 0;
 40
 41 if (ac == 6) {
 42 #ifdef _WIN32
 43 infd = (int)CreateFile(av[5], GENERIC_READ,
 44 FILE_SHARE_READ, NULL, OPEN_ALWAYS,
 45 FILE_ATTRIBUTE_NORMAL, NULL);
 46 if ((RW_HANDLE)infd == INVALID_HANDLE_VALUE) {
 47 fprintf(stderr, "OpenFile: GetLastError() => %d\n",
 48 GetLastError());
 49 exit(1);
 50 }
 51 #else
 52 infd = open(av[5], 0);
 53 if (infd < 0) {
 54 fprintf(stderr, "failed to open %s\n", av[5]);
 55 perror(av[5]);
 56 exit(1);
 57 }
 58 #endif
 59 ac = 5;
 60 }
 61 if (ac != 5) {
 62 fprintf(stderr,
 63 "usage: client host port count [AB][AB] [file]\n");
 64 exit(1);
 65 }
 66 sscanf(av[2], "%d", &port);
 67 sscanf(av[3], "%d", &i);
 68 n = i;
 69 c = new JACOB_ClientSocket(av[1], port);
 70 fd = c->Connect();
 71 if (fd < 0) exit(1);
 72 d = new JACOB_TypeDict();
 73 Init__msg::init(d);
 74
 75 y = new JACOB_AsciiInStream(infd, d);

Sample Applications

JACOBManual
Release5.5

68 18-May-06
Copyright © 2000-2012, Agent Oriented Software Pty. Ltd.

 76
 77 fprintf(stderr, "infd=%d\n", infd);
 78 // probably passed a real file on the cmd line
 79 if (infd > 0)
 80 y->registerReadFunction(JACOB_InStream::fileRead);
 81
 82 b = y->readObject();
 83 delete y;
 84 if (b == 0) {
 85 fprintf(stderr,
 86 "failed to read a valid object - try again\n");
 87 exit(1);
 88 }
 89 fprintf(stderr, "object was read ok\n");
 90
 91 if (av[4][0] == 'A') {
 92 y = new JACOB_AsciiInStream(fd, d);
 93 fprintf(stderr,
 94 "client: opened input stream in ascii mode\n");
 95 } else if (av[4][0] == 'B') {
 96 y = new JACOB_BinaryInStream(fd, d);
 97 fprintf(stderr,
 98 "client: opened input stream in binary mode\n");
 99 } else {
100 fprintf(stderr,
101 "%c not a valid input stream type\n", av[4][0]);
102 exit(1);
103 }
104 if (av[4][1] == 'A') {
105 x = new JACOB_AsciiOutStream(fd);
106 fprintf(stderr,
107 "client: opened output stream in ascii mode\n");
108 } else if (av[4][1] == 'B') {
109 x = new JACOB_BinaryOutStream(fd);
110 fprintf(stderr,
111 "client: opened output stream in binary mode\n");
112 } else {
113 fprintf(stderr,
114 "%c not a valid output stream type\n", av[4][1]);
115 exit(1);
116 }
117
118 y->registerReadFunction(JACOB_InStream::socketRead);
119 x->registerWriteFunction(JACOB_OutStream::socketWrite);
120
121 #ifndef _WIN32
122 gettimeofday(&t1, 0);
123 #endif
124 int count = 0;
125 for (;i > 0; i--) {
126 x->writeObject(b);
127 delete b;
128 b = y->readObject();
129 if (b == 0) break;
130 count++;
131 }
132 fprintf(stderr, "sent %d messages\n", count);
133 #ifndef _WIN32
134 gettimeofday(&t2, 0);
135 long j;
136 j = t2.tv_sec - t1.tv_sec;

SampleApplications

JACOB Manual
Release 5.5
18-May-06 69
Copyright © 2000-2012, Agent Oriented Software Pty. Ltd.

137 j *= 1000;
138 j += (t2.tv_usec - t1.tv_usec)/1000;
139 fprintf(stderr,
140 "Took %ld ms to send/recv %d msgs\n", j, (n - i)*2);
141 #endif
142 return 0;
143 }

Step Five: The application can be compiled using

 g++ -c -Wall -I../.. client.cpp
 g++ -o client client.o msg.o -L../../lib/linux/g++-2.95 -ljacob
 g++ -c -Wall -I../.. server.cpp
 g++ -o server server.o msg.o -L../../lib/linux/g++-2.95 -ljacob

If thedatais beingsentto theserver in ASCII form andbeingsentbackto theclient in ASCII
form, the server may be started using the following command

 ./server 5555 AA

The last command line argument specifies the form in which the data object is sent and
received. This can be either A (ASCII) or B (binary).

