
JACK Sim Manual

JACK Intelligent Agents®
JACK Sim Manual

JACK Sim Manual
Release5.5

2 1-Sept-10
Copyright © 2012, Agent Oriented Software Pty. Ltd.

Copyright
Copyright © 2012, Agent Oriented Software Pty. Ltd.

All rights reserved.

No part of this document may be reproduced, transferred, sold, or otherwise disposed of,
without the written permission of the owner.

US Government Restricted Rights
The JACK™ Modules and relevant Software Material have been developed entirely at private
expense and are accordingly provided with RESTRICTED RIGHTS. Use, duplication, or
disclosure by Government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of
DFARS 252.227-7013 or subparagraph (c)(1) and (2) of the Commercial Computer Software
Restricted Rights and 48 CFR 52.2270-19, as applicable.

Trademarks
All the trademarks mentioned in this document are the property of their respective owners.

JACK Sim Manual
Release 5.5
1-Sept-10 3
Copyright © 2012, Agent Oriented Software Pty. Ltd.

Publisher Information

If you find any errors in this document or would like to suggest improvements, please let us
know.

Agent Oriented Software Pty. Ltd.

P.O. Box 639,

Carlton South, Victoria, 3053

AUSTRALIA

Phone: +61 3 9349 5055

Fax: +61 3 9349 5088

Web: http://www.agent-software.com

JACK Sim Manual
Release5.5

4 1-Sept-10
Copyright © 2012, Agent Oriented Software Pty. Ltd.

The JACK™ documentation set includes the following manuals and practicals:

Document Description

Agent Manual Describes the JACK programming language and
infrastructure.JACK canbeusedto developapplications
involving BDI agents.

Teams Manual Describes the JACK Teams programming language
extensions. JACK Teams can be used to develop
applications that involve coordinated activity among
teams of agents.

Development Environment

Manual

Describes how to use the JACK Development
Environment (JDE). The JDE is a graphical
development environment that can be used to develop
JACK agent and team-based applications.

JACOB Manual Describes how to use JACOB. JACOB is an object
modelling language that can be used for inter-process
transport and object initialisation.

WebBot Manual Describes how to use the JACK WebBot to develop
JACK enabled web applications.

Design Tool Manual Describes how to use the Design Tool to design and
build an application within the JACK Development
Environment.

Graphical Plan Editor Manual Describes how to use the Graphical Plan Editor to
develop graphical plans within the JACK Development
Environment.

JACK Sim Manual Describes how to use the JACK Sim framework for
building and running repeatable agent simulations.

Tracing and Logging Manual Describes the tracing and logging tools available with
JACK.

Agent Practicals A set of practicals designed to introduce the basic
concepts involved in JACK programming.

Teams Practicals A set of practicals designed to introduce the basic
concepts involved in Teams programming.

JACK Sim Manual
Release 5.5
1-Sept-10 5
Copyright © 2012, Agent Oriented Software Pty. Ltd.

Table of Contents
1 Introduction . 7

2 Overview . 9
2.1 Example 1 .11

3 A reference model. 17

4 Basic application development . 21
4.1 Infrastructure agents .21
4.1.1 Time management .21

TimeSource . 21

TimeDispatcher . 21

4.2 User developed agents and classes. .22
4.3 Scenario definitions .22
4.3.1 Dictionary and scenario inclusion. .22
4.3.2 Entry grouping .23
4.3.3 Agent Initialisation .24
4.3.4 Infrastructure agent initialisation. .25

TimeSourceInit . 25

TimeDispatcherInit . 27

4.3.5 Infrastructure object initialisation .27
TimeInit . 27

TimeRelayInit. 28

TimeConsoleInit. 29

SimAgent . 31

MonitorInit. 32

4.3.6 Global data initialisation .33
4.4 Creating Agents Programatically (On The Fly). .34
4.4.1 Programatically Created Agents in a Multiple Iteration Scenario35
4.5 Early Termination of the Simulation Run .36
4.6 Randomisation of Simulation Runs and Repeatability .37

5 Agent behaviours . 39
5.1 Modelling actions with JACK .39
5.2 Behaviour execution .40
5.3 Example 2 .42
5.3.1 Description .42
5.3.2 Architecture .43
5.3.3 The virtual cell .45

6 Visualisation . 49
6.1 Introduction. .49
6.2 The graphics model .49

JACK Sim Manual
Release5.5

6 1-Sept-10
Copyright © 2012, Agent Oriented Software Pty. Ltd.

6.3 The software model .49
6.4 Basic Visualisation Model Development. .50
6.4.1 The appearance model .51

The visualisation frame. .51
Appearance object definition .52

6.4.2 Example 3 .54
6.4.3 The updating model .57

The Updater agent .57
The VisualsControl view .58

6.4.4 Example 4 .60
Design Overview .60
The embodiment model .61
The visualisation model .64
The behaviour model .65
Scenario definition and execution. .67

Appendix A: Example 1 . 69

Appendix B: Drawable Objects . 73
Arc .73
Area .74
CachedImage. .75
Colored. .75
Ellipse. .75
Figure .76
Line .76
Point .77
Polygon .77
Rectangle .78
RoundRectangle. .78
TextLine .79

Font .79
Transform .79

References. 81

Index. 83

Introduction

JACK Sim Manual
Release 5.5
1-Sept-10 7
Copyright © 2012, Agent Oriented Software Pty. Ltd.

1 Intr oduction
Discrete event simulation is concerned with the modelling of behaviour in terms of entities
which undergo discrete state transitions over time. There are various ways in which entity
behaviours can be partitioned – these partitionings are known assimulation world views.
Traditionally, three major world views have been distinguished, namely: activity, event and
process (Kreutzer, 1986). JACK Intelligent Agents® (JACK) supports a new world view that
we have called theBDI world view. In this world view, entity behaviours are encapsulated
within agents and the JACK execution model is used to drive the simulation. The BDI world
view provides a much richer and more intuitive interaction model than is afforded by the
traditionalworld viewsandhasprovento beespeciallyusefulfor thesimulationof distributed
systems whose component entities exhibit complex internal behaviours and rich interaction
models, both with each other and with their environment.

JACK and JACK Teams™ (Teams) provide concepts, programming constructs and run-time
support to directly support the BDI world view, thereby making simulation model
development using the BDI world view significantly easier. JACK also has constructs which
facilitate the interfacing of JACK agents with existing applications and, since JACK is a
superset of Java, the JACK programmer has access to all of the Java language and to existing
Javaclassesandframeworks. JACK is neutralwith respectto timemanagement– threetypes
of clock (real time, dilated and simulation) are supported. Every agent has a timer member
which is by defaultsetto therealtimeclock. Clockscanbesharedbetweenagentsoneithera
machine(realtime)or process(dilatedor simulation)basis.Inter-machinesharingof realtime
clocks and inter-machine/inter-process sharing of dilated and simulation clocks is the
responsibility of the application developer. In summary, using JACK for simulation model
development offers the following advantages:

• support for a BDI world view

• support for an extensible time management infrastructure

• ability to code in Java when appropriate

• support for the interfacing to and encapsulation of existing applications in an agent-
friendly manner.

JACK and Teams have been used to develop simulations in areas such as

• air traffic control

• manufacturing control

• virtual enterprise management

• mission management for teamed UAVs

• military command and control.

Introduction

JACK Sim Manual
Release5.5

8 1-Sept-10
Copyright © 2012, Agent Oriented Software Pty. Ltd.

In addition, they have been used to augment the behaviour of entities in existing simulation
environments, such as CAEN, OTB and STAGE.

These applications have been concerned with assessing the feasibility of particular strategies
and tactics in the domains of interest – performance and sensitivity analyses were not
conducted.Suchanalysesrequirethatsimulationrunsarerepeatable.This is notanissuewith
conventionalsimulationlanguages,asthesimulationexecuteswithin asinglethreadof control
within a single process and repeatability is guaranteed. However, when the simulation
executes over multiple threads or multiple processes, repeatability needs to be explicitly
addressed. JACK was designed so that within a single JACK process, agent execution is
repeatable so long as there is no inter-agent communication. In practice this means that
repeatability is constrained to applications consisting of a single agent.

In addition, while the BDI paradigm dictates how a simulation operates, it does not provide
any indication as to how the underlying software architecture should be structured, other than
thattheparticularapplicationwill bemodelledusingagents.Furthermore,ourexperiencehas
shown that the creation and initialisation of agents and teams of agents can become a
significant component of a simulation project as the developer is totally responsible for agent
creationandinitialisation.Typically thismeansthateachapplicationrequiresabespokemain
program that creates and initialises the required agents. JACK provides the JACOB™ Object
Modelling Language (JACOB) for efficient object transport and initialisation. JACK also
provides extensive support for the graphical display of application execution (graphical plan
tracing, design diagram tracing, agent interaction diagrams).

JACK Sim™ (JACK Sim) consists of three major components:

• a model management infrastructure that provides a clear separation between scenario
definition and scenario execution

• a time management infrastructure that provides guaranteed repeatability for multi-agent
applications, regardless of whether the agents reside in multiple processes or on multiple
machines.

• avisualisationinfrastructurethatfacilitatesthedevelopmentof 2D visualisationsof model
execution.

Also JACK Sim presupposes that an actual application will conform to a reference model in
which agent behaviour, embodiment and visualisation are explicitly represented.

Overview

JACK Sim Manual
Release 5.5
1-Sept-10 9
Copyright © 2012, Agent Oriented Software Pty. Ltd.

2 Overview
JACK Sim is a framework for building and running repeatable agent based simulations.
Simulations built with JACK Sim require agent behaviours to be implemented using either
JACK or Teams. Also note that the JACOB™ Object Modeller (JACOB) is used for
initialisation of data. It is assumed that the reader is familiar with JACK, Teams and JACOB.

In theBDI world view, agentsrespondto eventsissuedby theenvironment,otheragentsor by
themselves.Thebehavioursthataretriggeredby theseeventsresultin computations(thattake
no time) and delays(that consume time). Thus an action will in general be modelled as a
computation and a delay, and will be triggered by an event. JACK provides programming
constructs (events, plans, beliefsets, views and agents) to support this world view.

A JACK Sim application has a single clock that is maintained by a single agent of type
TimeSource. The time source agent issues execution requests to one or more agents of type
TimeDispatcher – there is one time dispatcher agent per process. Each time dispatcher agent
allows theagentsthatareunderits managementto executein arepeatablemanneruntil all the
agentsareblocked.At thispoint,thetimedispatcheragentsendsaresponseto thetimesource
agentindicatingtheearliesttimeatwhichoneof its agentswill becomeunblocked.Whenthe
responses from all time dispatcher agents have been received, the time source agent advances
the clock to the earliest time that would unblock an agent. It then issues another round of
execution requests and the cycle is repeated. The simulation stops when the clock can no
longer be advanced. Clock management is transparent to developers – they are responsible
only for the definition of the time management agents.

Agentswithin anapplicationdonothaveto bemanagedby atimedispatcheragent,but if they
are not, there may be implications with respect to repeatability. In order to be fully managed,
an agent must

• be registered with the time management infrastructure

• implement either theTimeManaged or TimeSyncManaged marker interface

• have theSimulationTiming capability

• provide plans (and capabilities) to handleRuntimeControl events.

If these conditions are satisfied, then the infrastructure will manage the agent's life cycle. The
life cycle consists of the following phases:

Overview

JACK Sim Manual
Release5.5

10 1-Sept-10
Copyright © 2012, Agent Oriented Software Pty. Ltd.

Table 2-1: Phases of the agent life cycle

If an agent implements one of the two marker interfaces and it has the
aos.jack.sim.time.SimulationTiming capability, the agent's progress through the setup and
executionphaseswill becontrolledby eventsissuedby its timedispatcheragent.In particular,
the agent will receiveaos.jack.sim.time.RuntimeControl events at the following times:

• SETUP - the commencement of the setup phase

• BEGIN - the beginning of the execution phase

• END - the end of the execution phase.

These points are distinguished by the event'smode member – it assumes a value ofSETUP,
BEGIN or END respectively.

As of JACK 5.5asimulationcanbeautomaticallyrepeatedagivennumberof times.An event
containingtheBEGIN or END modefield will alsohavethedata field set.The'begin' event'sdata
will containthenumberof thenext simulationiteration.The'end'event'sdatawill containthe
number of simulation iterations left to process.

NormallySETUP andEND events can be ignored by the agent. However, if running multiple
iterations of the simulation, they should be used to initialise and take down, respectively, the
simulation entities so that each iteration can begin in a clean and reset state.

BEGIN eventsmust always be handled or no execution will occur. Note that the protocol is
synchronous– thesendingof aBEGIN eventto thenext agentwill not proceeduntil processing
of theprecedingBEGIN eventhascompleted.Therefore,theplanthathandlesthiseventshould
eventuallypostanevent(thatwill actuallyinitiateexecutionwithin theagent)andsimplyexit.

Phase Description

Creation Agent creation is managed on a per-
process basis by
aos.jack.sim.run.Loader. The
initialisationfor theagentis specifiedin a
scenario definition file. The loader also
registers the agent with the time
management infrastructure.

Setup Setup refers to initialisation involving
other agents, such as role establishment.

Execution Execution refers to the actual playout of
agentbehavioursfor aparticularscenario.

Overview

JACK Sim Manual
Release 5.5
1-Sept-10 11
Copyright © 2012, Agent Oriented Software Pty. Ltd.

In the case of agents that implement theTimeSyncManaged interface (asopposed to the
TimeManaged interface), additional events with a mode ofSTEP will be received whenever the
simulation clock is advanced. Time dispatcher agents implement theTimeSyncManaged

interface; the intended use for user defined agents that implement this interface is to integrate
computations performed by external processes into the JACK Sim repeatability framework.

If a simulation agent is registered with the infrastructure but does not implement one of the
marker interfaces, it is loaded, but its execution is not managed by the infrastructure. If an
agent is not registered with the infrastructure, then the developer is responsible for both its
instantiationandexecution.Notethatin bothsituations,theremaybeimplicationsin termsof
repeatability.

A simulation is started by running theLoader class with the name of a scenario definition file
as an argument. To begin a simulation that runs in a single process, type

 aos.jack.sim.run.Loader <file-name>

where<file-name> is the name of the scenario definition file.

Notethatif thesimulationinvolvesmultipleprocesses,eachprocesswill haveits own scenario
definition file and will require a separate invocation ofaos.jack.sim.run.Loader. Also, the
processthatcontainsthetimesourceagentmustbethelastprocessto bestarted,asit initiates
agent execution.

