
Teams Manual

JACK Intelligent Agents®
Teams Manual

TeamsManual
Release5.5

2 10-June-05
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

Copyright
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

All rights reserved.

No part of this document may be reproduced, transferred, sold, or otherwise disposed of,
without the written permission of the owner.

US Government Restricted Rights
The JACK™ Modules and relevant Software Material have been developed entirely at private
expense and are accordingly provided with RESTRICTED RIGHTS. Use, duplication, or
disclosure by Government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of
DFARS 252.227-7013 or subparagraph (c)(1) and (2) of the Commercial Computer Software
Restricted Rights and 48 CFR 52.2270-19, as applicable.

Trademarks
All the trademarks mentioned in this document are the property of their respective owners.

Teams Manual
Release 5.5
10-June-05 3
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

Publisher Information

If you find any errors in this document or would like to suggest improvements, please let us
know.

Agent Oriented Software Pty. Ltd.

P.O. Box 639,

Carlton South, Victoria, 3053

AUSTRALIA

Phone: +61 3 9349 5055

Fax: +61 3 9349 5088

Web: http://www.agent-software.com

TeamsManual
Release5.5

4 10-June-05
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

The JACK™ documentation set includes the following manuals and practicals:

Document Description

Agent Manual Describes the JACK programming language and
infrastructure.JACK canbeusedto developapplications
involving BDI agents.

Teams Manual Describes the JACK Teams programming language
extensions. JACK Teams can be used to develop
applications that involve coordinated activity among
teams of agents.

Development Environment

Manual

Describes how to use the JACK Development
Environment (JDE). The JDE is a graphical
development environment that can be used to develop
JACK agent and team-based applications.

JACOB Manual Describes how to use JACOB. JACOB is an object
modelling language that can be used for inter-process
transport and object initialisation.

WebBot Manual Describes how to use the JACK WebBot to develop
JACK enabled web applications.

Design Tool Manual Describes how to use the Design Tool to design and
build an application within the JACK Development
Environment.

Graphical Plan Editor Manual Describes how to use the Graphical Plan Editor to
develop graphical plans within the JACK Development
Environment.

JACK Sim Manual Describes how to use the JACK Sim framework for
building and running repeatable agent simulations.

Tracing and Logging Manual Describes the tracing and logging tools available with
JACK.

Agent Practicals A set of practicals designed to introduce the basic
concepts involved in JACK programming.

Teams Practicals A set of practicals designed to introduce the basic
concepts involved in Teams programming.

Teams Manual
Release 5.5
10-June-05 5
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

Table of Contents
1 Overview . 9
1.1 Background .9
1.2 Team-Oriented Programming .9
1.3 Team-Oriented Concepts .10
1.3.1 Team. .10
1.3.2 Role .10
1.3.3 Teamdata .10
1.3.4 Teamplan .11
1.4 The Team Framework. .11
1.4.1 Structure. .11

Teams and Roles .11
Role Definition .12
Team Formation .13
Task Teams. .14

1.4.2 Behaviour .14
@teamAchieve . 15

1.4.3 Belief Propagation .15
1.5 Example: Martian Visitors .15

2 Teams. 27
2.1 Team Definition. .27
2.2 Team Declarations .28

#requires role RoleType reference(min,max) 28

#performs role RoleType . 28

#synthesizes teamdata DataType ref (r1.s1, r2.s2, ...) 29

#inherits teamdata DataType ref (r1.s1, r2.s2, ...) 29

2.3 Team Management. .30
2.3.1 Team Construction .30
2.3.2 The Team Manager .30
2.3.3 Initial Team Formation .31
2.3.4 Dynamic Team Formation .32
2.3.5 Initialising Teams .33
2.4 The Team Base Class .34

3 Roles . 37
3.1 Role Definition .37
3.2 Role Declarations .38

#handles event EventType reference 39

#posts event EventType reference 39

#synthesizes teamdata DataType reference 39

TeamsManual
Release5.5

6 10-June-05
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

#inherits teamdata DataType reference 40

#container method . 40

#container member . 40

3.3 The Role Base Class .40
3.4 The RoleContainer Base Class .42
3.5 The Generated RoleType Class .44
3.6 The Generated RoleTypeContainer Class .44

4 TeamPlans . 45
4.1 TeamPlan Definition .45
4.2 TeamPlan Declarations .47

#requires role RoleType rolecontainer_ref as role_ref. . . . 47

#requires role RoleType rolecontainer_ref as role_ref (size) 47

#uses role RoleType rolecontainer_ref as role_ref. 48

#uses role RoleType rolecontainer_ref as role_ref (size) . . 48

#uses role RoleType rolecontainer_ref. 48

#applicable_for role RoleType roleinstance_ref 49

#applicable_from role RoleType roleinstance_ref. 49

4.3 Task Team Establishment. .49
4.4 TeamPlan Members and Methods .50
4.5 Team Goal Handling. .50
4.6 TeamPlan @-statements .51
4.6.1 The @teamAchieve Statement. .51

Getting Return Values Through @teamAchieve 53

Exception Propagation for @teamAchieve .53

5 Team Belief Connections . 55
5.1 Source Data Definition .55
5.2 Target Data Definition. .57
5.3 Belief Connection Dynamics .59
5.4 Synthesizing Belief Connection Definition .60
5.4.1 Role Declarations .61
5.4.2 Source Declarations .61
5.4.3 Target Declarations .61
5.4.4 An Example .62
5.5 Inheriting Belief Connection Definition .66
5.5.1 Role Declarations .67
5.5.2 Source Declarations .67
5.5.3 Target Declarations .67
5.5.4 An Example .68

6 Team Formation . 71
6.1 RoleType Instance State Management .71

Teams Manual
Release 5.5
10-June-05 7
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

6.2 Role Handling Events and Messages .73

Index. 77

TeamsManual
Release5.5

8 10-June-05
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

Overview

Teams Manual
Release 5.5
10-June-05 9
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

1 Overview
1.1 Backgr ound
JACK Teams™ (Teams) isan extension to JACK Intelligent Agents that provides a team-
oriented modelling framework. As Teams builds upon the concepts of JACK, this document
assumesthatthereaderis familiarwith JACK IntelligentAgents. It alsoassumesthattheuser
is familiar with the use of JACOB for initialising data.

The most immediate difference between Teams and JACK is the introduction of theteam
reasoning entity. This entity encapsulatesteam behaviour in a Teams application in the same
way that the Agent entity encapsulates agent behaviour in a JACK application.

Like a JACK agent, a team is also an individual reasoning entity with its own beliefs, desires
andintentions (BDI). It includes declarations regarding which roles the team itself may
perform for other teams and which roles it offers to other sub-teams to fill. In addition to the
normal knowledge-building and practical reasoning in JACK agents,team reasoning is also
concerned with the coordination of sub-teams.