Note that the server can be started in its own window or it can be executed in the background.

The client may be started using the following command

 ./client localhost 5555 200 AA xx.dat

This also specifies that the data is being sent and received to/from the server in ASCII form.
xx.dat is the file that contains the data. For example, it could contain

 <RealSimple :val 8>

Theclientmayalsobestartedwithoutadatafile. Objectsmaybeenteredmanually, by typing
themin to thesamewindow theclient is runningin. e.g.type<RealSimple :val 8> andpress
Enter.

Sample Applications

JACOBManual
Release5.5

70 18-May-06
Copyright © 2000-2012, Agent Oriented Software Pty. Ltd.

JACOB Manual
Release 5.5
18-May-06 71
Copyright © 2000-2012, Agent Oriented Software Pty. Ltd.

Index

A
about JACOB 19
add copy 23
add data 24
add dictionary 22
add fields 24
add object 23
add reference 23
add top-level object 23
addGroup method 44
aggregate object 26
api_extends (Class field) 32
ASCII format 45
AsciiInStream class 43, 45
AsciiOutStream class 42, 43, 45
attach dictionary 22

B
binary format 45
BinaryInStream class 43, 45
BinaryOutStream class 42, 45

C
Class object 32
Class object mappings in Java 41
classname (Class field) 32
close data file 29
code (Code field) 35
code (Include field) 35, 36
Code object 35
Code object mappings in C++ 42
Code object mappings in Java 41
command line options 37
comment (Class field) 32
comment (Enum field) 35
comment (Field field) 33
comment (Member field) 35
compiler 41
compiling definition files 37
compiling dictionary files 10, 37
-convert 39

convert data format 39
create data file 21
cxxInit (Field field) 34

D
data file example 51, 55
data file formats 11
data files 11
defaultFlag (Field field) 34
definition file 10, 44
delete object 28
delete top-level object 28
dictionary file 10, 44
dictionary file example 48, 51
directives (Class field) 32
directives (Field field) 34
discard changes 29
-dj 38
-dos 38

E
Enum object 35
Enum object mappings in C++ 42
Enum object mappings in Java 41
example data file 51, 55
exit JACOB Object Browser 18, 30
extends (Class field) 32

F
Field object 33
fieldname (Field field) 33
fields (Class field) 32
file formats 45

G
genReader (Field field) 34
genWriter (Field field) 34

H
-h 38

JACOBManual
Release5.5

72 18-May-06
Copyright © 2000-2012, Agent Oriented Software Pty. Ltd.

I
icon (Class field) 32
icon (Member field) 35
identification number 43
implements (Class field) 32
Include object 35
inherited (Field field) 34
Init__ class 41
initialisation 44
initialisation class 41
initialise objects 9
insert new object 27
insert object copy 27
insert object reference 27
installed JACOB components 15
InStream class 43
isHidden (Field field) 34
isPublic (Field field) 34
isStatic (Field field) 34
isTransient (Field field) 34

J
JACOB Build 37
JACOB C++ libraries 3
JACOB compiler 41
JACOB components 15
JACOB Data Definition Language 31, 41
JACOB Data Definition Language syntax

31
JACOB initialisation 44
JACOB Object Browser 11, 17
JACOB object structures 10
JACOB objects 12
JACOB reader 43
JACOB writer 42
JACOB_Aggregate class 42
JACOB_AsciiInStream class 43
JACOB_AsciiOutStream class 43
JACOB_BinaryInStream class 43
JACOB_BinaryOutStream class 43
JACOB_Enumeration class 42
JACOB_InStream class 43
JACOB_OutStream 43
JACOB_StreamerSupport class 42, 43, 44

javaconstrcode (Class field) 32
javaInit (Field field) 34
javaReader (Field field) 34
javaWriter (Field field) 34
JDBC format 45
JDBCInStream class 43, 45
JDBCOutStream class 42, 45

L
label (Field field) 34
label (Member field) 35
-lang 37
lang (Code field) 35
lang (Include field) 35
load data file 21

M
Member object 35
members (Enum field) 35

N
name (Class field) 32
name (Enum field) 35
name (Field field) 33
name (Member field) 35
new data file 18

O
object communication 9, 13, 56
object communication example 56
object communication example (C++) 63
object communication example (Java) 56
object field pane 20
object identification number 43
object initialisation 9, 47
object initialisation example 47
object initialisation example (C++) 51
object initialisation example (Java) 48
object pointers 23
object structures 10
object transportation 9, 13
object tree pane 20
object type Class 32