2.1 Example 1
As a first example, consider a variation on 'hello world' to illustrate what is involved in
generating a minimal JACK Sim application. We assume that a normal JACK application has
been developed that consists of three agents,ralph1, ralph2 andworld. ralph1 andralph2
are of typeSpeaker1 andworld is of typeSpeaker2. Speaker1 has aSpeak plan which is
triggered by aStart1 event. TheSpeak plan consists of a continuous loop that sends an
Utterance eventto world. Theplanwaitsfor aresponsefrom world, waitsa further5 seconds
and then repeats the process continuously. Speaker2 has aRespond plan which is triggered by
anUtterance event; it composes a response and sends it using@reply. Code for the example
is presented in Appendix A. Design diagrams are shown below:

Overview

JACK Sim Manual
Release5.5

12 1-Sept-10
Copyright © 2012, Agent Oriented Software Pty. Ltd.

Figure 2-1: Agent/event diagrams for Speaker1 and Speaker2

Figure 2-2: Plan/event diagrams for Speaker1 and Speaker2

Conversion of this application into a minimal JACK Sim application involves the following
steps:

1. In Speaker1.agent

a) add the following statements

 import aos.jack.sim.time.RuntimeControl;
 import aos.jack.sim.time.SimulationTiming;

 #handles event RuntimeControl;
 #has capability SimulationTiming cap;
 #uses plan Prepare1;

b) declare Speaker1 as follows:

 public agent Speaker1 extends Agent
 implements aos.jack.sim.time.TimeManaged

2. In Speaker2.agent

a) add the following statements

Overview

JACK Sim Manual
Release 5.5
1-Sept-10 13
Copyright © 2012, Agent Oriented Software Pty. Ltd.

 import aos.jack.sim.time.RuntimeControl;
 import aos.jack.sim.time.SimulationTiming;

 #handles event RuntimeControl;
 #has capability SimulationTiming cap;
 #uses plan Prepare2;

b) declareSpeaker2 as follows:

 public agent Speaker2 extends Agent
 implements aos.jack.sim.time.TimeManaged

3. Write Prepare1.plan:

 package hello;
 import aos.jack.sim.time.RuntimeControl;

 public plan Prepare1 extends Plan {
 #handles event RuntimeControl rc;
 #posts event Start1 s1;

 static boolean relevant(RuntimeControl ev)
 {
 return ev.mode == RuntimeControl.BEGIN;
 }

 #reasoning method body()
 {
 @post(s1.start());
 }
 }

4. Write Prepare2.plan:

 package hello;
 import aos.jack.sim.time.RuntimeControl;

 public plan Prepare2 extends Plan {
 #handles event RuntimeControl rc;

 static boolean relevant(RuntimeControl ev)
 {
 return ev.mode == RuntimeControl.BEGIN;
 }

 #reasoning method body()
 {
 // do nothing
 }
 }

5. Create a scenario definition file calledscenario.def:

 // We use the JACK Sim time management
 <Include :dict "aos.jack.sim.time.Init__base" >

 <TimeInit :date "Mon, Sep 29, 2003, 19:46:12.0"
 :dateformat "EEE, MMM d, yyyy, kk:mm:ss.S" >

 // Declare a time dispatcher agent, which ensures that the time is
 // not advanced while the application is busy.
 <TimeDispatcherInit :name "timeDispatcher" >

Overview

JACK Sim Manual
Release5.5

14 1-Sept-10
Copyright © 2012, Agent Oriented Software Pty. Ltd.

 // Instantiate and register the agents
 <AgentInit :agent_type "hello.Speaker1" :name "ralph2" >
 <AgentInit :agent_type "hello.Speaker1" :name "ralph1" >
 <AgentInit :agent_type "hello.Speaker2" :name "world" >

 // Declare a time source agent, which is responsible for advancing
 // time in a synchronised manner with a time dispatcher agent.
 <TimeSourceInit :name "timeSource"
 :dispatcher "timeDispatcher"
 :verbose 1
 :realtime :true
 :delay 0
 >

The meanings of the various fields are discussed in the later chapters.

Overview

JACK Sim Manual
Release 5.5
1-Sept-10 15
Copyright © 2012, Agent Oriented Software Pty. Ltd.

To execute the simulation, enter

 java aos.jack.sim.run.Loader scenario.def

In the preceding example, all agents execute within a single process. However, this is not a
requirement of JACK Sim – agents can be distributed across multiple processes (and multiple
machines) in a JACK Sim application. As a simple illustration of this, suppose that for the
preceding example, it becomes desirable to run the application agents in a separate process to
the time source agent. Each process will require a portal name and a scenario definition file:

Table 2-2: Multi-process configuration

The content of the two scenario definition files are as follows:

1. scenario0.def

 // We use the JACK Sim time management
 <Include :dict "aos.jack.sim.time.Init__base" >

 <TimeInit :date "Fri, Apr 6, 2001, 19:46:12.0"
 :dateformat "EEE, MMM d, yyyy, kk:mm:ss.S" >

 // Declare a time dispatcher agent for this process
 <TimeDispatcherInit :name "timeDispatcher0" >

 // Declare a relay for the time dispatcher agent in the second
 // process
 <TimeRelayInit :name "timeDispatcher1@jacksim1" >

 // Declare a time source agent, which is responsible for advancing
 // time in a synchronised manner with a time dispatcher agent.
 <TimeSourceInit :name "timeLord"
 :dispatcher "timeDispatcher0"
 :realtime :true
 :delay 0
 >

2. scenario1.def

 // We use the JACK Sim time management
 <Include :dict "aos.jack.sim.time.Init__base" >

 <TimeInit :date "Fri, Apr 6, 2001, 19:46:12.0"
 :dateformat "EEE, MMM d, yyyy, kk:mm:ss.S" >

 // Declare a time dispatcher agent, which ensures that the time is
 // not advanced while the application is busy.
 <TimeDispatcherInit :name "timeDispatcher1" >

Process Portal Filename

Time source agent jacksim0 scenario0.def

Application agents jacksim1 scenario1.def

Overview

JACK Sim Manual
Release5.5

16 1-Sept-10
Copyright © 2012, Agent Oriented Software Pty. Ltd.

 // Instantiate and register the agents
 <AgentInit :agent_type "hello.Speaker1" :name "ralph2" >
 <AgentInit :agent_type "hello.Speaker1" :name "ralph1" >
 <AgentInit :agent_type "hello.Speaker2" :name "world" >

To run this version of the example, first start the process containing the application agents:

 java aos.jack.sim.run.Loader "-dci.new:jacksim1=7821"
 scenario1.def

In a separate window, start the process containing the time source agent:

 java aos.jack.sim.run.Loader "-dci.new:jacksim0=7820"
 "-dci.con:jacksim0->jacksim1=7821" scenario0.def

If an explanation of the dci arguments is required, refer to theAgent Manual.

Note that in this example, no modification of the application agent code was required, as all
inter-agent communication is still within the same process. If the simulation agents were
distributedacrossmultipleprocesses,full agentnames(agent@portal) wouldneedto beused
for communication between agents in the different processes.

A reference model

JACK Sim Manual
Release 5.5
1-Sept-10 17
Copyright © 2012, Agent Oriented Software Pty. Ltd.

3 A ref erence model
In developing agent based simulations, we have found it useful to view a simulation as
consisting of the following models:

• Agent

• Equipment

• Environment.

The agent model in turn consists of behaviour and embodiment sub-models.Behaviour
models encapsulate the reasoning that underpins agent activity. In performing this reasoning,
an agent has knowledge of the the actions that it can perform. For example, a soldier agent
might be be able to

• look

• walk

• run

• crawl

• crouch

• shoot

Depending on the application, the behaviour model might be implemented using a
scientifically grounded cognitive architecture as in (Jarvis et al., 2005).

Embodiment models implement the the actions that are available to the behaviour model.
These actions could be modelled at differing levels of fidelity depending on the application.
For example, if a soldier was a component of a larger system and our interest lay in the
modellingof thebehaviour of thatsystemandnot thatof thesoldier, onecouldperhapsmodel
theaboveactionsasdelaysandignorelooking.However, in othersituationswemightneedto
model the looking process and the detailed dynamics of movement and shooting.

Having this distinction between the actions that an agent can perform and the realisation of
those actions is extremely useful when agents are used to augment behaviours in existing
simulation environments, such as OTB (OneSAF Testbed Baseline). In these situations, the
primitive actions that the agent can perform correspond to the behaviours that are supported
for its corresponding entity in the existing environment and realisation of agent function
resides with the existing simulation environment. Another benefit that arises from this
separation is that replacement of simulated functionality with actual functionality becomes
straightforward. For example, one could evaluate alternative control strategies for a
manufacturing cell using an embodiment model based on delays. Having determined a
suitable control strategy, one could then replace the embodiment model with the (suitably
interfaced) machines.

A reference model

JACK Sim Manual
Release5.5

18 1-Sept-10
Copyright © 2012, Agent Oriented Software Pty. Ltd.

In general, the embodiment model will contain an execution manager that is responsible for
thehandlingof requestsfrom thebehaviour modelandthemonitoringof theprogressof those
requests. With respect to the latter point, the emodiment model maintains an explicit
representationof theexecutionstatefor eachagentthatis updatedastherequestedactionsare
executed.Notethatactionexecutionmaybedelegatedto anexternalsystemsuchasOTB and
thatdependingontheactionrequested,taskdecompositionmayberequired.If required,agent
embodiment can be visualised using the JACK Sim visualisationinfrastructure. In this case,
separate visualisation models would be provided that interact with the embodiment model by
accessing the agent execution states. The process involved is discussed in theVisualisation
chapter.

Equipment models provide physical models of any equipment managed by an agent. Control
of equipment is mediated by the agent embodiment; the behaviour model does not directly
control equipment. An item of equipment differs from an agent in that an item of equipment
doesnot reasonaboutits actions.For example,asoldieragentmayhavebinocularsandagun;
both of these would normally be modelled as equipment.

Environmentmodelsprovidemodelsof theenvironmentin which theagentsaresituated.In a
military application, this could include both 'static' environment factors (such as terrain and
landscape) and 'dynamic' environment factors, such as time of day, wind, rain etc. Perception
of the environment is mediated by the agent embodiment; the behaviour model does not
directly perceive the environment.

Thefigurebelow is a representationof asimulationin termsof thesemodels.Its purposeis to
make the distinctions between the models explicit, and in particular to stress that behaviour
models are separate software components from both embodiment models and equipment
models. The interaction paths are indicated by lines between the model classes. Note that the
behaviour models only interact with embodiment models, which in turn interact with both
equipment and environment models.

A reference model

JACK Sim Manual
Release 5.5
1-Sept-10 19
Copyright © 2012, Agent Oriented Software Pty. Ltd.

Figure 3-1: A reference model for agent-based simulation

Behaviour models will always be implemented in JACK. However, depending on the
application, the remaining components may be implemented in JACK/Java or in an external
modelling environment, such as C++, MATLAB or OTB. If the latter case applies, an
interconnection layer is needed to provide the linkage between the behaviour model and the
embodimentmodel.In termsof software,theinterconnectionlayeris split into two partswith
one part residing with the external modelling environment and the other residing with JACK.
Technically, the layer manages the interconnection between JACK and the external
environment. Conceptually, it mediates the interactions between embodiment functions and
equipment and environment models. A macroscopic view of this architectural concept is
illustrated in the figure below.

A reference model

JACK Sim Manual
Release5.5

20 1-Sept-10
Copyright © 2012, Agent Oriented Software Pty. Ltd.

Figure 3-2: Macroscopic architecture for agent-augmented simulations

JACK Sim currently provides no support for the preceding reference model because of its
simplicity and generality. In future releases, support may be be provided to assist in the
interfacing to particular simulation environments.

Basic application development

JACK Sim Manual
Release 5.5
1-Sept-10 21
Copyright © 2012, Agent Oriented Software Pty. Ltd.

4 Basic application de velopment
A JACK Sim application consists of the following components:

• the infrastructure agents and classes that are required by the application

• user developed agents and classes

• a scenario definition that allows the user to initialise agent and object instances and to
configure the application on a scenario by scenario basis.

Note: JACK Sim provides support for repeatability (through the time management
infrastructure) and for 2D visualisation and animation (through the visualisation
infrastructure). In this chapter, we focus on the development of applications which only use
the time management infrastructure. The visualisation infrastructure is discussed in the
Visualisation chapter of this manual.

4.1 Infrastructure a gents
The following infrastructure agents can be created and initialised from entries in a scenario
definition file:

4.1.1 Time mana gement

4.1.1.1 TimeSource

TheTimeSource agent is responsible for advancing the simulation time. The time control
facility requires an application to have asingle TimeSource agent per application, even if the
applicationis distributedacrossmultipleprocesses.If oneis notpresentin anapplication,time
will not be advanced.

4.1.1.2 TimeDispatcher

On receipt of a time update from theTimeSource agent, theTimeDispatcher agent enters a
time control loop which enables all entities that have registered with the time management
infrastructureandimplementeithertheTimeManaged or TimeSyncManaged interfacesto execute
until they areall blocked.Notethatbecauseof dependenciesbetweenentities,multiplepasses
throughtheloopmayberequired.Whenall entitiesareblocked,TimeDispatcher agentsends
the earliest stop time to theTimeSource agent, which then advances the simulation time. The
time control facility requires an application to have asingle TimeDispatcher agent per
process. In multiple process applications,TimeRelayInit objects can be used to add the
dispatcher agent for a remote process to the list of entities managed by the local dispatcher
agent. In this way, repeatability is guaranteed even with multi-process simulations.

Basic application development

JACK Sim Manual
Release5.5

22 1-Sept-10
Copyright © 2012, Agent Oriented Software Pty. Ltd.

4.2 User de veloped a gents and c lasses
AgentbehavioursareprogrammedusingtheJACK Agent Language – this is thesubjectof the
next chapter. As with infrastructure agents, user-defined agents can be created and initialised
from entries in a scenario definition file.

4.3 Scenario definitions
Scenario definitions contain entries that

• specify JACOB dictionaries and scenario definition files that are to be included in the
scenario definition

• group related entries into sections

• specify the agents and classes that are required for a scenario and their initialisation for
that scenario

• initialise global data.

Entries are specified using the JACOB object modelling language and are contained in a
scenario definition file. Each process in an application must have its own scenario definition
file. However as noted above, this file may include other definition files. The scenario
definition file for a process is processed by the JACK Sim loader:

java aos.jack.sim.run.Loader <file>

Theloadercreatesandinitialisesall theagentsandobjectsspecifiedin thescenariodefinition
file and if required,registers them with the time management infrastructure.

4.3.1 Dictionar y and scenario inc lusion
Dictionaryandscenarioinclusionwithin ascenariodefinitionfile is achievedthroughInclude
objects. An Include object has adict attribute and afile attribute, both of typeString. The
dict attribute identifies an additional JACOB dictionary to make available to the scenario
loading. Typically, this dictionary will contain the agent and object initialisation classes that
appear in the subsequent agent and object initialisation entries. Thefile attribute identifies a
scenario definition file for inclusion in the scenario definition. That file may include further
dictionaries and scenario definition files.