As with JACK, behaviour is specified in the form of plans. Teams introduces theteamplan
construct for the specification of team-oriented behaviour. Because Teams is an extension of
JACK, all the core functionality of JACK is available within a team. In particular, a team can
use JACK plans as well as teamplans.

1.2 Team-Oriented Pr ogramming
The Teams extension provides ateam-oriented modelling framework. Team-oriented
programming is an intuitive paradigm for engineering group action in multi-agent systems.
Team-oriented programming is conceptually powerful, as it allows the software engineer to
specify:

• What a team is capable of doing;

• Which components are needed to form a particular type of team;

• Whether a team is willing to take on a particular role within another team;

• Coordinated behaviour among the team members; and

• Team knowledge.

In short, the concept of team-oriented programming serves to encapsulate coordination
activity. It extendstheagentconceptby associatingtaskswith roles. However, theflexibility
of multi-agent systems is retained. Although team members act in coordination by being
given goals according to the specification, they are individually responsible for determining
how to satisfy those goals.

Overview

TeamsManual
Release5.5

10 10-June-05
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

A team'sstructurecancontainteamsin any combinationandin any number. Thehierarchy is
not restricted to a two-level design or in fact to a hierarchy. Layers of teams can be
encapsulated within other levels, and the structure can be added to or altered at any time
during the process. In other words, teams can be created in many layers, where each layer is
encapsulated within the next layer, and so on.

Both conceptually and explicitly in a model, teams entities exist independent of their team
members. For instance, teams can reason about how they belong as members in enclosing
teams, or about which teams they include assub-teams. The teams concept encapsulates
coordination activity, and extends the agent concept by associating tasks with roles.

1.3 Team-Oriented Concepts
TheTeams extension introduces the new concepts ofteam, role, teamdata andteamplan. The
TeamsModel includesall theprogrammingelementsof theJACK BDI AgentModel,but with
anextendedsemanticsfor someelements.AgentscompiledundertheJACK BDI Agentmodel
and teams compiled under the Teams Model can communicate as peers. However, problems
may arise if agents compiled under the JACK BDI Agent Model are used as elements of a
team.

1.3.1 Team
In Teams, ateam is a distinct reasoning entity which is characterised by the roles it performs
and/or the roles it requires others to perform. Theformation of a given team is achieved by
attachingsub-teams capable of performing the roles required by the team. Note that asub-
team may be attached to more than onerole in a containing team and as a sub-team in many
teams.As thesub-teamsof thegiventeammayrequirerolesto beperformedon their behalf,
amulti-level hierarchy (or perhaps a more complex structure) may result.

The team is automatically provided with objects to hold the actual role/sub-team selections.
These objects are known asrole containers.

1.3.2 Role
A role in Teams is a distinct entity which contains a description of the facilities that the
participants in a team/sub-team relationship must provide. A role defines a relationship
between teams and sub-teams. Therole relationship is expressed in terms of thegoal and
belief exchanges implied by the relationship.

1.3.3 Teamdata
Teamdata is anadditionto theJACK datamodelconceptfor changepropagationdeclarations.
Thisallowspropagationof beliefsfrom teamto sub-teamandviceversa.A teamdataelement
defines how a propagated belief is accepted by the receiving team, and incorporated into its
belief structures.

Overview

Teams Manual
Release 5.5
10-June-05 11
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

1.3.4 Teamplan
A teamplan specifies how a task is achieved in terms of one or more roles. It typically
containsstepsdeterminingwhichof thesub-teamsnominatedto performtheroleswill in fact
perform each role (a process known astask team formation). It also dictates the steps
directing each sub-team to achieve specific goals.

Teams provides additional constructs to support both activities (the establish reasoning
method and the@teamAchieve statement). The JACK @parallel statement supports non-
sequentialcoordinationof sub-teambehaviour. As teambehaviour embodiedin ateamplan is
specified in terms of roles, it is decoupled from the actual sub-team behaviour. Thus team
behaviour can be specified and understood independently of sub-team behaviour.

1.4 The Team Framework

1.4.1 Structure

1.4.1.1 Teams and Roles

A structural relationship between teams is catered for via therole concept. Arole defines the
meansof interactingbetweenacontainingteam(a role tenderer) andacontainedteam(a role
performer or role filler). The role defines which goals the role tenderer may request the role
performerto achieve,andit alsodefinesthecounter-goalsthattheroleperformermayrequire
from the role tenderer.

The team-role structure is defined by statements specifying which roles a team can perform,
and which roles must be performed by sub-teams. Thesedeclarations are specified in the
team's type definitions, where the containing team requires certain roles to be filled, and the
contained team must be able to perform certain roles.

A teamcanperformrolesfor acontainingteamandcanalsocontainsub-teamswhichperform
roles on its behalf. Thesub-teams can in turn contain sub-teams which can perform roles on
their behalf etc.

The following code segments illustrate how these team and role definitions may look.

team Company extends Team {
#performs role CompanyRole;

 // minimum of 3 PlatoonRole fillers required. No upper limit
#requires role PlatoonRole platoons(3,0);

 // exactly 1 Commander role filler required
#requires role CommandRole command(1,1);

 // 0 or more ScoutRole fillers required
#requires role ScoutRole scout(0,0);

 :
 :
 }

Overview

TeamsManual
Release5.5

12 10-June-05
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

role PlatoonRole extends Role {
#handles event Movement m;
#posts event Withdraw w;

 :
 :
 }

In the above example, role definitions forCompanyRole, CommandRole andScoutRole would
also be required.

Theteam-role declarations determine which team-team structures can be built at run time.

1.4.1.2 Role Definition

Therole definition does not contain implementation – only a description of the facilities that
thetwo participantsin therolerelationshipmustprovide. A roledefinitionhastwo parts:first,
a downwards interface that declares the events an entity must handle to take on the role, and
second, an upwards interface that declares the events the team entity requiring the role needs
to handle.

A role definition, such as thePlatoonRole definition shown above, results in two Java classes
being generated by the compiler. One is named by the givenRoleType type. The second
generated class is a specialised 'container' for instances of aRoleType called
RoleTypeContainer. The latter is referred to as arole container, as its purpose is to contain
RoleType objects. In thecaseof thePlatoonRole definitionshown above,thecompilerwould
automatically generate the two Java classesPlatoonRole andPlatoonRoleContainer.

When the declaration is made that a team requires a given role, the result is a role-defined
container to be filled by sub-teams. The#requires role RoleType reference(min,max)

statementaddsafield to theteamclassof namereference andtypeRoleTypeContainer. The
#requires role declarationallowsthespecificationof boundsfor thecontainer, whichresults
in team formation constraints.

The argumentsmin andmax in the#requires declaration specify the lower and upper bounds
for the number of performers in order for the team to be considered formed. A zero upper
bound dictates an unlimited upper bound. Note that these bounds are not enforced by the
infrastructure in order to allow dynamic attachment/detachment of sub-teams. In practice, a
role container can contain an unspecified number of role objects.