JACOB Manual
Release 5.5
18-May-06 73
Copyright © 2000-2012, Agent Oriented Software Pty. Ltd.

object type Code 32, 35
object type Enum 32, 35
object type Field 32, 33
object type Include 32, 35
object type Member 32, 35
open data file 18, 21
open JACOB stream (C++) 43
open JACOB stream (Java) 43
other_extends (Class field) 32
OutStream class 42

P
-pkg 37

Q
quit JACOB Object Browser 30

R
read function, Windows 44
read/write multiple objects 19
reader 43
reading JACOB objects 44
reading objects 44
readObject method 44
receiving objects 56
register function 44
remove object pointer 26
removing objects 26
replace object pointers 25

S
sample dictionary file 48, 51
save data file 18, 29
sending objects 56
StreamerSupport class 42, 43, 44
-syntax 38

T
target (Class field) 32
tostring (Class field) 32
transport objects 13
type (Field field) 33
TypeDict 43, 44

U
usedeepequals (Class field) 32

V
-v 38
value (Field field) 34
value (Member field) 35

W
waypoint 47
Windows, read function 44
Windows, write function 44
-Wlang 37
work area 19
write function, Windows 44
writer 42
writing JACOB objects 43
writing objects 43

X
XML format 46
XMLInStream 46
XMLInStream class 43
XMLOutStream 46
XMLOutStream class 42

	1 Introduction
	1.1 Uses of JACOB
	1.1.1 Object Initialisation
	1.1.2 Object Communication

	1.2 Dictionary Files
	1.3 Compiling Dictionaries
	1.4 Building Object Structures
	1.5 JACOB File Formats
	1.6 The JACOB Object Browser
	1.7 Using JACOB
	1.7.1 JACOB Objects
	1.7.2 Using JACOB to transport objects

	2 Packages
	3 JACOB Object Browser
	3.1 Introduction
	3.2 The Browser Environment
	3.2.1 Menu Bar
	3.2.1.1 File Menu
	3.2.1.2 Option Menu
	3.2.1.3 Help Menu

	3.2.2 Work Area
	3.2.2.1 Object Tree Pane
	3.2.2.2 Object Field Pane

	3.2.3 Context-sensitive Menus

	3.3 Using the Browser
	3.3.1 Creating Data Files
	3.3.2 Loading Data Files
	3.3.3 Adding a Dictionary to a Data File
	3.3.4 Adding Objects to Data Files
	3.3.5 Adding Data to Objects
	3.3.6 Replacing Object Pointers
	3.3.7 Removing Objects
	3.3.8 Aggregate Objects
	3.3.9 Deleting Top-Level Objects
	3.3.10 Reverting to Saved Data Files
	3.3.11 Saving Data Files
	3.3.12 Closing Data Files
	3.3.13 Exiting the Editor

	4 JACOB Object Modelling
	4.1 JACOB Data Definition Language
	4.1.1 Syntax Definition
	4.1.1.1 Class
	4.1.1.2 Field
	4.1.1.3 Enum
	4.1.1.4 Member
	4.1.1.5 Code
	4.1.1.6 Include

	5 Running JACOB
	5.1 JACOB Build
	5.2 Command Line Options
	5.2.1 �Wlang
	5.2.2 �lang
	5.2.3 �pkg
	5.2.4 �syntax
	5.2.5 �dj
	5.2.6 �dos
	5.2.7 �v
	5.2.8 �h
	5.2.9 �convert

	6 Functional Components of JACOB
	6.1 Compiler
	6.1.1 JACOB Data Definition Language
	6.1.2 Mappings in JAVA
	6.1.3 Mappings in C++

	6.2 Writer
	6.2.1 Java Writer Classes
	6.2.2 C++ Writer Classes
	6.2.3 Writing Objects

	6.3 Reader
	6.3.1 Java Reader Classes
	6.3.2 C++ Reader Classes
	6.3.3 Reading Objects

	6.4 Initialisation
	6.4.1 Dictionary file

	6.5 JACOB File Formats
	6.5.1 ASCII
	6.5.2 Binary
	6.5.3 JDBC
	6.5.4 XML

	7 Sample Applications
	7.1 Object Initialisation example
	7.1.1 Development steps
	7.1.2 Waypoint Initialiser code and description
	7.1.2.1 Java development steps
	7.1.2.2 C++ development steps

	7.2 Object Communication example
	7.2.1 Development steps
	7.2.2 Client/Server code and description
	7.2.2.1 Java development steps
	7.2.2.2 C++ development steps

	Index