Basic application development

JACK Sim Manual
Release 5.5
1-Sept-10 23
Copyright © 2012, Agent Oriented Software Pty. Ltd.

The following is an example of using anInclude object in a scenario definition.

 <Include :dict "cell.machines.Init__defs">

In the example, the scenario definition dictionary is first extended by adding the classes
containedin class cell.machines.Init__defs. Theclassdefinitionsfor thisdictionarywere
defined in the JACOB filecell/machines/defs.api. Once the above dictionary appears in a
scenario definition file, its classes can then be used for agent and object creation and
initialisation.If theresultingscenariodefinitionfile wascalledcell/meterbox.def it couldbe
included into another scenario definition file via the following entry:

 <Include :file "cell.meterbox.def">

JACK Sim has a standard simulation definitions file namedaos/jack/sim/standard.def.
Thus, a scenario definition file will often have the following line

<Include :file "aos/jack/sim/standard.def" >

at the beginning of the file.standard.def includes the following dictionaries:

Table 4-1: Dictionaries included bystandard.def

If visualisation is not required in a particular simulation, one may choose to include only the
standard time manager. This can be achieved with the inclusion of the following line in the
scenario definition file:

 <Include :dict "aos.jack.sim.time.Init__base" >

In addition, if the application uses JACK Teams, the following dictionaries must be included
in the scenario.def file.

 <Include :dict "aos.jack.sim.team.Init__base" >
 <Include :dict "aos.team.init.Init__teammap" >

4.3.2 Entry grouping
Groupingof entriesin ascenariodefinitionfile canbeachievedwith Folder objects. A Folder

object has two attributes aname attribute of typeString and anitems attribute.

Dictionary Description

aos.jack.sim.visual.awt.Init__awt Standard drawable components

aos.jack.sim.visual.Init__visual Standard visual model extension

aos.jack.sim.time.Init__base Standard time manager

Basic application development

JACK Sim Manual
Release5.5

24 1-Sept-10
Copyright © 2012, Agent Oriented Software Pty. Ltd.

4.3.3 Agent Initialisation
Theagentsrequiredby asimulationareusuallycreatedfrom entriesin thescenariodefinition
file which contain agent initialisation objects. These objects are either of typeAgentInit or
are subtyped fromAgentInit.

TheAgentInit class can be used directly for creating an agent which requires no further
initialisation at construction time. It has the three attributesagent_type, name and
is_persistent (described later). The class has aninitialise(Loader loader) method,
which creates an agent of the given type and name, and adds this to theLoader.entities

Hashtable. The agent is created by callingLoader.newAgent() (which in turn calls
aos.jack.Kernel.createAgent()) with theAgentInit object as initial data.

The following entry would enable the loader to create an agent calledhirata of type
cell.machines.Robot and add it to its list of entities to be managed by the time management
infrastructure.By default,thisentitywouldnotkeepits runningstatebetweensimulationruns.
Note that no additional initialisation is performed.

 <AgentInit :name "hirata" :type "cell.machines.Robot" >

In many situations,theagentthatwewishto createwill requiredatafieldsotherthanthename
to be initialised. In this case, we need to create a subclass ofAgentInit that defines the
required fields, which can be of any type. In these situations, the type of the agent can be
specified in the class definition. If this is done, the type does not need to be specified in the
object definition.

As anexample,supposethatwewantedto createaninstanceof aHiratarobotandsetits cycle
time to five seconds. The following dictionary definition would suffice:

 <Class :name "HirataInit"
 :extends "aos.jack.sim.run.AgentInit"
 :fields (
 <Field :name "name" :type :string :inherited :true >
 <Field :name "agent_type" :type :string :inherited :true
 :value "cell.machines.Hirata"
 >
 <Field :name "cycleTime" :type :long >
)
 >

The example defines an initialisation object type namedHirataInit that maps to agent type
cell.machines.Hirata, and includes an attribute namedcycleTime. This definition could
then be included in a file such ascell/machines/defs.api.

The initialisation object could then be used in a scenario definition file:

 <HirataInit :name "hirata" :cycleTime 5 >

Basic application development

JACK Sim Manual
Release 5.5
1-Sept-10 25
Copyright © 2012, Agent Oriented Software Pty. Ltd.

Note: WhenAgentInit is extendedby anew initialisationtype,thenthename andagent_type
attributes are marked asinherited. Theagent_type attribute is further assigned an
initialisationvalue,which is the(default)agenttypeto createwhenthenew initialisationtype
is used in a scenario definition.

If no agent name is provided in the initialisation object, then no agent will actually be created
atthetimethatthescenariofile is read.Thismaybeusefulto provideaninitialisationtemplate
that can be used within code that creates agents on the fly.

4.3.4 Infrastructure agent initialisation
The following initialisation objects are available to enable infrastructure agents to be
initialised:

4.3.4.1 TimeSourceInit

A TimeSourceInit object in the scenario definition results in the creation of aTimeSource

agent. The initialisation attributes are:

Attribute Type Description Default

name String The agent name for the
TimeSource agent. This must be
a unique name on that portal.

dispatcher String The agent name of the root
TimeDispatcher thatwill receive
clock advance messages.

console TimeConsoleInit An object that defines the
appearance of the time console.

verbose int The reporting level for time
control loop logging. The
allowed values are 0 (quiet), 1
(time only), or 2 (time and
delays).

1

Basic application development

JACK Sim Manual
Release5.5

26 1-Sept-10
Copyright © 2012, Agent Oriented Software Pty. Ltd.

Table 4-2: Initialisation attributes for aTimeSourceInit object

realtime boolean Indicateswhetherthesimulation
time advancement should (if
possible) be synchronised with
real time, or as fast as possible.
The former is further qualified
by the 'realtimefactor' attribute
below and the latter is qualified
by the 'delay' attribute below.

true

realtimefactor double This specifies the relative speed
by which to advance time when
synchronised with real time.
Note that a time advance is
always to the next time being
waited for by some agent, and
any real time relative
synchronisation is achieved by
holding back that time advance
until an appropriate amount of
real time has passed.

1

delay long The realtime delay rate, in
milliseconds, to use for a non
realtime simulation. It specifies
how many milliseconds to delay
in between time advances.

0

keep_alive boolean If keep_aliveis setto trueandno
agent is active and no agent is
waitingfor timeto advance,then
the current simulation run will
still remain active and wait for
something to occur. If it is set to
false,thenthecurrentsimulation
run will finish. This usually
means the entire process will
exit.

true

Attribute Type Description Default

Basic application development

JACK Sim Manual
Release 5.5
1-Sept-10 27
Copyright © 2012, Agent Oriented Software Pty. Ltd.

4.3.4.2 TimeDispatcherInit

A TimeDispatcherInit object in the scenario definition results in the creation of a
TimeDispatcher agent. The initialisation attributes are:

Table 4-3: Initialisation attributes for aTimeDispatcherInit object

4.3.5 Infrastructure object initialisation
A number of initialisation objects are provided to facilitate particular infrastructure
interactions. These objects donot create agents. The available objects are:

4.3.5.1 TimeInit

A TimeInit object is used to set the initial simulation time, and it can have the following
attributes:

Attribute Type Description Default

name String The agent name for theTimeDispatcher
agent.

loop_edge int The number of repetitions of the time
control loop that are allowed in any
TimeSource agent/TimeDispatcher agent
exchange before warning messages are
displayed.

10

loop_limit int The number of repetitions of the time
control loop that are allowed in any given
TimeSource agent/TimeDispatcher
exchange. If the limit is reached, the
dispatcher either exits the application or if
thescenariois runningunderthecontrolof a
Monitor, it arranges for the current scenario
iteration to be terminated.

1000

exit_on_idle boolean If this flag is true, it specifies that the time
dispatcher agent should invoke
System.exit(0) onaRuntimeControl(END)

message, after having dealt with the
message. In particular, it is intended for a
multi-process set up, to terminate all
processes at the end of the simulation. If the
scenario is running under the control of a
Monitor, this flag will only have an effect
after all scenario iterations have terminated.

true

Basic application development

JACK Sim Manual
Release5.5

28 1-Sept-10
Copyright © 2012, Agent Oriented Software Pty. Ltd.

Table 4-4: Initialisation attributes for aTimeInit object

The following is an example to set the initial simulation time in the default format:

 <TimeInit :date "Fri, Apr 6, 2001, 19:46:12.0" >

Note: Thesimulationtime is setby theinitialisationmethodof theTimeInit object,andtakes
effect immediately on being processed. If there are multiple instances of aTimeInit object in
the scenario definition file, the last one will override the earlier instances.

TheTimeInit class can also be used within the simulation to convert the simulation time into
aString according to thedateformat attribute. The relevant method is

 public static String TimeInit.toString(long time);

Note: If a TimeInit object has only thedateformat attribute set, the actual time is not
changed.

4.3.5.2 TimeRelayInit

A TimeRelayInit object is used to link dispatcher agents in a multi-process application. The
resulting linkage structure should take the form of a multi-way tree. The following attribute
can be set:

Attribute Type Description

date String Specifies the date and time. The format of
this string is defined by thedateformat
attribute.

dateformat String The format string to be used for specifying
thedate attribute. Refer to
java.text.SimpleDateFormat for the
availableformats– thedefault is "EEE, MMM

d, yyyy, kk:mm:ss.S". If the abbreviated
year pattern is used indateformat, a given
yearwill beinterpretedto bewithin 80years
beforeand20yearsafterthedatethetime is
set.

value long Sets the time in terms of the number of
milliseconds since midnight, 1 Jan 1970.
Thisattributeoverridesdate andprovidesan
alternative way to set time.

Basic application development

JACK Sim Manual
Release 5.5
1-Sept-10 29
Copyright © 2012, Agent Oriented Software Pty. Ltd.

Table 4-5: Initialisation attributes for aTimeRelayInit object

4.3.5.3 TimeConsoleInit

A TimeConsoleInit object is used to specify the attributes of a time console. The console
enables the user to control the progress of time within a simulation.

Note: In the current version of JACK, running multiple iterations of a simulation is not
supported when using an interactive time console.

It has the following appearance:

Figure 4-1: Time console appearance

Attribute Type Description

name String The name of the 'destination' dispatcher
agent. The full agent name is required, i.e.
agent@portal.

Basic application development

JACK Sim Manual
Release5.5

30 1-Sept-10
Copyright © 2012, Agent Oriented Software Pty. Ltd.

The following attributes can be set:

Table 4-6: Initialisation attributes for aTimeConsoleInit object

If a console is required for an application, a separateTimeConsoleInit entry is not created in
the scenario definition. Rather, theTimeConsoleInit object definition is inserted inline in the
TimeSourceInit object definition, as shown below:

Attribute Type Description Default

title String The title for the console. "Time Console"

font String The font to be used for text
displayed in the console.

"arial-bold-24"

x int The horizontal coordinate for the
location of the console on the
screen.

0

y int The vertical coordinate for the
location of the console on the
screen.

0

width int The width of the console. 200

height int The height of the console. 90

interval long Thisis theinterval (in milliseconds)
between updates of the time
console window attributes
(especially its time presentations).

1000

stopped_at_start boolean This specifies whether or not the
time console should should start in
'stopped' mode.

false

exit_on_close boolean This specifies whether or not the
time console should invoke
System.exit(0) when the window
is closed.

true

enabled boolean This specifies whether or not the
time console should be used. This
makes it possible to set up a useful
configuration (especially location
and font) to have available for
intermittentuseof thetimeconsole.

true

Basic application development

JACK Sim Manual
Release 5.5
1-Sept-10 31
Copyright © 2012, Agent Oriented Software Pty. Ltd.

 <TimeSourceInit
 <AgentInit
 :name "time source"
 >
 :keep_alive :false
 :realtime :false
 :realtimefactor 50.0
 :verbose 0
 :dispatcher "time dispatcher"
 :console
 <TimeConsoleInit
 :font "arial-bold-14"
 :x 10
 :y 500
 :width 300
 :height 120
 :interval 60000
 :stopped_at_start :true
 >
 >

4.3.5.4 SimAgent

Theaos.jack.sim.run.SimAgent class extends theaos.jack.jak.agent.Agent class. It
should be used as a base class for simulation entities that may persist over a number of
simulation iterations.

It contains two state flags that can be changed as required.

These are the extra methods available through aSimAgent.

 public boolean isReadyAtStart();

 public void setReadyAtStart(boolean value);

 public boolean isStopAtEnd();

 public void setStopAtEnd(boolean value)

If the readyAtStart attribute is false, then the agent will not be registered with the loader
when it is created via the scenario definition file. It will be necessary to use one of theLoader

methods such asdeploy() to register it and thus place it under the control of JACK Sim.

Name Type Default Description

readyAtStart boolean true Whether the object should
be automatically activated
at the start of a run

stopAtEnd boolean true Whether any active tasks
for this agent should be
forcibly stopped when the
run is (forcibly) finished

Basic application development

JACK Sim Manual
Release5.5

32 1-Sept-10
Copyright © 2012, Agent Oriented Software Pty. Ltd.

At the end of each simulation iteration, any registered entity for which this attribute is false,
will bederegisteredfrom theJACK Sim loader. Thismeansit will notbeableto rununtil it is
registered with the loader again.

If thisattributeis true,thenat thestartof theeachiteration,theentitywill beimmediatelyable
to runandwill receive theusualRuntimeControl.SETUP andRuntimeControl.BEGIN eventsat
the initial time.

Note: UsingLoader.deploy() to create and/or register an agent will overridethis attribute and
set it to false. For this reasonLoader.deploy() can only be used with agents derived from
SimAgent.

If the stopAtEnd attribute is false, then at the end of a simulation iteration, nothing special
happens to it. It simply continues to run as it was already doing. However, if this attribute is
true (the default), then at the end of an iteration, any tasks that are still running within the
entity will be immediately terminated as an automated part of the clean-up phase between
simulation iterations.

Note: Because this attribute is true by default, simulation entities will be forcibly stopped
wheneachiterationendsunlessthey arrangeotherwise.Any agentregisteredwith theLoader
which is not derived fromSimAgent will also be forcibly stopped at the end of each iteration.

For example:

<AgentInit
 :name "SubControlAgent"
 :agent_type "my.models.SubmarineController"
 :stopAtEnd :false
>

If agent_type is not ultimately derived fromaos.jack.sim.run.SimAgent, then it will cause
an error when the scenario file is loaded.

4.3.5.5 MonitorInit

A MonitorInit object is used to control the running of a scenario so that it automatically
repeats for a given number of iterations. This is useful for running Monte Carlo style
randomised simulations. The following attributes can be set:

Basic application development

JACK Sim Manual
Release 5.5
1-Sept-10 33
Copyright © 2012, Agent Oriented Software Pty. Ltd.