In the team definition illustrated above, the declarations state that aCompany team requires
three sub-teams able to perform thePlatoonRole role, another sub-team able to perform the
CommandRole role, and one or more sub-teams able to perform theScoutRole role.
Furthermore, theCompany team is declared to be a performer of theCompanyRole role, which
would be a role required by some other team type.

Overview

Teams Manual
Release 5.5
10-June-05 13
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

It should be noted that the declarations above define how an actual team structure may look,
but they donot identify theactualteaminstances,or whattheteamtypesarein theactualteam
structure.

1.4.1.3 Team Formation

The overall lifetime of a team has two phases. The first phase is for setting up an initialrole
obligation structure. The second phase constitutes the actual operation of the team.

At run time, teams undergo a team formation phase intended to identify the particular sub-
team instances that take on roles in a team. This first phase is initiated via a
TeamFormationEvent that is posted by the kernel when each team is constructed. By default,
theTeamFormationEvent is handled by a plan that identifies the role fillers according to an
initialisation file in JACOB format. The following is an example of an initialisation file:

 <Team :name "company 1"
 :roles (
 <Role :name "hq" :type "Command"
 :fillers (
 <Team :name "cmdgrp 8">
)
 >
 <Role :name "unit" :type "Subordinate"
 :fillers (
 <Team :name "platoon 1"
 :roles (
 <Role :name "hq" :type "Command"
 :fillers (
 <Team :name "cmdgrp 23">
)
 >
 <Role :name "unit" :type "Subordinate"
 :fillers (
 <Team :name "section 1">
 <Team :name "section 2">
 <Team :name "section 3">
)
 >
)
 >
)
 >
 ...
)
 >

TheTeamsframework is flexible at thispoint,but it includesthenotionof afully formedteam
as a team for which all necessary role performers have been identified.

The framework will allow a team instance to complete its team formation phase without
necessarily satisfying all the role filling constraints. However, the team will only be
considered formed when its role containment constraints are all filled. This is a state that a
program may query.

Overview

TeamsManual
Release5.5

14 10-June-05
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

At this stage the initial role obligation structure has been constructed. It is possible to
dynamically modify this structure during program execution. This is discussed in the chapter
on Team Formation.

1.4.1.4 Task Teams

Task teams aredynamicallyformedsub-groupswithin ateam,createdto performateamtask.
Whenchosento handleanevent,theinitial stepof a teamplanis to establishthetaskteam,by
selecting which role performers to use from within the team for the various roles needed
within the task/plan.

Task teams are not defined separately, but are contained within the teamplans defining the
teamtasks.A teamplanuses#requires and/or#uses declarationsto declaretherolesneeded
for the task team. The teamplan may also include anestablish() reasoning method that
defines how the task team is to be established for the task. This is illustrated in the code
segment below:

teamplan CompanyFormationMove extends TeamPlan {
#requires role PlatoonRole platoons as left;
#requires role PlatoonRole platoons as right;
#requires role PlatoonRole platoons as depth;
#requires role CommandRole command as hq;

#reasoning method
establish()

 {
 // code to establish the task team for the task
 }

body()
 {
 // body of the plan to perform the task
 }
 }

The establish step of a teamplan is a proper plan step, and may involve any amount of
reasoning by the team entity, as well as negotiations with the candidate sub-teams. The
outcomeis eitheracompleteassignmentof sub-teamsto therolesrequiredby theteamplan,or
aplan failure allowing the team to choose an alternative plan for handling the same event. If
there is afail() reasoning method associated with the plan, it does not get executed if the
establish() method fails.

There is a defaultestablish() method which fills the required roles uniquely at random, if
possible. However, the default establish method only assigns the#requires roles and not the
#uses roles.

1.4.2 Behaviour
Theconceptsof teamsrequiringrolesandteamsperformingrolesprovidea framework where
group behaviours and individual behaviours can be clearly separated. Group behaviour is

Overview

Teams Manual
Release 5.5
10-June-05 15
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

specified in terms of the roles that are required to achieve the desired behaviour. This
behaviour is specified independently of the actual teams performing the roles. However, the
team has access to its sub-teams through the role container, so it is able to perform reasoning
based on the actual team membership when necessary.

The team is a separate entity and has its own teamplans for the specification of team
behaviour. Within these teamplans, the@teamAchieve statement can be used to help
coordinate the behaviour of the sub-teams.

@teamAchieve

The@teamAchieve statement is used to activate a sub-team by sending an event to the sub-
team. The team that sent the@teamAchieve then waits until the event has been processed by
the sub-team.

In combination with the JACK @parallel statement, a wide range of team behaviours can be
implemented.

1.4.3 Belief Propagation
In addition to communicating via the normal message/event passing in agent-oriented
programming, Teams also provides a capability for thepropagation of team beliefs. This
propagationcanbebothfrom teamto sub-teamandfrom sub-teamto team. In thelattercase,
thecapabilityis providedwithin Teamsto combinethepropagatedsub-teambeliefswithin the
team. The use of Team beliefs in conjunction with the Team coordination statements enables
sophisticated team behaviours to be implemented.

1.5 Example: Martian Visitors
This is asimpleexampleto illustratethebasicstepsin building a teamcontainingseveralsub-
teams. In this example, a team of Martians are coming to visit Earth.

The team will be contained within a spacecraft which will travel to Earth. Each spacecraft
contains at least 3 sub-teams (Martians) capable of performing the role required to pilot the
spacecraft.It alsocontains3 Martianscapableof carryingout thedutiesperformedby abasic
crew member, and 3 capable of performing the task of spokesperson when the craft arrives at
its destination.

In reality, only one Martian allocated to each of these roles is required when the spacecraft
performs the task of visiting Earth. However, 3 Martians are specified per role to ensure that
there are backup teams, in case any Martian becomes unavailable.

In thisexample,thespacecraftcontains3 Martiansub-teams.Eachof theMartiansub-teamsis
capable of performing each of the 3 roles in spacecraft team's role obligation structure. This
meansthatin practiceaMartiansub-teamcouldberesponsiblefor morethanonerolein atask

Overview

TeamsManual
Release5.5

16 10-June-05
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

team. However, in this example, the establish method ensures that each Martian sub-team is
only allocated to one role in the task team.

Overview

Teams Manual
Release 5.5
10-June-05 17
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

The steps involved in building this application are as follows:

Step 1: Create the two team types

Spacecraft.team

 public team Spacecraft extends Team {

#requires role Spokesperson sp(3,3);
#requires role Pilot pi(3,3);
#requires role Crew cr(3,3);

#uses plan Visit;

#handles event PerformVisit;

 public Spacecraft(String name)
 {
 super(name);
 }

#posts event PerformVisit pfv;
 public void visit(String planet)
 {

postWhenFormed(pfv.visitPlanet(planet));
 }
 }

Martian.team

 public team Martian extends Team {

#performs role Spokesperson;
#performs role Pilot;
#performs role Crew;

#uses plan SpeakGreeting;
#uses plan Travel;
#uses plan WatchMonitor;

 public Martian(String name)
 {
 super(name);
 }
 }

The team definitions are very similar to the definitions for a JACK agent, except that the
keywordteam is used, and theTeam class is extended. Most of the declarations contained in
these team definitions should already be familiar from previous JACK agent programming.

Thenew declarationsillustratedhereare#performs role and#requires role. As previously
discussed, this specifies that a spacecraft must contain 3 sub-teams capable of performing the
role of Spokesperson, 3 sub-teams capable of performing the role ofPilot, and 3 sub-teams
capableof performingtheroleof Crew. Thesecouldbe3 entirelydifferentsub-teamsfor each
of the roles or there could be overlap. In this example, there are only 3 Martians within the
spacecraft team and each is capable of performing all 3 roles.

Overview

TeamsManual
Release5.5

18 10-June-05
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

The Spacecraft team definition also includes avisit method which posts aPerformVisit
event using thepostWhenFormed method. ThepostWhenFormed method puts the event in a
special queue so that it gets posted asynchronously when the team has completed its team
formation phase and built the initial role obligation structure.

TheMartian teamcontains#performs role declarationsto indicatethatteamsof this typeare
capable of performing the rolesSpokesperson, Pilot andCrew.

Step 2: Create the main Java program and the initialisation file

Step 2.1: Create the main Java program

The main Java program must construct instances of the spacecraft and Martian teams. These
will be the instances attached to the specific roles in the initialisation file. In the main
program, the sub-teams must be constructed before the containing team, so that they already
exist when the containing team attempts to build its role obligation structure.

public class AlienProgram {

 public static void main(String [] args)
 {
 new Martian("Dennis");
 new Martian("Ralph");
 new Martian("Jacquie");
 Spacecraft spacecraft = new Spacecraft("Enterprise");
 spacecraft.visit("Earth");
 }
}

Overview

Teams Manual
Release 5.5
10-June-05 19
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

Step 2.2: Create the initialisation file

In thisexample,it is assumedthatthis initialisationfile is calledscenario.def. It containsthe
following:

 <Team :name "Enterprise"
 :roles (
 <Role :type "Spokesperson" :name "sp"
 :fillers (
 <Team :name "Dennis@%portal" >
 <Team :name "Ralph@%portal" >
 <Team :name "Jacquie@%portal" >
)
 >
 <Role :type "Pilot" :name "pi"
 :fillers (
 <Team :name "Dennis@%portal" >
 <Team :name "Ralph@%portal" >
 <Team :name "Jacquie@%portal" >
)
 >
 <Role :type "Crew" :name "cr"
 :fillers (
 <Team :name "Dennis@%portal" >
 <Team :name "Ralph@%portal" >
 <Team :name "Jacquie@%portal" >
)
 >
)
 >

Notetherelationshipbetweenthenamesof instancesandrolesin themainprogramandin the
team definitions in the initialisation file. Also note that the team names are in the form
name@%portal andthatif yourapplicationis organisedinto packages,thenthepackagedetails
must be included in the type specifications.

Overview

TeamsManual
Release5.5

20 10-June-05
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

Step 3: Create the role definitions files

There are 3 role definition files required in this example. They are:

Crew.role

 public role Crew extends Role
 {

#handles event DoWatch wm;
 }

Spokesperson.role

 public role Spokesperson extends Role
 {

#handles event DoGreeting dg;
 }

Pilot.role

 public role Pilot extends Role
 {

#handles event PilotCraft st;
 }

In all threecases,theserolesindicatethedownwardinterfacebetweenateamthatcanperform
thatrole and a team that requires a sub-team to perform that role. This indicates the events
that will be posted from the containing Spacecraft team to the Martian sub-team capable of
performingtherole. ThismeansthattheMartiansub-teammusthaveat leastoneplancapable
of handling each specified event.

Roledefinitionscanalsoincludeadditionaldeclarationswhichwill bediscussedin thechapter
on Roles.

Overview

Teams Manual
Release 5.5
10-June-05 21
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

Step 4: Create the events

DoGreeting.event

event DoGreeting extends MessageEvent
 {
 String planet;

#posted as
 speakGreeting(String p)
 {
 planet = p;
 }
 }

DoWatch.event

event DoWatch extends MessageEvent
 {

#posted as
 watch()
 {
 }
 }

PerformVisit.event

event PerformVisit extends MessageEvent
 {
 String planet;

#posted as
 visitPlanet(String p)
 {
 planet = p;
 }
 }

PilotCraft.event

event PilotCraft extends MessageEvent
 {
 String planet;

#posted as
 start(String p)
 {
 planet = p;
 }
 }

Overview

TeamsManual
Release5.5

22 10-June-05
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

Step 5: Create the plans used by the Martian sub-teams

WatchMonitor.plan

plan WatchMonitor extends Plan
 {

#handles event DoWatch dw;

body()
 {
 System.out.println(getAgent().name()+" on watch");
 }
 }

SpeakGreeting.plan

plan SpeakGreeting extends Plan
 {

#handles event DoGreeting dg;

body()
 {
 System.out.println("Hello "+dg.planet);
 System.out.println("I am "+getAgent().name());
 }
 }

Travel.plan

plan Travel extends Plan
 {

#handles event PilotCraft pc;

body()
 {
 System.out.println(getAgent().name()+" flying craft to "+
 pc.planet);

@waitFor(elapsed(10.0));
 System.out.println(getAgent().name()+
 " arriving at "+pc.planet);
 }
 }

The 3 plans required are implemented as agent plans. This is because there are no sub-teams
within the Martian teams, so there is no requirement to establish a task team to perform the
task or for the new plan statements which enable coordinated activity between the sub-teams.
Teamplans are only required when the plan requires sub-teams to perform roles on its behalf.