Within a scenario definition file, the following will cause aMonitor object of specific type
aos.myproject.IterationController to be created and associated with the current loader.
The number of scenario iterations to be run will be 3 and the created object will have its
initRandomSeed(long value) method immediately called with the value of 1234.

 <MonitorInit
 :type "aos.myproject.IterationController"
 :iterations 3
 :seed 1234
 >

Note: It only makes sense to have oneMonitor object per scenario definition file. After
processing the firstMonitorInit, subsequentMonitorInit objects will be silently ignored.

Table 4-7: Initialisation attributes for aTimeRelayInit object

4.3.6 Global data initialisation
TheConfigurationBase class is available as a base class for creating a global configuration
class for an application. Objects of the derived class can then be used in a scenario definition
to provide scenario specific initialisation for the configuration. The derived class is defined in
a JACOB.api file and the resulting dictionary must be included in the scenario before any
reference is made to the derived class. A definition for a derived class is shown below:

 <Class :name "Global"
 :extends "aos.jack.sim.run.ConfigurationBase"
 :fields (
 <Field :name "buffer1_in_use" :type :bool :value "true" >
 <Field :name "buffer2_in_use" :type :bool :value "false" >
)
 >

Attribute Type Description

type String The name of a fully qualified Java type that
extendsaos.jack.sim.run.Monitor. It will
beautomaticallycreatedandassociatedwith
the currentLoader object. It will be
initialised using the other (following)
attributes.

iterations int The number of iterations to perform of the
current scenario.

seed long A seed value that will be passed to initialise
a random number generator. The way
random number seeding is handled can be
customised by overriding methods in the
Monitor object.

Basic application development

JACK Sim Manual
Release5.5

34 1-Sept-10
Copyright © 2012, Agent Oriented Software Pty. Ltd.

When theConfigurationBase extension is used in a scenario definition, it will be installed as
a global data object with default nameconf. Thus, if the file that contained the above
definition was namedmodels/global.api, then the scenario definition could include the
following declaration:

 <Include :dict "models.Init__global" >
 <Global :buffer1_enabled :true :buffer2_enabled :true >

This would then be accessible in a plan, for example:

 import models.Global;
 plan ... {
 #uses data Global conf;
 ...
 if (conf.buffer1_enabled && conf.buffer2_enabled) ...
 ...
 }

Thenameof theconfigurationobjectis conf by default.Thisnameis aString memberof the
ConfigurationBase class, and thus an alternative name can be specified in the scenario
definition by referencing the superclass field directly:

 <Include :dict "models/global.api">
 <Global <ConfigurationBase :name "cell">
 :buffer1_enabled :true :buffer2_enabled :true >

Alternatively, the default name can be changed by means of theinherited attribute. The
following example illustrates how this may be done.

 <Class :name "Global"
 :extends "aos.jack.sim.run.ConfigurationBase"
 :fields (
 <Field :name "name" :type :string :inherited :true :value "cell">
 <Field :name "buffer1_enabled" :type :bool :value "true">
 <Field :name "buffer2_enabled" :type :bool :value "false">
)
 >

4.4 Creating Agents Programatically (On The Fly)
In order to create an agent on the fly, you simply need to call a method on the current loader
object with initialisation data for the new agent.

There is a static method withinLoader to get the current loader.

 public static aos.jack.sim.run.Loader getLoader()

TheLoader objecthasseveralmethodswhichcanbeusedto createagents,initialise themand
register them with the loader.

 public void addAgent(String name, String type, InitialData data)

This method will create an agent with the given name and Java type. The agent will be
initialisedusingthegiveninitialisationtemplate,whichwill usuallybedefinedin thescenario

Basic application development

JACK Sim Manual
Release 5.5
1-Sept-10 35
Copyright © 2012, Agent Oriented Software Pty. Ltd.

file. This method will throw an exception if an agent with that name already exists or is
already registered with the loader.

If you are running a scenario which involves a number of iterations in which the agents are
never destroyed but simply reinitialised, the following method will prove useful.

 public void readyAgent(String name, String type, InitialData data)

Thisworksin thesamewayasaddAgent() exceptthatit will notbotherto createtheagentif it
already exists. It will, however, throw anError if the agent is currently active or registered
with the loader.

Both of these methods will leave the agent in an initialised but blocked state. The agent will
not runor respondto eventsuntil it is unblocked.If thereis any otherinitialisationto bedone,
it is safe to do it while the agent is blocked unless it involves event handling (which would
require the agent to be running).

The very last thing both of the above methods do before returning is to call the agent's
initialize(InitialData data) method.

To manually unblock an agent so that it is ready to receive events, you can use one of the
following Loader methods:

 public void unblockAgent(Agent agent)

A very useful method is:

 public Agent deploy(String name, String type, InitialData data)

Thedeploy() methodtakescareof all theinternalhousekeepingfor addinganew entity to the
simulation at an arbitrary time. It creates the agent if required and registers it with the loader
usingreadyAgent() with the given parameters. It then unblocks the agent and organises for
the requiredRuntimeControl events to be sent to it so it can initialise itself correctly and join
the simulation in the same way that entities defined in the scenario definition file do.

Note: Usingthedeploy() methodwill unsetthereadyAtStart flagonthereturnedagentsoit
must be derived fromSimAgent. If you don't want this then you will need to manually call
agent.setReadyAtStart(true) afterthecall to deploy(). In thatcase,theentitywill beactive
immediately when the next iteration begins.

4.4.1 Programatically Created Agents in a Multiple Iteration
Scenario

If thescenariowill beperformingmultiple iterations,youmaywantto cleanuptheagentsthat
werecreatedonthefly. They couldbecompletelydestroyedandlatercreatedagainasneeded.
If it is simple enough to reinitialise the agent rather than recreate it, all that is required is to

Basic application development

JACK Sim Manual
Release5.5

36 1-Sept-10
Copyright © 2012, Agent Oriented Software Pty. Ltd.

deregister the agent from the loader when an iteration finishes. This will stop it from being
executable.

JACK Simprovidesasimplewayfor this to bedoneautomatically. If youragentclassextends
aos.jack.sim.run.SimAgent instead of a regular agent, it will have two additional methods:

 public void setReadyAtStart(boolean value)

 public boolean isReadyAtStart()

If the agent has this attribute set to "false" then when a scenario iteration ends, it will be
automaticallyderegisteredfrom theloaderandthusbedisableduntil it is registeredagain(and
unblocked).

If you arrange for the agent not to be deregistered or destroyed when the current scenario
iteration ends, then as soon as the next iteration starts, it will receive a
RuntimeControl(BEGIN) event and start executing immediately, as will all other registered
agents.

Note: Using theLoader.deploy() method to start the agent will automatically set this
attribute to "false".

Thedefaultstatefor any SimAgent is thatwhenasimulationends,any tasksit is still executing
will beforcibly terminated.If yournew agentshouldcontinueto executeundisturbedbetween
runs, you will need to callagent.setStopAtEnd(false) to change alter this behaviour.

 public void setStopAtEnd(boolean value)

 public boolean isStopAtEnd()

Alternatively, thestopAtEnd attribute could be set to "false" in theAgentInit structure in the
scenario definition file.

4.5 Early Termination of the Simulation Run
TheMonitor object(describedabove)providesamethodthatcanbecalledto triggeranearly
end to the current simulation iteration.

public void
 aos.jack.sim.run.Monitor.setForcedQuit(boolean val)

There is also a static convenience method in the Loader class.

 public static void
 aos.jack.sim.run.Loader.StopCurrentRun()

Thesemethodswill causeJACK Simto starttheprocessof sendingEND eventsto eachagent.
On receiving these events, the agents must clean up whatever they have been doing and get
ready for the next run.

Basic application development

JACK Sim Manual
Release 5.5
1-Sept-10 37
Copyright © 2012, Agent Oriented Software Pty. Ltd.

Before starting the next run, any outstanding plans that are still being executed by agents that
havenot takenany stepsto preventit (by unsettingthestopAtEnd attribute,seeabove),will be
forcefully terminated.

Any entities that have thereadyAtStart attribute set to "false" (see above), will be
deregistered from the loader and thus not automatically receive theSETUP andBEGIN events
when the next iteration begins.

4.6 Randomisation of Simulation Runs and
Repeatability

Adding randomisation to a simulation is simply a matter of calling methods that will return
random data according to whatever criteria you desire.

To providerepeatability, theseedprovidedin theMonitor objectin thescenariodefinitionfile,
is passed to the following method in theMonitor class:

 public void Monitor.initRandomSeed(long val)

By extendingtheMonitor classandoverridingtheabovemethod,youareableto controlwhat
method to use to initialise the random number generator you will be using within your
simulation. For example:

static long current_seed;

void initRandomSeed(long val) {
 SomeRandomNumberClass.mySetSeed(current_seed = val);
}

This will save the seed to a class variable,current_seed and initialise the seed for random
number generation.

TheMonitor objecthastwo othermethodsthatwecanutilize to helpwith therepeatabilityof
simulation runs:

 public void Monitor.runBefore()

 public void Monitor.runAfter()

JACK Sim organises to execute therunBefore() method before a simulation iteration begins
(beforetheSETUP andSTART eventsaresentto theagents)andtherunAfter() methodis called
at the end of the simulation iteration (after theEND events have been sent to the agents).

For example,therunBefore() methodcouldbeusedto simplynotewhichseedhasbeenused
to initialize the random number generator. (i.e.current_seed).

TherunAfter() method could be used to reset the seed (and store it incurrent_seed for the
next run.

Basic application development

JACK Sim Manual
Release5.5

38 1-Sept-10
Copyright © 2012, Agent Oriented Software Pty. Ltd.

Thus, every iteration will have a new and well-defined seed that can be used later to repeat a
run if so desired.

Agentbehaviours

JACK Sim Manual
Release 5.5
1-Sept-10 39
Copyright © 2012, Agent Oriented Software Pty. Ltd.

5 Agent behaviours
5.1 Modelling actions with JACK
In theBDI world view, agentsrespondto eventsissuedby theenvironment,otheragentsor by
themselves. The behaviours that are triggered by these events result in computations (which
takenotime)anddelays(whichconsumetime).Thus,anactionwill in generalbemodelledas
a computation and a delay, and will be triggered by an event. JACK provides programming
constructs (events, plans, beliefsets, views and agents) and a generic execution model to
support this world view.

For example, consider a robot that can perform pick and place operations. Assume that the
source and destination for the operations are fixed and are potentially different for each part
type to be moved. Furthermore, there are three part types involved, labelled A, B and AB. If
the operation times are stored in a beliefset calledtimings, one could use the following event
and plan types to model the robot's pick and place behaviour:

public event RobotOperation extends MessageEvent
{
 public String operation; //"on", "off", "pick_and_place"
 public String part; //null, "A", "B", "AB"

 #posting method pickAndPlace(String p) {
 operation = "pick_and_place";
 partType = p;
 }

 #posting method on(String p) {
 operation = "on";
 partType = null;
 }

 #posting method off(String p) {
 operation = "off";
 partType = null;
 }
}

public plan PickAndPlace extends Plan
{
 #handles event RobotOperation ev;
 #uses data RobotTimings timings;

 public static boolean relevant(RobotOperation ev)
 {
 return ev.operation.equals("pick_and_place");
 }

 body()
 {
 // check for preconditions here

 // "perform" the operation
 @sleep(timings.get(ev.partType).int_value());

Agent behaviours

JACK Sim Manual
Release5.5

40 1-Sept-10
Copyright © 2012, Agent Oriented Software Pty. Ltd.

 // apply postconditions here
 }
}

Note that the robot does not advance the simulation clock – that is the responsibility of the
time source agent. However, the robot always has access to the current simulation time.

5.2 Behaviour e xecution
As noted in theBasic application development chapter, if an agent is fully managed by the
time management infrastructure then agent creation and the triggering of execution is
managed by the infrastructure. Contrast this with a normal JACK application, where one
wouldwrite asmallJavaprogramto createagentinstancesandthenperhapsinvokeamethod
ononeof theagents.Thismethodwould triggeragentactivity throughthepostingof anevent.

In certain situations, partial management of an agent is appropriate – this is discussed in the
Basic application development chapter. In order to be fully managed, an agent must

• be registered with the time management infrastructure

• implement theTimeManaged (or TimeSyncManaged) marker interface

• have theSimulationTiming capability

• provide plans (and capabilities) to handleRuntimeControl events.

Registration with the time management infrastructure was discussed in theBasic application
development chapter – if the agent has an initialisation entry in the scenario definition file for
the process in which it will reside, then the loader will automatically register the agent.

With respect to the marker interfaces, an agent would normally implement theTimeManaged
interface– useof theTimeManaged interfaceis discussedin theBasic application development
chapter. Note that as we are dealing with marker interfaces, no methods are defined for
implementation. By implementing theTimeManaged interface, an agent indicates to the time
management infrastructure that it wants its execution to be managed by the infrastructure
according to a synchronous protocol between the agent and its time dispatcher. The
SimulationTiming capabilityis provided to hide the agent-side details of this protocol. If an
agent incorporates this capability, the agent deals withRunTimeControl events rather than the
TimeControl events that are issued by the time dispatcher. This is illustrated below:

Agent behaviours

JACK Sim Manual
Release 5.5
1-Sept-10 41
Copyright © 2012, Agent Oriented Software Pty. Ltd.

Figure 5-1: SimulationTiming capability

RuntimeControl events are sent at the following points in the agent's lifecycle:

• the start of the setup phase

• the start of the execution phase

• the end of the execution phase.

Thesepointsaredistinguishedby theRuntimeControl event'smode member. Thisvariablecan
assumes a value ofSETUP, BEGIN or END.

NormallySETUP andEND events can be ignored by the agent. However, if running multiple
iterations of the simulation, they should be used to initialise and take down, respectively, the
simulation entities so that each iteration can begin in a clean and reset state.

BEGIN eventsmust always be handled or no execution will occur. Note that the protocol is
synchronous– thesendingof aBEGIN eventto thenext agentwill not proceeduntil processing
of theprecedingBEGIN eventhascompleted.Therefore,theplanthathandlesthiseventshould
eventuallypostanevent(thatwill actuallyinitiateexecutionwithin theagent)andsimplyexit.

The protocol sends events to indicate the start and end of execution. During that time, there
maybeperiodswhentheagentbecomesblockedandis thenunblocked.Blocking is managed
by the agent through the use of, for example,@sleep or @waitFor statements. Unblocking is
managed by the time dispatcher and requires no actions to be performed by the agent. Also

Agent behaviours

JACK Sim Manual
Release5.5

42 1-Sept-10
Copyright © 2012, Agent Oriented Software Pty. Ltd.

note that clock advancement is handled by the infrastructure and not the agent. However, the
agent always has access to the current simulation time.

5.3 Example 2
Thisexampledescribesthesimulationframework thatwasusedto testanagent-basedcontrol
system for a robotic assembly cell prior to its commissioning. The cell control system was
developed using Teams and is described in more detail in (Jarvis et al., in press).

5.3.1 Description
The assembly cell consisted of the following components:

• Two buffers, which presented components (A, B and C) to the system.

• A Fanuc robot (robot 1) fitted with a vacuum activated gripper. This was able to pick a
component from a buffer and place it on a jig on the table.

• A Hirata robot (robot 2) with a screwing capability.

• A rotating table with two assembly jigs mounted at 180 degrees. The table could move
between two positions – one with jig1 adjacent to the Fanuc robot and one with jig1
adjacent to the Hirata robot.

• A flipper unit that accepted a sub-assembly (AB) and turned it over.

The purpose of the cell was to assemble meter boxes. These consisted of three components –
an open-faced metal box, a metal plate and a cover. The cover and the plate were attached to
theboxwith screws.Wereferto theboxascomponentA, theplateascomponentB, thecover
ascomponentC andtheboxplusplatesub-assemblyascomponentAB. ComponentsA, B and
C were available from their respective buffers. Component A could only be placed by the
Fanuc robot in an empty jig. Component B could only be placed in a jig that contained a
component A. These activities could only take place when the target jig was in the position
closest to the Fanuc robot. When a jig contained components A and B, it could be rotated to
position 2, where the components were screwed together by the Hirata robot to form
componentAB. AB couldthenberotatedto position1,wheretheFanucrobotcouldremoveit
from the system. Alternatively, a fully assembled meter box (ABC) could be made. In this
case,theFanucrobot removedAB from thejig andplacedit in theflipperunit.Therobotthen
placed component C in the empty jig and, at the same time, the flipper unit flipped the
assembly through 180 degrees. The upside down AB was then placed on top of component C
by the robot and the jig was rotated to position 2, where AB and C were screwed together by
the Hirata robot. The completed assembly was then rotated to position 1, where it was
removed from the system by the Fanuc robot.

The cell was being used to explore the issues involved in implementing agent-based control
strategies using existing manufacturing controllers. Consequently, infrastructure had been
developed that enabled external access to machine functionality via a simple machine state

Agent behaviours

JACK Sim Manual
Release 5.5
1-Sept-10 43
Copyright © 2012, Agent Oriented Software Pty. Ltd.

abstraction.Theseabstractionsweremanagedby aVisualBASIC programcalledBBS.(In the
code provided with the distribution, a simplified Java version of BBS is provided).

A machine state consists of two words – a status word and a control word. The key
components of the machine state from an execution perspective are

• thefour programbits in thecontrolword.Thesespecifythefunctionthatthemachineis to
execute.

• the go bit in the control word. If this is true, the specified function is ready to start. Once
the function has started, the go bit and the idle bit are set to false.

• the idle bit in the status word. If the machine is performing a function, this is set to false.
Otherwise it is set to true.

Agent interaction with the BBS program was via a UDP connection. Machine control was
implementedin ahierarchicalmanner;theactualmachineswerecontrolledby anOmronPLC
which in turn was controlled by the BBS program. Furthermore, the robots had their own
controllers under the control of the PLC.

BBS has two modes of operation,operational mode corresponding to operation of the actual
cell andsimulation mode corresponding to operation of a virtual cell. In both cases the
interface between BBS and the cell control agents was identical.

5.3.2 Architecture
The cell architecture followed the reference model presented in theSimulation architecture
chapter. Equipment and environment models were not required. The behaviour model was
representedasaJACK team(calledCellBehaviour) thatrequiredthefollowing rolesin order
to make meter boxes:

Table 5-1: Roles required by theCellBehaviour team

Role Description

PickAndPlace Load a component into a fixture (jig or
flipper) or unload a component from a
fixture.

Transfer Move a fixture (jig) containing a part to a
processing station (Fanuc or Hirata)
establishment.

Fasten Assemble components (A+B or AB+C).

Flip Turn a component upside down (AB).

Agent behaviours

JACK Sim Manual
Release5.5

44 1-Sept-10
Copyright © 2012, Agent Oriented Software Pty. Ltd.

The machines that form the cell (the two robots, the table and the flipper) are represented in
both the behaviour model and the embodiment model. In the behaviour model, they are
represented as teams; the roles that these teams perform are listed below.

Table 5-2: Teams available to form theCellBehaviour team

Two separate embodiment models are defined, corresponding to the actual cell or the virtual
cell. Both use BBS to manage the interaction with the behaviour model. BBS then controls
eithertheactualmachinebehavioursor simulatedmachinebehaviours.In thelattercase,each
machinein thevirtual cell is representedasaJACK agentthatinteractswith BBSvia aJACK
view. The agents that form the the virtual cell are listed below.

Table 5-3: Agents that form the virtual cell

The interconnection layer between the behaviour model and the embodiment model consists
of

• a UDP client on the behaviour side. Each machine team has a JACK view that mediates
access to the client.

• a UDP server on the embodiment side, encapsulated within the BBS program. BBS then
managestheinteractionwith eithertheactualcell or thevirtual cell. In thelattercase,each
agent has a JACK view that mediates access to the server.

Team Role

FanucBehaviour PickAndPlace

HirataBehaviour Fasten

TableBehaviour Transport

FlipperBehaviour Flip

Agent Machine

FanucEmbodiment Fanuc

HirataEmbodiment Hirata

TableEmbodiment Table

FlipperEmbodiment Flipper

Agentbehaviours

JACK Sim Manual
Release 5.5
1-Sept-10 45
Copyright © 2012, Agent Oriented Software Pty. Ltd.

5.3.3 The virtual cell
The interaction between a virtual cell agent and BBS is encapsulated in a JACK view. This
enables the agent to manage its status through the following queries:

 // Receive notification when the idle bit becomes value.
 outputIdle(boolean value)

 // Receive notification when the go bit becomes value.
 // The bit is tested every rate milliseconds
 inputIdle(int rate, boolean value)

The function to be executed is accessible through bits 1 – 4 of the view's input data member.

The agent can then use the following plan to execute a machine operation:

 public plan VirtualLife extends Plan {
 static long RATE = 1000;
 #handles event VirtualStart ev;
 #posts event VirtualControl vc;
 #uses data BBSConnection bbs;

 static boolean relevant(VirtualStart ev)
 {
 return true;
 }

 context()
 {
 true;
 }

 #reasoning method
 body()
 {
 for (; ;) {
 // set the idle bit
 @waitFor(bbs.outputIdle(true));
 // wait until the go bit is set
 @waitFor(bbs.inputIdle(RATE,true));
 // clear the idle bit
 @waitFor(bbs.outputIdle(false));
 // wait until the go bit is cleared
 @waitFor(bbs.inputIdle(RATE,false));
 // execute the requested operation
 if (@subtask(vc.control(bbs.input))) ;
 }
 }
 }

Execution of an operation by a particular machine is initiated by the posting of a
VirtualControl event within theVirtualLife plan. Plans are provided with each virtual
machine agent to handle this event. The plan provided forFanucEmbodiment is presented
below.

Agent behaviours

JACK Sim Manual
Release5.5

46 1-Sept-10
Copyright © 2012, Agent Oriented Software Pty. Ltd.

 public plan FanucLife extends Plan {

 // delays are in msecs
 static long[] delays = {
 15000, // A from buffer to jig
 15000, // B from buffer to jig
 15000, // C from buffer to jig
 10000, // AB from jig to flipper
 10000, // AB from flipper to jig
 15000, // ABC from jig to buffer
 };
 #handles event VirtualControl ev;

 static boolean relevant(VirtualControl ev)
 {
 return true;
 }

 context()
 {
 true;
 }

 #reasoning method
 body()
 {
 // convert bits 1-4 of the control word to the program
 // number
 int program = (ev.value >> 1) & 0xF;
 // wait the appropriate length of time
 @waitFor(elapsedMillis(delays[program]));
 }
 }

The agents in the virtual cell are managed by JACK Sim. A StartEmbodiment plan is provided
that handles a JACK Sim BEGIN event. The StartEmbodiment plan simply posts a
VirtualStart event and exits so that JACK Sim can continue execution. The VirtualStart

event is then handled by the VirtualLife plan discussed earlier. The generic aspects of the
above behaviour are encapsulated in the StartingUp capability:

Agentbehaviours

JACK Sim Manual
Release 5.5
1-Sept-10 47
Copyright © 2012, Agent Oriented Software Pty. Ltd.

Figure 5-2: StartingUp Capability

The following scenario definition file could be used to start up the virtual cell:

 /**
 * This file defines and runs the virtual cell
 */

 // We use the JACK Sim time management
 <Include :dict "aos.jack.sim.time.Init__base" >

 // Set simulation time.
 <TimeInit :date "Fri, June 25, 2004, 12:00:00.0" >

 // Declare a time dispatcher agent. It ensures that the time is
 // not advanced while the application is busy.
 <TimeDispatcherInit :name "time dispatcher" >

 // Instantiate the agents.
 <AgentInit :agent_type "virtual.fanuc.FanucEmbodiment"
 :name "fanuc" >

Agent behaviours

JACK Sim Manual
Release5.5

48 1-Sept-10
Copyright © 2012, Agent Oriented Software Pty. Ltd.

 <AgentInit :agent_type "virtual.hirata.HirataEmbodiment"
 :name "hirata" >
 <AgentInit :agent_type "virtual.table.TableEmbodiment"
 :name "table" >
 <AgentInit :agent_type "virtual.flipper.FlipperEmbodiment"
 :name "flipper" >

 // Declare a time source agent. It is responsible for advancing
 // time in a synchronised manner with a time dispatcher agent.
 <TimeSourceInit :name "time source" :dispatcher "time dispatcher"
 :verbose 0
 :realtime :false
 :delay 0
 >

Visualisation

JACK Sim Manual
Release 5.5
1-Sept-10 49
Copyright © 2012, Agent Oriented Software Pty. Ltd.

6 Visualisation
6.1 Intr oduction
The JACK Sim visualisation layer provides a convenient mechanism for JACK developers to
provideexternalvisibility for entitieswithin theiragentsystem.A commonusagewouldbeto
visualise entities in a physical system (either real or simulated). For example in an air-traffic
control simulation, aircraft agents may be visualised on screen, with JACK Sim visualisation
entities reflecting the current position and heading of aircraft.

6.2 The graphics model
The graphics model that is used by the infrastructure is that of AWT. In this model, the origin
of the coordinate system is at the top left hand corner of the display. X increases to the right
andy increasesdownwards.Rotationis of thecoordinatesystem;apositiveangleof rotationis
in thedirectionfrom thepositivex axisto thepositivey axis.Translationis performedrelative
to the enclosing coordinate system.

6.3 The software model
It haslongbeenrecognisedasgoodsoftwareengineeringpracticeto separatemodelbehaviour
from model visualisation. One of the practical consequences of such a separation is that
different visualisation models can then be applied to the same behaviour model. The JACK
Sim visualisation infrastructure facilitates such a separation by supporting a loose coupling
between the behavioural aspects of an application with its visualisation aspects.

Onthevisualisationside,theinfrastructurerequiresappearanceobjectsto havebeenexplicitly
constructed. The functionality of these objects is concerned solely with presentation; they
contain no behavioural aspect. The infrastructure also manages the actual display of the
visualisation model.

On thebehaviour side,thereis anexpectationthatthereferencemodelpresentedin Chapter3
will havebeenadopted.Thatis theapplicationconsistsof separatebehaviour andembodiment
models and that the embodiment model maintains explicit representations of the execution
states of the agents. The infrastructure then supports the updating and display of the
visualisation model as the execution states change. The information needed to update the
visualisation model is of course application specific and the developer needs to specify how
thevisualisationmodelis to beupdated.Howevertheactualupdatingof themodelis managed
by the infrastructure.

Consequently, the following models would normally be present in a JACK Sim application
that uses visualisation:

• Behaviour model

Visualisation

JACK Sim Manual
Release5.5

50 1-Sept-10
Copyright © 2012, Agent Oriented Software Pty. Ltd.

• Embodiment model

• Visualisation model

The interaction between the models and the infrastructure is summarised in the figure below.
Thevisualisationmodelis updatedby thevisualisationinfrastructureat regulartime intervals;
the updating is on the basis of the current state of the embodiment model's execution state.

Figure 6-1: Interaction between JACK Sim models and the infrastructure

6.4 Basic Visualisation Model De velopment
Visualisation model development involves two phases – the development of the appearance
model for the application and the development of the updating model. The appearance model
consistsof theframethatis to beusedfor visualisationandappearanceobjectsthatspecifythe
appearancestructurefor theentitiesthatareto bevisualised.Both thevisualisationframeand
theappearanceobjectsfor theapplicationarespecifiedusingJACOBinitialisationobjectsthat
are contained in a file known as the graphical definition file. Appearance objects contain
transformation fields that can be initialised by the user and updated dynamically. An
appearance object can contain appearance objects; the values of the transformation fields of
parent objects are passed on to their children. However, the transformation fields of a child

Visualisation

JACK Sim Manual
Release 5.5
1-Sept-10 51
Copyright © 2012, Agent Oriented Software Pty. Ltd.

object can be modified independently of its parent object. Thus a helicopter can be modelled
as a shell and a rotor and while the helicopter is flying, the rotor can be rotated.

Theupdatingmodelis responsiblefor thedrawing of entitiesonthevisualisationframeandis
achieved by visual entity objects. These objects are normally created dynamically and have
their associated appearance object bound at construction time. In addition to providing this
binding, the developer must also specify how the transformation fields of the appearance
objectareupdated.Theactualupdatingprocessis triggeredby thevisualisationinfrastructure;
anUpdater agent and aVisualsControl view are provided to facilitate this activity.

6.4.1 The appearance model
The visualisation frame and the appearance objects together constitute the appearance model
for the application. These objects are specified using the JACOB Object Modelling Language
in a file known as the graphical definition file. As with the scenario definition file,Include

objects are available to include dictionaries and other definition files. In order to utilise the
visualisation infrastructure, the following entries must appear at the start of the graphical
definition file:

 // Standard drawable components.
 <Include :dict "aos.jack.sim.visual.awt.Init__awt" >

 // Standard visual model extension
 <Include :dict "aos.jack.sim.visual.Init__visual" >

6.4.1.1 The visualisation frame

The visualisation frame is created using aVisualFrameInit object. The following fields are
available for customisation of the display:

Field Type Description

title String The title for the frame's window

x int The x location (in pixels) of the window,
relative to the screen origin. The default is
10.

y int The y location (in pixels) of the window,
relative to the screen origin. The default is
10.

Visualisation

JACK Sim Manual
Release5.5

52 1-Sept-10
Copyright © 2012, Agent Oriented Software Pty. Ltd.