Overview

Teams Manual
Release 5.5
10-June-05 23
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

Step 6: Create the plan used by the spacecraft team

 import java.util.Enumeration;
 import java util.Vector;

teamplan Visit extends TeamPlan
 {

#handles event PerformVisit pfv;
#uses role Spokesperson sp as speaker;
#uses role Pilot pi as pilot;
#uses role Crew cr as crew;

#uses interface Team team;

 /**
 * establish the task team.
 */

#reasoning method
establish()

 {
 Vector busy = new Vector();
 crew = (Crew) pickRole(busy,cr);
 crew != null;
 pilot = (Pilot) pickRole(busy,pi);
 pilot != null;
 speaker = (Spokesperson) pickRole(busy,sp);
 speaker != null;
 }

 Role pickRole(Vector busy, RoleContainer rc)
 {
 for (Enumeration e = rc.tags(); e.hasMoreElements();)
 {
 Role r = rc.find((String) e.nextElement());
 if (r.state == Role.ACTIVE &&
 !busy.contains(r.actor))
 {
 busy.add(r.actor);
 return r;
 }
 }
 return null;
 }

body()
 {
 System.out.println("Team established for craft: "
 +team.name());
 System.out.println(" crew = " + crew.actor);
 System.out.println(" pilot = " + pilot.actor);
 System.out.println(" spokesperson = " +
 speaker.actor);

@parallel(ParallelFSM.ALL,false,null)
 {

@teamAchieve(crew, crew.wm.watch());
@teamAchieve(pilot, pilot.st.start(pfv.planet));

 };

Overview

TeamsManual
Release5.5

24 10-June-05
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

@teamAchieve(speaker,
 speaker.dg.speakGreeting(pfv.planet));
 }
 }

The spacecraft team hasRoleContainer members (one per role that it has declared that it
requires). In the teamplan the first task is to iterate through the appropriate role containers to
select the particular role object to perform the required roles for a particular instantiation of
the plan. This forms the task team for the plan. The role object selected will allow access to
both the containing team and sub-team involved in the relationship.

The#uses role declarations indicate that within this plan three sub-teams are required – one
to fill theroleof Spokesperson, oneto fill theroleof Pilot, andoneto fill theroleof Crew. In
this example, iteration to make a selection occurs through the respective role containers.

As this plan requires that each sub-team only be responsible for one particular role, a "busy"
vectoris usedto keeptrackof whichsub-teamsarealreadyallocatedto roles.Eachinstanceof
a role has details about the containing team and the sub-team. The role'sactor member
contains the name of the instance of the sub-team that is capable of performing the role. The
selection of sub-teams to perform specific roles for this task occurs in theteamplan's
establish() method.

TheRoleContainer baseclasscontainsamethod(tags()) whichreturnsits currentroleobject
tags as ajava.util.Enumeration object. The role object tags relate to the role fillers or role
performersandcanbepassedinto therolecontainer'sfind() methodto returntheRole object
that corresponds to the tag.

In thisexample,theestablish() reasoningmethodmakesuseof amethodcalledpickRole().
The method begins by iterating through the required role container and then performing a
find() to returntheactualroleobjectrelatedto thetag. Whenselectingasuitablesub-team,it
is a case of selecting the first role object which has a value ofRole.ACTIVE, and which does
not relate to a sub-team that has already been allocated (i.e. not already in the busy vector).

The test forRole.ACTIVE is not strictly necessary in this application as we do not have any
dynamic attachment/detachment of teams in the role obligation structure. In this application,
the formation of the role obligation structure will have been completed before the event is
posted to activate the plan.

Overview

Teams Manual
Release 5.5
10-June-05 25
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

Duringtheattachment/detachmentof sub-teamsto theroleobligationstructure,theroleobject
can be in different states. The role object exists and is added to the container before the
attachment handshaking between team and sub-team has completed; however, the sub-team
may still refuse the attachment. Similarly, the role object exists, but is not active when the
teamhasinitiatedadetachmentprocess,becausethesub-teammaystill beperformingtasksin
therole.Thedetachmentcannotgoaheaduntil thesub-teamhasfinishedall of thetasksin the
role. Therole object is marked as active when the role attachment procedure has completed,
and before the role detachment procedure has started. If dynamic attachment/detachment is
occurring in an application, it is not sufficient only to look at the presence of a role object to
know whether or not the team it refers to is performing in that role, one should also test
whether or not the role object isACTIVE.

If the task team is successfully established, the plan body will be executed. This plan body
illustrates how the@teamAchieve statement can be used in combination with the@parallel

statementto coordinatethebehaviour of thesub-teams.The@parallel statementoperateslike
a control structure in which the body statements are executed as parallel tasks, while the
@parallel statementitself is postponeduntil its terminationconditionholds. In thisexample,
the arguments used in the@parallel statement are as follows:

mode: ParallelFSM.ALL

This means the@parallel statement will succeed after all the branches have succeeded,
but fail immediately if any branch fails. All ongoing sub-statements will be notified on
failure.

termination condition: false

Thismeansthattheabortmechanismis turnedoff andnotused(i.e. thereis notermination
condition). This is discussed in more detail in theAgent Manual.

notification: null

Thisargumentis for auser-definedJavaexceptionobject. If it is notnull, theexceptionis
thrown to active branches that are executing in parallel if they are required to terminate
(i.e. if theterminationconditionis encountered).If thereis no terminationcondition,asin
this example, this can be null.

The@teamAchieve declarationis usedto activateasub-team(rolefiller) by postinganeventto
the sub-team. The team that posted the event using@teamAchieve waits until the event has
been processed.

In the Martian Visit example, the first argument is theRoleType instance obtained from the
RoleTypeContainer instance.Thesecondargumentis anevent instancebeingsentto thesub-
team. In the example, the events are constructed using posting methods from event factories
accessed via the sub-teamRoleType instances.

Overview

TeamsManual
Release5.5

26 10-June-05
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

Step 7: Compile and run the program

Step 7.1: Compile the program

To compile the example:

 java aos.main.JackBuild -r -map=team

Step 7.2: Run the program

To run the program:

Theteamstructurecanbespecifiedby usingaJavapropertyto specifyaninitialisationfile that
contains details of the teams. The most straightforward way of doing this is by associating a
file to be read in with theTeam.Structure property via the-D flag. In this example, the
initialisation file was shown earlier. Assuming that the file is calledscenario.def, the
program runs as follows:

 java -DTeam.Structure=scenario.def AlienProgram

The output from the example is:

 Team established for craft: Enterprise@%portal
 crew = Ralph@%portal
 pilot = Dennis@%portal
 spokesperson = Jacquie@%portal
 Ralph@%portal on watch
 Dennis@%portal flying craft to Earth
 Dennis@%portal arriving at Earth
 Hello Earth. I am Jacquie@%portal

Teams

Teams Manual
Release 5.5
10-June-05 27
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

2 Teams
In Teams, a team is a distinct BDI reasoning entity which is characterised by the roles it
performs and the roles it requires others to perform. The formation of a given team is
achieved by attaching sub-teams (either statically or dynamically) capable of performing the
roles required by the team. Note that a sub-team may be attached to more than one role in a
containing team. As the sub-teams of the given team may require roles to be performed on
their behalf, a multi-level hierarchy (or perhaps a more complex structure) may result. The
team is automatically provided with objects to hold the actual sub-team selections. These
objects are known asrole containers.

2.1 Team Definition
Team definitions take the form shown below:

team TeamType extends Team
 {
 // team declarations and definitions
 // all JACK agent declarations can also be used

 // constructor
 public TeamType(String name)
 {
 super(name);
 }
 }

Each component of this definition is explained in the following table:

Table 2-1: Components of a Team definition

Syntax Term Description

team A Teams Language keyword used to introduce a Team
definition.