Table 6-1: Initialisation attributes for aVisualFrameInit object

For example, suppose that we have created a graphical definition file calledgraphical.def

that contains the following entries:

 // Standard drawable components.
 <Include :dict "aos.jack.sim.visual.awt.Init__awt" >

 // Standard visual model extension
 <Include :dict "aos.jack.sim.visual.Init__visual" >

 <VisualFrameInit :title "JACK Sim Visualisation Test"
 :x 120
 :y 120
 :width 600
 :height 400
 >

If we were to invoke the JACK Sim loader as follows:

 java aos.jack.sim.run.Loader graphical.def

thenanemptyframewith thetitle "JACK SimVisualisationTest"wouldappearon thescreen
at (120,120).

6.4.1.2 Appearance object definition

Appearance objects are of typeNamed. The visualisation infrastructure provides the
DefineNamed class to enable the developer to declaratively specify the structure and initial
appearance of the appearance objects that are to be employed in an application. These
definitions are contained in a JACOB initialisation file (the graphical definition file) that is
processed by the JACK Sim loader at startup. The loader stores the resultingNamed objects
internally;thesearethenavailablefor bindingwith thevisualentityobjectsthatarecreatedin
the updating model.

TheDefineNamed class extends theTransform class through the provision of aname field. As
noted above, this name is used in the updating model to bind an appearance object to a visual
entityobject.It is alsousedin appearanceobjectdefinitionsto incorporateappearanceobjects

width int The width (in pixels) of the frame. The
default is 800.

height int The height (in pixels) of the frame. The
default is 600.

image String A JPEG image to be used as background.
The default is "aos/jack/sim/
bg800x600.jpeg"

scale String Thescalingfactorto beappliedto theframe.

Field Type Description

Visualisation

JACK Sim Manual
Release 5.5
1-Sept-10 53
Copyright © 2012, Agent Oriented Software Pty. Ltd.

into appearanceobjectdefinitions.Thefollowing fieldsareavailablefrom theTransform class
when aDefineNamed object is specified:

Table 6-2: Initialisation attributes of theTransform class that are available to aDefineNamed
object definition

The following set of primitive drawable objects are provided by the infrastructure for
specifying the appearance of an appearance object:

• Arc

• Area

• CachedImage

• Colored

• Ellipse

• Figure

• Font

• Line

• Point

• Polygon

• Rectangle

Field Type Description

label String A name that uniquely identifies the
transform. This is used by the updating
modelto identify sub-treesof anappearance
object structure that are to be explicitly
updated.

drawable Drawable An object that defines the actual appearance
of the appearance object. This object must
implement theDrawable interface.

x double Thex origin of thecoordinatesystemfor the
object

y double They origin of thecoordinatesystemfor the
object

theta double the angle of rotation for the coordinate
system

scale double the scale factor for the object

Visualisation

JACK Sim Manual
Release5.5

54 1-Sept-10
Copyright © 2012, Agent Oriented Software Pty. Ltd.

• RoundRectangle

• TextLine

• Transform

These objects, their initialisation attributes and related classes are described in Appendix B.

Note that theFigure object is available to provide a container for drawable objects. Since
appearance objects (i.e.Named objects) are drawable objects, they can be incorporated into a
Figure object definition, as well as the primitive objects listed above. Like theDefineNamed
class, theNamed class extendsTransform and the following fields can therefore be referenced
in aNamed object specification

Table 6-3: Initialisation attributes of theTransform class that are available to aNamed object
definition

Thedrawable field is not initialisedin aNamed specification,asit is setby theinfrastructureto
be a reference to the appropriateDefineNamed object.

Notethateachappearanceobjecthasits own coordinatesystem.Theorigin of this coordinate
system is specified by the object'sx andy fields. Rotation is of the coordinate system.
Modification of thex andy fields results in a translation of the object; this is relative to the
origin of thecoordinatesystemof theenclosingDefineNamed/Named objectif thereis one,or of
the visualisation frame otherwise.

6.4.2 Example 3
As anexampleof appearancemodelconstruction,considertherotatingtableof Section5.3.It
contains two diametrically opposed jigs, and for pedagogical purposes, we will allow these
jigs to be rotated and translated independently of the table. Also we will want to visualise the
contentsof thejigs.Thusthetableappearanceobject(n-table will containtwo jig appearance
objects (n-jig1 andn-jig2 and each jig appearance object will contain a status appearance
object (n-status1 andn-status2).

Field Type Description

x double Thex origin of thecoordinatesystemfor the
object

y double They origin of thecoordinatesystemfor the
object

theta double the angle of rotation for the coordinate
system

scale double the scale factor for the object

Visualisation

JACK Sim Manual
Release 5.5
1-Sept-10 55
Copyright © 2012, Agent Oriented Software Pty. Ltd.

The table appearance could be defined as follows:

 <DefineNamed
 <Transform
 :label "l-table"
 :drawable
 <Figure
 :elements
 (
 <Ellipse
 :width 100
 :height 100
 :x -50
 :y -50
 >
 <Named
 :name "n-jig1"
 :x -37
 :y 0
 >
 <Named
 :name "n-jig2"
 :x 37
 :y 0
 >
)
 >
 >
 :name "n-table"
 >

The locations of the three objects that form the table are specified relative to the origin of the
enclosing coordinate system, which will be set at runtime. If no origin is specified, (0,0) is
used. Recall that rotation is of the coordinate system. Thus when we rotate the coordinate
system of the table, the components of the table will be rotated about the centre of the table.

The jigs are defined similarly; the definition for jig1 could be:

 <DefineNamed
 <Transform
 :label "l-jig1"
 :drawable
 <Figure
 :elements
 (
 <Rectangle
 :width 20
 :height 20
 :x -10
 :y -10
 >
 <Named
 :name "n-status1"
 :x -2
 :y 2
 >
)

Visualisation

JACK Sim Manual
Release5.5

56 1-Sept-10
Copyright © 2012, Agent Oriented Software Pty. Ltd.

 >
 >
 :name "n-jig1"
 >

Again, thelocationof thecomponentsis definedrelative to theenclosingcoordinatesystem–
in this case, that of theNamed objectn-jig1. As before, when the coordinate system of the jig
is rotated, the components of the jig will rotate about the centre of the jig.

The contents of the jig are represented for simplicity as a digit in the range 0 to 3. 0
corresponds to an empty jig, 1,2 and 3 correspond to the progressive stages of assembly.
Unlike the other components of the table appearance, this component is not statically defined
and will change dynamically. As we shall see in the next section, this is achieved by
dynamically creating a new TextLine object when the jig contents change and assigning it to
thedrawable field of theappropriateNamed object.Consequentlythereis noneedto specifyan
initial appearance and the definition for the jig1 status is simply

 <DefineNamed
 <Transform
 :label "l-status1"
 >
 :name "n-status1"
 >

In orderfor anappearanceobjectto bedisplayedby thevisualisationinfrastructure,it needsto
be incorporated into a visual entity object. In the next section, we shall explain how the
updating model together with the visualisation infrastructure updates and displays visual
entityobjects.For now, wewill justdisplaytheinitial appearanceof thetableasdefinedin the
graphical definition file.

VisualEntityInit initialisation objects are provided by the visualisation infrastructure for
thecreationof staticvisualentityobjects.Definitionsfor theseobjectsareincorporatedin the
graphical definition file and the correspondingVisualEntity objects are then created by the
JACK Simloader. An Updater agentis providedby theinfrastructureto managethedisplayof
visual entity objects. Its definition is incorporated in the graphical definition file with a
ScreenUpdaterInit object.

If thefollowing entrieswereaddedto thecompletegraphicaldefinitionfile thathasbeenused
in the preceding discussion, the appearance of the table can be checked without having to
provide any agent behaviours.

 <VisualEntityInit
 :name "v-table"
 :drawable <Named :name "n-table">
 :x 100
 :y 100
 >

 <ScreenUpdaterInit>

Entering the following command

Visualisation

JACK Sim Manual
Release 5.5
1-Sept-10 57
Copyright © 2012, Agent Oriented Software Pty. Ltd.

 java aos.jack.sim.run.Loader graphical.def

will result in the appearance of a display similar to the following:

Figure 6-2: Initial table appearance.

6.4.3 The updating model
TheJACK SimvisualisationinfrastructureprovidesanUpdater agentto managethedisplayof
the visual entities associated with an application. As noted previously, visual entities are of
typeVisualEntity andeachentity is associatedwith anappearanceobjectthatwasdefinedas
part of the appearance model. The infrastructure provides aVisualsControl view to assist in
the lifecycle management ofVisualEntity objects. The updating and display of the visual
entities is managed by the infrastructure, but the developer must provide the code that is
invoked by the infrastructure at each iteration in the update/display loop.

6.4.3.1 The Updater agent

TheUpdater agent is responsible for regularly updating the visual entities for the application
and displaying them on the screen. AScreenUpdaterInit object is provided to allow the
JACK Sim loader to create and initialise anUpdater agent from a JACOB definition provided
in the graphical definition file. The available initialisation attributes are:

Visualisation

JACK Sim Manual
Release5.5

58 1-Sept-10
Copyright © 2012, Agent Oriented Software Pty. Ltd.

Table 6-4: Initialisation attributes for theScreenUpdaterInit object

6.4.3.2 The VisualsControl view

Appearance objects implement theDrawable interface and can therefore be drawn on the
visualisation frame. However, drawing management is a complicated issue and the
visualisation infrastructure uses visual entity objects to facilitate the efficient drawing of
appearance objects. Visual entity objects are of typeVisualEntity.

As noted previously, objects of typeVisualEntity can be created fromVisualEntityInit
entries in the graphical definition file. However the preferred method to create such objects is
throughtheVisualsControl view thatis providedby theinfrastructure.TheVisualsControl
view provides thenewVisual method for this purpose; it takes the following arguments:

Table 6-5: Arguments for thenewVisual() method

Visual entity objects are stored by theVisualsControl view in aHashtable calledentities.
ThenewVisual() method does not return an object reference; if a reference is required, it can

Attribute Type Description Default

name String The name for theUpdater agent. "screen"

realtime boolean Indicateswhetherthesimulation
timeadvancementis (if possible)
synchronised with real time.

false

rate double This specifies the rate at which
the screen is updated.

1

Field Type Description

name String The name for the visual entity object that is
to be created

appearance String Thenameof theappearanceobjectthatis to
be incorporated into the visual entity object

x double Thex origin of thecoordinatesystemfor the
visual entity object

y double They origin of thecoordinatesystemfor the
visual entity object

theta double the angle of rotation for the coordinate
system

scale double the scale factor for the visual entity object

Visualisation

JACK Sim Manual
Release 5.5
1-Sept-10 59
Copyright © 2012, Agent Oriented Software Pty. Ltd.

be obtained from the hashtable by specifying the name of the visual entity as the key to an
invocationof entities.get(). This referencecanthenbeusedto interrogatethevisualentity
object and its appearance object.

Having created a visual entity object, the initial state of the object can be displayed by the
infrastructure, but subsequent changes to its state will not be reflected on the display. In order
for the visualisation infrastructure to display the updated entity state, it needs to be provided
with an updating method for each visual entity. The infrastructure will then invoke these
methods at regular intervals and update the display.

The linkage between a visual entity and its updating method is provided by the
bindVisualComponent() method in theVisualsControl view. This method takes the
following arguments:

Table 6-6: Arguments for thebindVisualComponent method

Recall that appearance objects can contain appearance objects, thus allowing hierarchical
appearancestructuresto bedefined.ThebindVisualComponent() methodenablesupdatingto
be defined for any appearance object within an appearance structure. As expected, the
updating of a node in an appearance structure is applied to all of its sub-nodes.

The label of the appearance object is the name that has been assigned to the object'slabel

field. The name of the visual entity object is the name that was assigned to the visual entity
object when it was created (using thenewVisual() method), andnot the name of the
appearance object that was provided to that method as itsappearance parameter.

Theobjectthatis providedasthefirst argumentto bindVisualComponent mustimplementthe
VisualComponent interface. This interface consists of the single method

 public void update(Transform whole,Transform part);

whole provides access to the data members of the visual entity object that are provided by the
Transform class, namely its location, orientation, scaling and its appearance object.part

providessimilaraccessfor theappearanceobjectthatis beingupdated.Theexpectationis that

Field Type Description

component VisualComponent A VisualComponent object that defines an
update() methodthatwill beinvokedby the
infrastructure.

name String Thenameof thevisualentityobjectthatis to
be updated.

label String The label of the appearance object that is to
beupdated.If only thevisualentityobjectis
being updated, this is set tonull.

Visualisation

JACK Sim Manual
Release5.5

60 1-Sept-10
Copyright © 2012, Agent Oriented Software Pty. Ltd.

within theupdate methodthecurrentstateof theappearanceobjectbeingupdated(andthatof
its root visual entity object) will be obtained from the execution state for the application. A
decisionis thenmadeasto whetheror not thetransformfieldsof theappearanceobjectshould
be updated.

6.4.4 Example 4
In this example, we will use the JACK Sim visualisation infrastructure to create an updating
model for the rotating table whose appearance model was defined in Example 3. Recall that
the table has two diametrically opposed jigs and it is rotated between a loading/unloading
stationandajoining station.Only thebehaviour of thetableandits jigs is modelled;wedonot
model the operation of the two stations. For pedagogical reasons, we allow the jigs to be
rotated and also to be advanced and retracted along a slide. The complete source code for
Examples 3 and 4 can be found inexamples/jacksim/table.

6.4.4.1 Design Overview

The focus of this example is the use of the visualisation infrastructure and not behaviour
modelling. Consequently we have chosen to use the behaviour model as a test harness for the
remaining aspects of the application and have not attempted to provide a detailed or realistic
model of table behaviour. The model is implemented as a capability calledBatchMaking. We
assume that only a single batch of one type of part is to be produced and that only one of the
jigs is used. Therefore only a single plan is provided to model the table behaviour during
assembly. This plan is defined in terms of operations that are performed by the table (rotate)
andthetwo jigs (setcontents,rotate,advanceandretract).Theseoperationsareperformedby
jig andtablecontrollerobjectsof typeJigController andTableController respectively. The
controller objects collectively form the embodiment model for the table and for convenience
are incorporated into a view calledTableModel. Each controller object has a set of state
variablesthatencapsulatetheexecutionstateof its correspondingentity. Whenanoperationis
performed by a controller object, a delay is initiated and its state variables are updated.
Independently of this process, the visualisation infrastructure updates and displays the
visualisation model at regular intervals using the current state of the table as defined by the
state variables of the controller objects.