TeamType The name of your derivedTeam class

extends Team Thispartof thestatementplaysthesameroleasin Java
– it indicatesthattherolebeingdefinedinheritsfrom a
Team's base class calledTeam. TheRole base class
implements all the underlying methods that provide a
team's core functionality.

Teams

TeamsManual
Release5.5

28 10-June-05
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

2.2 Team Declarations
Theteamtypedefinitionhasthesamerangeof declarationsavailableasanagentdefinition.In
addition, it has declarations that are specific to the team concept. These are the declarations
thatrelateto rolesrequired,rolesperformedandbeliefpropagationin theteamstructure.The
team declarations are described in the following sub-sections.

#requires role RoleType reference(min,max)

The statement of the form#requires role RoleType reference(min,max) is a declaration
that teams of the type being defined require a sub-team or sub-teams in the given role,
RoleType.

Technically, the#requires role statement adds a field to the team class of namereference

and typeRoleTypeContainer. The arguments specify the upper and lower bounds for the
number of role performers. A value of zero formax specifies the default upper bound. A zero
upperboundis anunlimitedupperbound.A zerofor theminimumvaluespecifiesazerolower
bound.

TheRoleTypeContainer type is created automatically by the compiler when there is a role
defined of typeRoleType.

A #requires role statement:

• declares a local reference to the role container which will contain the instances of the role
objects for sub-teams attached to the team in this particular capacity;

• is an implicit declaration that the team performs thepeer role; that is, it can and must
handle the events posted within the role.

#performs role RoleType

This statement is a declaration that the team of the type being defined is able to perform a
given role,RoleType.

A #performs role statement:

• adds to the team all event handling and posting declarations specified in the role type
definition;

• implicitly requires plans to handle the events declared as handled in the role type;

• implicitly allows plans to post the events declared as posted in the role type.

Teams

Teams Manual
Release 5.5
10-June-05 29
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

#synthesizes teamdata DataType ref (r1.s1, r2.s2, ...)

This is adeclarationthatcanbefoundwithin ateamthatis arole tenderer. A roletendererwill
have#requires role declarations specifying that it requires sub-teams to perform particular
roles on its behalf.

The declaration has the form

#synthesizes teamdata DataType ref(r1.s1, r2.s2, ...)

where

• DataType is the type of theteamdata. This is described in the chapter onTeam Belief
Connections.

• ref is a reference name.

• ri is the required role container reference name.

• si is the reference name of the data used in the corresponding#synthesizes teamdata

declaration in theRole definition.

Note that one or more belief connection sources are required. Belief propagation is described
further in the chapter onTeam Belief Connections.

#inherits teamdata DataType ref (r1.s1, r2.s2, ...)

This is adeclarationthatcanbefoundwithin ateamthatis arole performer. A roleperformer
will have#performs role declaration(s) specifying that it can perform a particular role on
behalf of a role tenderer.

The declaration has the form

#inherits teamdata DataType ref(r1.s1, r2.s2, ...)

where

• DataType is the type of theteamdata. This is described in the chapter onTeam Belief
Connections.

• ref is a reference name.

• ri is the role type performed.

• si is the reference name of the data used in the corresponding#inherits teamdata

declaration in theRole definition.

Note that one or more belief connection sources are required. Belief propagation is described
further in the chapter onTeam Belief Connections.

Teams

TeamsManual
Release5.5

30 10-June-05
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

2.3 Team Management

2.3.1 Team Construction
ThebaseclassTeam hasaconstructortakingaString argumentthatrepresentsthenameof the
teamto beconstructed.A teamdefinitionmustthusincludeaconstructorthatinvokesthebase
class (Team) constructor with the team name provided. As part of the construction, the kernel
posts aTeamFormationEvent for establishing the team structure (also known as the role
obligation structure), and aTeamStartEvent to trigger application level initialisation.

TheTeamFormationEvent extendsMessageEvent, but uses BDI behaviour with the following
BDI behaviour attributes set:

Table 2-2: The BDI behaviour attributes for theTeamFormationEvent

Thereis adefaultplanfor theTeamFormationEvent. Thisplanusesthedefault teammanager,
described in the next section.

2.3.2 The Team Manager
Theteammanageris responsiblefor coordinatingtheassemblyof theteamstructure.Thiscan
be done using team initialisation files, or in the code.

Behaviour Attribute Setting Effect

Recover repost The event is reposted on plan failure, so that
anotherapplicableplancanbetried.If nonew
applicable plan is found, then event
processing fails.

ApplicableSet once The applicable set is computed only once,
rather than being recomputed after each plan
failure. On event failure, the next applicable
plan is selected from the set computed
initially for the event.

ApplicableChoice first The plan instance generated by the#uses

plan declaration that occurs first in the body
of the agent or capability is chosen.

ApplicableExclusion failed Plans that have failed are excluded from the
applicable plan set.

PlanBindings single Oneapplicableplanof eachrelevantplantype
is added to the applicable plan set.

Teams

Teams Manual
Release 5.5
10-June-05 31
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

2.3.3 Initial Team Formation
The team structure can be specified by using a Java property to point to a file that contains
details of the teams required. The most straightforward way of doing this is by associating a
file to be read in with theTeam.Structure property via the-D flag. This flag is used when
running your application with Java.

An example of the use of this flag follows:

 java -DTeam.Structure=filename ApplicationClass

The team initialisation file is specified using the JACOB Object Modelling Language. The
format of a team initialisation file is as follows.

<Team :name "TeamName"
 :roles (
 <Role :type "RoleType" :name "roleinstance_ref"
 :fillers (
 <Team :name "TeamName">
)
 >
)
>

The following table details the meaning of each of the syntactical elements in the team
initialisation file:

Table 2-3: The syntactical elements in the team initialisation file

Entity Label Code Entity Mapping

Team :name Class name of the Team.

 :roles An aggregation of role bindings.

Role :type Class name of the role.

 :name A reference to the role instance as it appears in code.

 :fillers A section that specifies the fillers of the role. This can be a
reference to a team that is specified later in the file or the
team can be fully specified inline.

Teams

TeamsManual
Release5.5

32 10-June-05
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

Note: In the above example, theTeamName for thefillers is mentioned. This format requires
that theTeamName be fully specified in another separateTeam entry in the team initialisation
file.

Alternatively you can specify the entire team structure inline.

This allows the entire team structure to be specified as one monolithicTeam entry, or as a
number of distinct team/role relationships.

The initialisation file can specify a structure that is a superset of those team entities that you
declarein code.Thisallowstheprovisionof acentral,predeterminedandprecisestructurefor
the team. Using this method, the team structure can be better planned and changes can be
made quickly and easily in the one location.

Relationships described in the initialisation file as part of role and team relationships must be
legal according to the existing#requires role, #performs role and Class (Team andRole)
declarations in code.

Note:

• Theroleinstance_ref thatoccursin theinitialisationfile must matchthereferencename
that appears in your JACK code.

• TheRoleTypes must be given with their package path (i.e. their full class names).

• TeamNames must be full team instance names (i.e. the name plus the portal name).

2.3.4 Dynamic T eam Formation
It is possible to write custom team formation plans to allow any part of a team structure to be
constructed dynamically at runtime. This is a powerful technique which allows, for example,
dynamic specification of team structure at the top level while the lower level structure is
handled by the team initialisation file.

To specifythatamanuallyformedteamis preferred,addaplanto theteam'splansetto handle
theTeamFormationEvent. The default plan has a rank of zero, so adding any plan with the
standard plan rank (5) will cause this default to be overridden.

Theplanto handletheteamformationeventis thenresponsiblefor specifyingthestructureof
roles as they relate to the current team. Specification of team structure involves attaching
teams to roles and roles to teams. This can be achieved by posting aRoleControl event with
its assign(String role, String container, String actor) posting method. To detach
teamstheRoleControl eventis postedwith its revoke() postingmethod.This is discussedin
more detail in the chapter onTeam Formation.

Teams

Teams Manual
Release 5.5
10-June-05 33
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

2.3.5 Initialising Teams
If the plan that processes theTeamFormationEvent succeeds, aStartTeamEvent is posted by
the kernel. Its purpose is to enable team-specific initialisations.

The default plan handlingStartTeamEvent succeeds without doing anything.

Thisplancouldbeoverriddento startanapplication.Any planthatreactsto aStartTeamEvent

will doasthedefaultplanhasaplanrankof zero.Any new planyouwrite with adefault rank
of 5 will therefore be executed in preference to the default plan.

StartTeamEvent extendsEvent, but uses BDI behaviour with the following non default BDI
behaviour attributes:

Table 2-4: The BDI behaviour attributes for theStartTeamEvent

Behaviour Attribute Setting Effect

ApplicableSet once The applicable set is computed only once, rather
thanbeingrecomputedaftereachplanfailure.On
event failure, the next applicable plan is selected
from the set computed initially for the event.

ApplicableChoice first The first plan instance generated by the#uses

plan declaration that occurs first in the body of
the agent or capability is chosen.

PlanBindings single Only one applicable plan of each relevant plan
type is added to the applicable plan set.

Teams

TeamsManual
Release5.5

34 10-June-05
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

2.4 The Team Base Class
TheTeamclassis usedasthebaseclassfor teams.It providestheimplementationsfor theteam
'lifetime' andincludesthecoreteamcapabilities.Thefollowing methodsareavailablewithin a
team:

void canPerformRole(String role, boolean yes)
//
// A support method whereby a team marks whether it actually can
// perform a role. See also RoleContainer.active .
//

RoleContainer findContainer(String role,String cntr)
//
// Looks up the role container matching a #required role
// declaration.
//

RoleContainer findContainer(String role)
//
// Looks up the role container matching a #performed role
// declaration.
//
Role findPerformedRole(String team,String role,String cntr)
//
// Looks up the role object that for a performer represents the
// activated obligation of performing the given role for the named
// team, and that team's container.
//

Role findRequiredRole(String team,String role,String cntr)
//
// Looks up the role object that for a role tenderer represents the
// activated role obligation of a team performing the given role in
// the given container.
//

RoleInfo [] getRoles()
//
// Gets the RoleInfo table for this team. This contains
// the RoleInfo object corresponding to the #requires role
// statements, and is used by the default team formation procedure.
//

void postWhenFormed(Event e)
//
// This is the same as the postEvent method in an agent,
// but it waits until the team formation stage is
// complete before posting the event.
//

boolean rolesInitialized(RoleInfo[] roles)
//
// A reflection support method that uses the RoleInfo table as
// guide in determining whether required roles have been initialised.
//

Teams

Teams Manual
Release 5.5
10-June-05 35
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

Team(String n)
//
// The base class constructor. All team instances need to be assigned
// unique names at construction. The team will be registered with the
// communication system under that name, and other agents/teams can
// thus send messages to this team using that name.
//

Teams

TeamsManual
Release5.5

36 10-June-05
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

Roles

Teams Manual
Release 5.5
10-June-05 37
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

3 Roles
A role in Teams is a distinct entity which contains a description of the facilities that that the
two participants in a team/sub-team relationship must provide. A role defines a relationship
between teams and sub-teams. The relationship is expressed in terms of the event and belief
exchanges implied by the relationship.

The role construct functions at two levels:

1. To specify the requirements of a role for the tenderer (the team requiring the role) and the
filler (the team providing the role). This specification allows run-time checking of the
events that the role tenderers and fillers claim to handle and post. The role functions as an
interface definition that declares what an entity that fills a given role must be capable of
doing in terms of events handled and posted, and in terms of belief propagation. It is also
necessary for the role tenderer to be able to handle events declared as posted, and post
events declared as handled in the role specification.

Like an interface in Java, the role specification does not contain implementation – only a
description of the facilities that the two participants in the role relationship must provide.

2. A role operates in a similar manner to a proxy by facilitating sub-tasking between
participants in the role relationship. Specifically, role instances are invoked in plans to
allow @teamAchieve statements to be issued to role performers.

3.1 Role Definition
 Role definitions take the form shown below:

role RoleType extends Role
 {
 // declarations of events handled by the role performer
 // declarations of events posted by the role performer
 // declarations of teamdata synthesized from the role
 // performer
 // declarations of teamdata inherited by the role performer
 // declarations of role container methods and members
 // other Java methods and members
 }

Roles

TeamsManual
Release5.5

38 10-June-05
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

Each component of this definition is explained in the following table:

Table 3-1: Components of a Role definition

Thecompilergeneratestwo classesfrom aroledefinition.Thefirst classis theRoleType. The
second generated class class is a specialised "container" for instances of theRoleType called
RoleTypeContainer. This latterclassis usedin TeamsandTeamPlansto grouptheperformers
of a role.

Whena teamis declaredto requirea role (e.g.RoleType), theresultingJavaclassfor theteam
will include a field of the corresponding container type,RoleTypeContainer. The access to
individual role performers is indirect through such a container.

Further, in a teamplan, the declaration of using a role results in aRoleType member or
RoleType array member local to the plan. This gives a modelling advantage by allowing
teamplans to operate with selected, transient sub-groupings that only exist during and for the
purpose of carrying out the teamplan.

3.2 Role Dec larations
The role functions as an interface definition that declares what an entity that fills a given role
must be capable of doing in terms of events handled and posted, and in terms of belief
propagation. It is also necessary for the role tenderer to be able to handle events declared as
posted, and post events declared as handled in the role specification.

In general, a role definition will require declarations for the following:

• Events thattheroleperformermustbeableto handleandthattheroleperformermaypost
upward to the role tenderer.