As notedabove,theembodimentmodelis aview thatincorporatesthreeobjects– two of type
JigController one of typeTableController. These classes extend a base class of type of
VirtualController, which provides generic rotation, translation and scaling operations.
Subclasses ofVirtualController either provide specialisations of these operations or new
operations. For example, theJigController class provides operations for slide and contents
management.

The visualisation model is encapsulated in a view calledTableVisualisation. It creates the
visual entity objects required by the model using methods provided by theVisualsControl
view, which is part of the visualisation infrastructure. Each visual entity object that is created
incorporates a corresponding appearance object. Appearance object definition for this

Visualisation

JACK Sim Manual
Release 5.5
1-Sept-10 61
Copyright © 2012, Agent Oriented Software Pty. Ltd.

applicationwasaddressedin Example3 – thedefinitionsareprovidedasJACOBinitialisation
objectsin thegraphicaldefinitionfile for theapplication.Also for eachvisualentity, anobject
that contains the updating method for the visual entity is created. Note that the
TableVisualisation view is responsibleonly for thecreationof theobjectsthatwill form the
visualisationmodel– theactualmanagementof themodel(objectupdatinganddisplay)is the
responsibility of theVisualsControl view and theUpdater agent.

A design diagram illustrating the overall agent architecture is shown below:

Figure 6-3: Application Architecture

6.4.4.2 The embodiment model

The embodiment model is provided by three controller objects corresponding to the two jigs
andthetable.For convenience,theseobjectsarecontainedwithin asingleJACK view. Froma
visualisation perspective, the key aspects of the embodiment execution state are

• table orientation

• jig contents

• jig orientation

• jig location

The basic transformations that are supported by the visualisation infrastructure are rotation,
translation and scaling. A base class of typeVirtualController provides basic rotation,
translation and scaling operations.JigController andTableController then extend

Visualisation

JACK Sim Manual
Release5.5

62 1-Sept-10
Copyright © 2012, Agent Oriented Software Pty. Ltd.

VirtualController. The aspects of the VirtualController.java that relate to rotation are
shown below:

 package jsv.table;

 import aos.jack.util.cursor.Action;

 public class VirtualController {

 // only the rotation behaviour is shown

 double orientation; // orientation of the coordinate system
 double da; // step angle
 int dat; // rotation time for a step (msecs)

 // constructors go here

 public double getOrientation()
 {
 return orientation;
 }

 public void setOrientation(double o)
 {
 orientation = o;
 }

 // rotate coordinate system

 public Action rotate(double a)
 {
 return new RotateAction(a);
 }

 // Implementation of RotateAction omitted
 // It updates the rotation state variable (orientation) at
 // regular time intervals during the rotation.
 }

The TableController class does not add any additional functionality to the base class, as in
this example the table is only capable of rotation. However the JigController class adds
advance/retract functionality and also maintains knowledge of the jig contents. The code for
the JigController.java is shown below:

 package jsv.table;

 import aos.jack.util.cursor.Action;

 public class JigController extends VirtualController {

 // jig content states
 public static final int STATE0 = 0; // empty
 public static final int STATE1 = 1; // A
 public static final int STATE2 = 2; // A+B
 public static final int STATE3 = 3; // AB

 String[] contentStates = { "0","1","2","3" };

 // slide movements

Visualisation

JACK Sim Manual
Release 5.5
1-Sept-10 63
Copyright © 2012, Agent Oriented Software Pty. Ltd.

 public static final int XINCREASING = 1;
 public static final int XDECREASING = -1;
 public static final int YINCREASING = 2;
 public static final int YDECREASING = -2;

 String contents; // indicates the contents of the jig
 int xOffset; // distance from home for an x-slide
 int yOffset; // distance from home for a y-slide
 int length; // slide length
 int dt; // time for a step (msecs)

 public JigController(double da, int dat,int l, int st)
 {
 super(0.0,0.0,0.0,da,dat,0.0,0);
 contents = "0";
 xOffset = 0;
 yOffset = 0;
 length = l;
 dt = st;
 }

 public String getContents()
 {
 return contents;
 }

 public int getXOffset()
 {
 return xOffset;
 }

 public int getYOffset()
 {
 return yOffset;
 }

 public void setContents(int s)
 {
 contents = contentStates[s];
 }

 public void setOffsets(int dx, int dy)
 {
 xOffset = dx;
 yOffset = dy;
 }

 public Action advance(int d)
 {
 int p1 = (d < 0) ? -length : length;
 return new SlideAction(0,p1,d);
 }

 public Action retract(int d)
 {
 int p0 = (d > 0) ? -length : length;
 return new SlideAction(p0,0,d);
 }

 // implementation of SlideAction omitted

Visualisation

JACK Sim Manual
Release5.5

64 1-Sept-10
Copyright © 2012, Agent Oriented Software Pty. Ltd.

 // It updates the slider state variables (xOffset and yOffset)
 // at regular time intervals during slide advancement/retraction.

 }

Note that the advance/retract movement is defined as movement relative to the home position
of the slide, unlike the movement function provided by the base class, in which movement is
in between two points in the behaviour model coordinate system.

6.4.4.3 The visualisation model

In our example, visualisation model updating is encapsulated in a view called
TableVisualisation. It providesasinglemethodbind() thatis invokedby theTable agentas
part of its initialisation.

 package jsv.table;

 import aos.jack.sim.run.Loader;
 import aos.jack.sim.visual.VisualsControl;
 import aos.jack.sim.visual.VisualComponent;
 import aos.jack.sim.visual.VisualEntity;
 import aos.jack.sim.visual.awt.Transform;
 import aos.jack.sim.visual.awt.TextLine;
 import aos.jack.sim.visual.awt.DefineNamed;

 public view TableVisualisation {

 #uses data Loader loader;
 #uses data VisualsControl visuals;
 #uses data TableModel model;

 class JigState {

 String status = "";
 String previousStatus = "";
 int xOffset = 0;
 int previousXOffset = 0;
 double homeX = 0.0;
 };

 // only updating for the table and jig1 are shown here

 JigState j1;

 TableController table;
 JigController jig1;

 public void bind()
 {
 j1 = new JigState();

 table = model.getTableController();
 jig1 = model.getJigController(TableModel.JIGPOINT1);

 // create the table visualisation object
 visuals.newVisual(
 "v-table","n-table",table.getX(),table.getY(),0,1);

Visualisation

JACK Sim Manual
Release 5.5
1-Sept-10 65
Copyright © 2012, Agent Oriented Software Pty. Ltd.

 // set homeX for jig1 (sliding is relative to this point)
 VisualEntity ve =
 (VisualEntity) visuals.entities.get("v-table");
 Transform t1 = ve.findTransform("l-jig1");
 j1.homeX = t1.x;

 // define how the table visualisation is to be updated
 visuals.bindVisualComponent(
 new VisualComponent() {
 public void update(Transform w, Transform p) {
 p.theta = table.getOrientation();
 }
 },
 "v-table",
 null
);

 // define how the jig1 visualisation is to be updated
 visuals.bindVisualComponent(
 new VisualComponent() {
 public void update(Transform w, Transform p) {
 p.theta = jig1.getOrientation();
 j1.xOffset = jig1.getXOffset();
 if (j1.xOffset != j1.previousXOffset)
 {
 p.x = j1.homeX+j1.xOffset;
 j1.previousXOffset = j1.xOffset;
 }
 }
 },
 "v-table",
 "l-jig1"
);

 // define how the jig1 status is to be updated
 visuals.bindVisualComponent(
 new VisualComponent() {
 public void update(Transform w, Transform p) {
 j1.status = jig1.getContents();
 if (!j1.status.equals(j1.previousStatus)) {
 TextLine t = new TextLine();
 t.string = j1.status;
 p.drawable = t;
 p.instantiate(null);
 }
 j1.previousStatus = j1.status;
 }
 },
 "v-table",
 "l-status1"
);

 }
 }

6.4.4.4 The behaviour model

The focus of this example is the use of the visualisation infrastructure and not behaviour
modelling. Consequently we have chosen to use the behaviour model as a test harness for the

Visualisation

JACK Sim Manual
Release5.5

66 1-Sept-10
Copyright © 2012, Agent Oriented Software Pty. Ltd.

remaining aspects of the application and have not attempted to provide a detailed or realistic
model of table behaviour. We assume that only a single batch of one type of part is to be
produced and that only one of the jigs is used. Therefore only a single plan is required to
modelthetablebehaviour duringassembly. Thisplanis definedin termsof operationsthatare
performedby thetableembodiment(rotate()) andthetwo jig embodiments(setContents(),
rotate(), advance() andretract()). A design diagram for the behaviour model is shown
below:

Figure 6-4: Behaviour Model

The plan for modelling the table behaviour during batch execution is shown below.

package jsv.table;

public plan MakeBatch extends Plan {
 #handles event Order oe;
 #uses data TableModel model;

 static boolean relevant(Order oe)
 {
 return oe.batchType.equals("AB");
 }

 context()
 {
 true;
 }

 #reasoning method
 body()
 {
 JigController jig1 = model.getJigController(TableModel.JIGPOINT1);
 JigController jig2 = model.getJigController(TableModel.JIGPOINT2);
 TableController table = model.getTableController();
 @waitFor(jig1.advance(JigController.XDECREASING));
 @sleep(10);
 for (int i = 0; i<oe.batchSize; i++) {

 // load an A

Visualisation

JACK Sim Manual
Release 5.5
1-Sept-10 67
Copyright © 2012, Agent Oriented Software Pty. Ltd.

 jig1.setContents(JigController.STATE1);
 @sleep(50);

 //load a B
 jig1.setContents(JigController.STATE2);
 @sleep(50);

 //retract jig
 @waitFor(jig1.retract(JigController.XINCREASING));
 @sleep(10);

 //rotate table to joining position
 @waitFor(table.rotate(Math.PI));
 @sleep(10);

 //orient jig for joining
 @waitFor(jig1.rotate(Math.PI));
 @sleep(10);

 //advance jig
 @waitFor(jig1.advance(JigController.XDECREASING));
 @sleep(10);

 // join A to B
 jig1.setContents(JigController.STATE3);
 @sleep(50);

 //retract jig
 @waitFor(jig1.retract(JigController.XINCREASING));
 @sleep(10);

 //rotate table to the load/unload position
 @waitFor(table.rotate(Math.PI));
 @sleep(10);

 //orient jig for unloading/loading
 @waitFor(jig1.rotate(Math.PI));
 @sleep(10);

 //advance jig
 @waitFor(jig1.advance(JigController.XDECREASING));
 @sleep(10);

 // unload AB
 jig1.setContents(JigController.STATE0);
 @sleep(50);
 }
 }
}

In theinterestsof simplicity, jig advancement/retractionrequiresthedirectionof movementto
be specified. However note that the direction of advancement is the same at both jig points.
Thereasonfor this is thatat jig point2, thejig's coordinatesystemhasundergonea180degree
rotation immediately prior to the jig advancement.

6.4.4.5 Scenario definition and e xecution

The scenario definition file for this example is as follows:

Visualisation

JACK Sim Manual
Release5.5

68 1-Sept-10
Copyright © 2012, Agent Oriented Software Pty. Ltd.

 // We use the JACK Sim time management
 <Include :dict "aos.jack.sim.time.Init__base" >

 // Bring in visualisation
 <Include :file "graphical.def" >

 // Set simulation time.
 <TimeInit :date "Sat, May 12, 2001, 15:15:00.0" >

 // Declare a time dispatcher agent, who ensures that the time is
 // not advanced while the application is busy.
 <TimeDispatcherInit
 :name "time dispatcher"
 >

 <AgentInit :agent_type "jsv.table.Table" :name "table" >

 // Declare a time source agent, who is responsible for advancing time
 // in a synchronised manner with a time dispatcher agent.
 <TimeSourceInit :name "time source" :dispatcher "time dispatcher"
 :verbose 0
 :realtime :false
 :delay 0
 >

Notethatthegraphicaldefinitionfile is includedby thescenariodefinitionfile. Thescenariois
executed in the usual manner:

 java aos.jack.sim.run.Loader scenario.def

Recallthatexecutionof thescenariois managedby JACK Simandthattheagentsarenotified
they can begin execution through the posting of aRuntimeControl event with a mode of
BEGIN. TheTable agent must have a plan to handle this event (StartTable. All that this plan
does is to post anOrder event, which triggers execution of theTable agent's behaviour model.

Appendix A: Example 1

JACK Sim Manual
Release 5.5
1-Sept-10 69
Copyright © 2012, Agent Oriented Software Pty. Ltd.

Appendix A: Example 1
This appendix contains the code for the original JACK application that was converted to a
JACK Sim application in chapter 2.

/***
 *
 * Speaker1.agent (generated by the JDE)
 *
 ***/

package eg0;

public agent Speaker1 extends Agent {
 #posts event Start sf;
 #handles event Start;
 #sends event Utterance ev;
 #uses plan Speak;

 public Speaker1(String name)
 {
 super(name);
 }

 public void converse()
 {
 postEvent(sf.start());
 }

}

/***
 *
 * Speaker2.agent (generated by the JDE)
 *
 ***/

package eg0;

public agent Speaker2 extends Agent {
 #handles event Utterance;
 #sends event Utterance ev;
 #uses plan Respond;

 public Speaker2(String name)
 {
 super(name);
 }

}

Appendix A: Example 1

JACK Sim Manual
Release5.5

70 1-Sept-10
Copyright © 2012, Agent Oriented Software Pty. Ltd.

/***
 *
 * Start.event (generated by the JDE)
 *
 ***/

package eg0;

public event Start extends Event {

 #posted as
 start()
 {
 }

}

/***
 *
 * Utterance.event (generated by the JDE)
 *
 ***/

package eg0;

public event Utterance extends MessageEvent {
 public String utterance;
 public String speaker;

 #posted as
 utter(String s,String u)
 {
 speaker = s;
 utterance = u;
 }

}

/***
 *
 * Respond.plan (generated by the JDE)
 *
 ***/

package eg0;

public plan Respond extends Plan {
 #handles event Utterance u1;
 #sends event Utterance uf;
 #uses interface Speaker2 speaker2;

 static boolean relevant(Utterance ev)
 {
 return true;
 }

 context()
 {
 true;
 }

Appendix A: Example 1

JACK Sim Manual
Release 5.5
1-Sept-10 71
Copyright © 2012, Agent Oriented Software Pty. Ltd.

 #reasoning method
 body()
 {
 String message = "Hello "+u1.speaker;
 System.out.println(speaker2.name()+": "+message);
 Utterance u2 = uf.utter(speaker2.name(),message);
 @reply(u1,u2);
 }

}

/***
 *
 * Speak.plan (generated by the JDE)
 *
 ***/

package eg0;

public plan Speak extends Plan {
 #handles event Start ev;
 #sends event Utterance uf;
 #uses interface Speaker1 speaker1;

 static boolean relevant(Start ev)
 {
 return true;
 }

 context()
 {
 true;
 }

 #reasoning method
 body()
 {
 for (;;)
 {
 String message = "Hello World";
 System.out.println(speaker1.name()+": "+message);
 Utterance u1 = uf.utter(speaker1.name(),message);
 @send("world",u1);
 @waitFor(u1.replied());
 Utterance u2 = (Utterance) u1.getReply();
 @sleep(10);
 }
 }

}

Appendix A: Example 1

JACK Sim Manual
Release5.5

72 1-Sept-10
Copyright © 2012, Agent Oriented Software Pty. Ltd.

/***
 *
 * Driver.java
 *
 ***/

import eg0.Speaker1;
import eg0.Speaker2;

public class Driver
{
 public static void main(String[] args)
 {
 Speaker1 s11 = new Speaker1("ralph1");
 Speaker1 s12 = new Speaker1("ralph2");
 Speaker2 s2 = new Speaker2("world");
 s11.converse();
 s12.converse();
 }
}

Appendix B: Drawable Objects

JACK Sim Manual
Release 5.5
1-Sept-10 73
Copyright © 2012, Agent Oriented Software Pty. Ltd.

Appendix B: Dra wable Objects
This appendix describes the set of primitive drawable objects that are provided by the
JACKSim infrastructure for specifying the appearance of an object in the visualisation. The
Drawable interface is implemented by entities that can be displayed and thus drawn on a
canvas.Thefollowing classesall implementtheDrawable interface,andcanbeusedin JACK
Sim wherever drawables are required:

• Arc

• Area

• CachedImage

• Colored

• Ellipse

• Figure

• Font

• Line

• Point

• Polygon

• Rectangle

• RoundRectangle

• TextLine

• Transform

The following sections describe each class in more detail.

Arc
TheArc classextendsjava.awt.geom.Arc2D.Double. An Arc is asegmentof anellipse. Like
anEllipse, it contains fields that define an enclosing rectangle for the ellipse – the
coordinates of the top left hand corner, and the width and height. Additionally, an arc has a
start and an extent, which defines the segment of the ellipse that is required.

Appendix B: Drawable Objects
Area

JACK Sim Manual
Release5.5

74 1-Sept-10
Copyright © 2012, Agent Oriented Software Pty. Ltd.

Table B-1: Initialisation attributes for anArc object

Area
The Area class extendsjava.awt.geom.Area. An Area object performs certain binary CAG
(ConstructiveAreaGeometry)onotherarea-enclosinggeometries,namelyEllipse, Polygon,
Rectangle, RoundRectangle andArea. The supported CAG operations are add, subtract,
intersect and exclusive or.

Table B-2: Initialisation attributes for anArea object

The CAG operations that are to be performed on anArea object are specified using objects of
the following types:

Field Type Description

x double The x coordinate of the upper left corner of
the bounding box for the ellipse.

y double The y coordinate of the upper left corner of
the bounding box for the ellipse.

width double The width of the bounding box for the
ellipse.

height double The height of the bounding box for the
ellipse.

start double The starting angle of the segment of the
ellipse that defines the arc.

extent double The extent of the segment of the ellipse that
defines the arc.

Field Type Description

shape class TheShape object that is to be used to
construct theArea object.

modifiers aggregation An aggregationof AreaModifier objectsthat
describe the CAG operations to be
performed on theArea object.

filled boolean Specifies whether the interior of theArea
object should be filled. It is initially set to
false. An aggregation ofAreaModifier
objects that describe the CAG operations to
be performed on theArea object.

Appendix B: Drawable Objects
CachedImage

JACK Sim Manual
Release 5.5
1-Sept-10 75
Copyright © 2012, Agent Oriented Software Pty. Ltd.

Table B-3: The object types available for the specification of CAG operations

The above classes provide no fields for initialisation. However, they all extend the
AreaModifier class,whichprovidesasinglename field for initialisationpurposes.Thisfield is
of typeArea and is used to specify the object that is to be applied to the base object using the
specifiedareamodifiers.Notethatthisobjectremainsunchangedaftertheoperationhasbeen
performed.

CachedImage
TheCachedImage class is used to buffer an image. In situations where an image is very large
and/or requires a lot of processing, buffering the image can result in a significant reduction in
processing time.

Colored
TheColored class is used to set the colour of aDrawable object.

Ellipse
TheEllipse class extendsjava.awt.geom.Ellipse2D.Double. An ellipse is defined in terms
of its bounding box.

Type Description

AddArea Performs an add operation on anArea

object.

SubtractArea Performs a subtract operation on anArea

object.

IntersectArea Performs an intersect operation on anArea

object.

XOR Performs an exclusive or operation on an
Area object.

Appendix B: Drawable Objects
Figure

JACK Sim Manual
Release5.5

76 1-Sept-10
Copyright © 2012, Agent Oriented Software Pty. Ltd.

Table B-4: Initialisation attributes for anEllipse object

Figure
TheFigure class defines an aggregation ofDrawable objects, thus allowing the grouping of
multiple drawable objects into a single drawable object.Figure implementsDrawable, and so
Figure objects can be incorporated into aFigure object.

Line
TheLine class extendsjava.awt.geom.Line2D.Double. It represents a line segment in (x,y)
coordinate space.

Table B-5: Initialisation attributes for aLine object

Field Type Description

x double The x coordinate of the upper left corner of
the bounding box for the ellipse.

y double The y coordinate of the upper left corner of
the bounding box for the ellipse.

width double The width of the bounding box for the
ellipse.

height double The height of the bounding box for the
ellipse.

filled boolean Specifies whether the interior of the ellipse
is to be filled. The default is false.

Field Type Description

x1 double Thex coordinateof thestartingpoint for the
line segment.

y1 double They coordinateof thestartingpoint for the
line segment.

x2 double The x coordinate of the finishing point for
the line segment.

y2 double The y coordinate of the finishing point for
the line segment.

Appendix B: Drawable Objects
Point

JACK Sim Manual
Release 5.5
1-Sept-10 77
Copyright © 2012, Agent Oriented Software Pty. Ltd.

Point
ThePoint class extendsjava.awt.geom.Point2D.Double. It defines a point representing a
location in (x,y) coordinate space.

Table B-6: Initialisation attributes for aPoint object

Polygon
ThePolygon class draws a path alongPoint objects.

Table B-7: Initialisation attributes for aPolygon object

Field Type Description

x double The x coordinate of the point.

y double The y coordinate of the point.

Field Type Description

points aggregation ThePoint objects that define the polygon.

closed boolean Specifies whether a line is to be drawn from
the last point to the first point.

filled boolean Specifieswhethertheinteriorof thepolygon
is to be filled. The default is false.

Appendix B: Drawable Objects
Rectangle

JACK Sim Manual
Release5.5

78 1-Sept-10
Copyright © 2012, Agent Oriented Software Pty. Ltd.

Rectangle
TheRectangle class extendsjava.awt.geom.Rectangle2D.Double. A rectangle is defined in
terms of the location of its upper left corner, its width and its height.

Table B-8: Initialisation attributes for aRectangle object

RoundRectangle
TheRoundRectangle class extendsjava.awt.geom.RoundRectangle2D.Double. A round
rectangle is defined in terms of its bounding box and an arc specification for the corners.

Table B-9: Initialisation attributes for aRoundRectangle object

Field Type Description

x double The x coordinate of the upper left corner of
the rectangle.

y double The y coordinate of the upper left corner of
the rectangle.

width double The width of the rectangle.

height double The height of the rectangle.

filled boolean Specifies whether the interior of the
rectangle is to be filled. The default is false.

Field Type Description

x double The x coordinate of the upper left corner of
the bounding box for the rectangle.

y double The y coordinate of the upper left corner of
the bounding box for the rectangle.

width double The width of the bounding box for the
rectangle.

height double The height of the bounding box for the
rectangle.

arcwidth double The width of the arc that is to be used to
form the corners.

archeight double The width of the arc that is to be used to
form the corners.

filled boolean Specifies whether the interior of the
rectangle is to be filled. The default is false.

Appendix B: Drawable Objects
TextLine

JACK Sim Manual
Release 5.5
1-Sept-10 79
Copyright © 2012, Agent Oriented Software Pty. Ltd.

TextLine
TheTextLine class is used to draw a line of text.

Table B-10: Initialisation attributes for aTextLine object

Font
TheFont class specifies details of theFont that is to be used when aTextLine is drawn.

Table B-11: Initialisation attributes for aFont object

Transform
TheTransform classprovidesdatamembersthatwill containaDrawable objectandthevalues
of any translation, rotation or scaling operations to be applied to the object during program
execution. As a transform is a drawable object, a transform object can be the drawable
member of a transform object.

Field Type Description

attribute String The text to be displayed.

string String The text to be displayed ifattribute is
null.

x double The x coordinate of the start of the text line.

y double The y coordinate of the start of the text line.

font Font TheFont class to use for the drawing of the
text line.

real_font java.awt.Font TheJava font classto usefor thedrawing of
the text line.

Field Type Description

name String The name of the font to be used.

style int The style of the font.

size int The size of the font.

Appendix B: Drawable Objects
TextLine

JACK Sim Manual
Release5.5

80 1-Sept-10
Copyright © 2012, Agent Oriented Software Pty. Ltd.

Table B-12: Initialisation attributes for a Transform object

Field Type Description

drawable class The contained Drawable object.

label String The name of the Transform object (if it is
nested).

x double The x coordinate of the Drawable object.

y double The y coordinate of the Drawable object.

theta double The rotation to be applied to the Drawable

object.

scale double The scaling factor to be applied to the
Drawable object.

References

JACK Sim Manual
Release 5.5
1-Sept-10 81
Copyright © 2012, Agent Oriented Software Pty. Ltd.

References
Jarvis J., Fletcher, M., Howden, N., Ronnquist R. and Lucas, A., Human Variability in
Computer Generated Forces – Application of a Cognitive Architecture for Intelligent Agents.
In Proceedings of SimTecT 2005, Melbourne, 2005.

Jarvis J., Ronnquist R., McFarlane D. and Jain L., A Team-Based Holonic Approach to
Robotic Assembly Cell Control. Journal of Computer and Network Applications, in press

Kreutzer W., System Simulation Programming Styles and Languages. Addison Wesley, 1986.

References

JACK Sim Manual
Release5.5

82 1-Sept-10
Copyright © 2012, Agent Oriented Software Pty. Ltd.

JACK Sim Manual
Release 5.5
1-Sept-10 83
Copyright © 2012, Agent Oriented Software Pty. Ltd.

Index

A
agent initialisation objects 24
agent life cycle 9

phases 10
AgentInit class 24

attributes 24
animation 21
aos.jack.Kernel.createAgent() 24
aos/jack/sim/standard.def 23

B
BDI world view 7

C
clocks 7
ConfigurationBase class 33
createAgent method 24

D
dictionary 22

F
Folder object 23

attributes 23

G
global data initialisation 33

I
include object 22

attributes 22
infrastructure agent initialisation 25
infrastructure agents 21
initialise(Loader loader) method 24

J
JACK Agent Language 22
JACK Intelligent Agents 7
JACK Sim 8, 9
JACK Sim Loader 22
JACK Teams 7

JACOB 9
JACOB object modelling language 22

L
Loader 22
Loader class 11

M
MonitorInit object 32

attribute 32
multiple processes 15
multi-process configuration 15

R
registration 21, 22, 40
repeatability 8, 9
RunTimeControl event 40, 41

mode 41
RuntimeControl event 10

mode 10

S
scenario definition file 11, 13, 21, 22

agent initialisation 24
entry groupings 23
Teams 23

scenario definitions 22
scenario inclusion 22
ScreenUpdaterInit object 57

attributes 57
simulation architecture 17
simulation models 17

behviour 17
embodiment 17
environment 18
equipment 18

simulation time 27
default format 28

simulation world views 7
SimulationTiming capability 9, 40
standard simulation definitions file 23

JACK Sim Manual
Release5.5

84 1-Sept-10
Copyright © 2012, Agent Oriented Software Pty. Ltd.

standard time manager 23
standard.def 23

T
Teams 23
time management 7, 21
time management infrastructure 9
TimeConsoleInit object 29

attributes 30
TimeControl event 40
TimeDispatcher agent 9, 21, 27
TimeDispatcherInit object 27

attributes 27
TimeInit object 27

attributes 27
TimeManaged interface 9, 21, 40
TimeRelayInit object 21, 28

attribute 28
TimeSource agent 9, 21, 25
TimeSourceInit object 25

attributes 25
TimeSyncManaged interface 9, 11, 21

U
Updater agent 57

V
visualisation 21
VisualsControl view 58

	1 Introduction
	2 Overview
	2.1 Example 1

	3 A reference model
	4 Basic application development
	4.1 Infrastructure agents
	4.1.1 Time management
	4.1.1.1 TimeSource
	4.1.1.2 TimeDispatcher

	4.2 User developed agents and classes
	4.3 Scenario definitions
	4.3.1 Dictionary and scenario inclusion
	4.3.2 Entry grouping
	4.3.3 Agent Initialisation
	4.3.4 Infrastructure agent initialisation
	4.3.4.1 TimeSourceInit
	4.3.4.2 TimeDispatcherInit

	4.3.5 Infrastructure object initialisation
	4.3.5.1 TimeInit
	4.3.5.2 TimeRelayInit
	4.3.5.3 TimeConsoleInit
	4.3.5.4 SimAgent
	4.3.5.5 MonitorInit

	4.3.6 Global data initialisation

	4.4 Creating Agents Programatically (On The Fly)
	4.4.1 Programatically Created Agents in a Multiple Iteration Scenario

	4.5 Early Termination of the Simulation Run
	4.6 Randomisation of Simulation Runs and Repeatability

	5 Agent behaviours
	5.1 Modelling actions with JACK
	5.2 Behaviour execution
	5.3 Example 2
	5.3.1 Description
	5.3.2 Architecture
	5.3.3 The virtual cell

	6 Visualisation
	6.1 Introduction
	6.2 The graphics model
	6.3 The software model
	6.4 Basic Visualisation Model Development
	6.4.1 The appearance model
	6.4.1.1 The visualisation frame
	6.4.1.2 Appearance object definition

	6.4.2 Example 3
	6.4.3 The updating model
	6.4.3.1 The Updater agent
	6.4.3.2 The VisualsControl view

	6.4.4 Example 4
	6.4.4.1 Design Overview
	6.4.4.2 The embodiment model
	6.4.4.3 The visualisation model
	6.4.4.4 The behaviour model
	6.4.4.5 Scenario definition and execution

	Appendix A: Example 1
	Appendix B: Drawable Objects
	Arc
	Area
	CachedImage
	Colored
	Ellipse
	Figure
	Line
	Point
	Polygon
	Rectangle
	RoundRectangle
	TextLine
	Font
	Transform

	References
	Index