• Teamdata that the role performer may inherit from the role tenderer or that the role
tenderer may synthesize from the role performer.

Syntax Term Description

role A Teams Language keyword used to introduce a Role
definition.

RoleType The name of your derivedRole class

extends Role Thispartof thestatementplaysthesameroleasin Java
– it indicatesthattherolebeingdefinedinheritsfrom a
Teams base class calledRole. TheRole base class
implements all the underlying methods that provide a
role's core functionality.

Roles

Teams Manual
Release 5.5
10-June-05 39
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

• Role Container methodsthatallow thedefinitionof methodsandmembersto beaddedto
the automatically createdRoleTypeContainer class.

Each declaration is described in the following sub-sections:

#handles event EventType reference

This statement declares that a role performer must be capable of handling an event of
EventType. Thereference becomes a data field referring to the appropriate event instance
factory to be used by the JACK kernel. It is through this reference that the event's posting
method can be accessed when it is necessary to create an event instance to be sent from the
tendering team to the performing team.

The role events are sub-tasked through@teamAchieve statements. The role tenderer can sub-
task a role performer with the events declared as handled.

#posts event EventType reference

This statement declares that a role tenderer must be capable of handling an event of
EventType. reference becomes a data field of the generatedEventType class initialisation to
theappropriateeventinstancefactoryby theJACK kernel.It is throughthis referencethatthe
event's posting method can be accessed when it is necessary to create an event instance to be
sent from the performing team to the tendering team.

The role events are sub-tasked through@teamAchieve statements. The role performer can sub-
task a role tenderer with the events declared as posted.

#synthesizes teamdata DataType reference

This is a statement for declaring a synthesizing team belief connection.reference identifies
the beliefset (of typeDataType) to be synthesized. There must be a corresponding declaration
for the teamdata to be populated through this belief propagation in the team definition. It will
be of the form:

#synthesizes teamdata SynthData data(role_ref.reference)

whererole_ref refers to the reference in the#requires declaration for the role in the
tendering team definition andreference is the reference in the#synthesizes declaration in
the role definition. The data is directed from the role performing sub-team(s) to the tendering
team.

This is described in more detail in the chapter onTeam Belief Connections.

Roles

TeamsManual
Release5.5

40 10-June-05
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

#inherits teamdata DataType reference

For aninheritingbeliefconnection,a roledefinitionneedsto includean#inherits teamdata

DataType reference statement detailing the type and reference name of the source beliefset/
teamdata concerned. This statement is similar to the#synthesizes teamdata role statement,
but is directed from the tendering team to the performing team.

This is described in more detail in the section onTeam Belief Connections.

#container method

This statement allows the definition of methods to be added to theRoleTypeContainer class.
The statement form is similar to a reasoning method in a JACK plan. An outline is given
below:

#container method
 public boolean doSomething(int x)
 {
 ...
 }

ThegeneratedRoleTypeContainer classextendsabaseclassnamedRoleContainer. Thisbase
class provides a number of useful methods for inspecting the container and accessing the role
performers. These are described in the section on theRoleContainer Base Class. The
#container method statement may be used to provide user-defined methods in the role
container.

#container member

This statement allows the definition of data members to be added to theRoleTypeContainer

class.

The statement has the following form:

#container member <variable declaration>

For example,

#container member public MyDataType my_data = initial_value;

3.3 The Role Base Class
TheRole base class provides implementations needed for maintaining role relationships
betweenteams.RoledefinitionsextendRole with specificdeclarations,allowing thekernelto
review and enforce type safety in terms of inter-team event handling and posting.

In a program, role objects have three different uses.

Roles

Teams Manual
Release 5.5
10-June-05 41
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

1. The roles performed by a team are represented by role objects. The event handling and
event posting of these roles are added to the requirements of the team instance that are
checked at runtime.

2. The roles required by a team are represented by role container objects, which keep role
objects representing the particular fillers attached.

3. When a team task is started, by one team issuing a@teamAchieve goal to a sub-team, then
the team task in the sub-team is associated with a pair of role objects:

– one role object is to represent the role that the sub-team is acting within; and

– anotherroleobjectis to representthepeer role thatthetenderingteamis automatically
attached to by virtue of utilising the role of the sub-team.

All threeuseswill usethespecificrole typesthatextendtheRole baseclass.Thebaseclassin
itself merely contains common data members, a few common methods and the service
methods that specific role classes will override.

TheRole class implements the following interface:

String actor
//
// Keeps the name of the team that the role object is a proxy for.
//

boolean mirror
//
// Is true when the role object identifies
// the role tenderer.
//

Role peer
//
// This is set only for role objects of team tasks, where it holds
// the peer role object for the team task.
//

int state
//
// Keeps the role object's activity state, which is one of INACTIVE ,
// ACTIVE or DETACHED.
// This is discussed further in the section on
// Team Formation.
//

String tag
//
// Identification of the role object. This is assigned at
// role object construction to a unique identification number.
//

Roles

TeamsManual
Release5.5

42 10-June-05
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

TaskJunction tasks
//
// Keeps track of team tasks in progress under this role. Note that
// for a team task, it is the peer of its role object that represents
// the role obligation, and thus where the tasks performed under that
// obligation are tracked.
//

Cursor noTasks()
//
// Returns tasks.idle(). This allows a team to check whether
// or not it is performing tasks within a particular role.
// noTasks will be true when it is not performing any
// tasks within the role.
//

void int setState(int n)
//
// Method to set the role object's activity state.
// This method would only be used explicitly for non-standard role
// change procedures.
//

3.4 The RoleContainer Base Class
TheRoleContainer class is used as the base class for all role containers. It contains common
members and methods, and stubs to be overridden by specific role containers.

TheRoleContainer class implements the following interface:

boolean active
//
// This is set to true by default. A team can set it to false to
// prevent any new tasks from being started under that role. If it
// is set to false, any pre-existing tasks will continue to be
// performed. The standard role assignment protocol looks at this
// and refuses a role assignment when the performed role is not
// active.
//

String name
//
// This is the reference name associated with this role container.
// For a performed role, the reference name has the form
// "__HR_xxx_performs" where "xxx" is the role type for this
// container. For a required role, the reference name is given by
// the programmer.
//

String role
//
// The type name of role objects that the container is intended for.
//

Team team
//
// The team that the container belongs to.
//

Roles

Teams Manual
Release 5.5
10-June-05 43
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

int min = 0
//
// The minimum number of role objects that are expected to be in this
// role container.
//

int max = 0
//
// The maximum number of role objects that are expected to be in this
// role container, or zero for unlimited.
//

Role find(String actor)
//
// Returns the role object for an actor if the container contains it.
// The role container keeps roles tagged by the actor, and it can
// therefore only contain one role object for any given actor.
//

int size()
//
// Returns the number of role objects added to the role container.
//

Enumeration tags()
//
// Returns the current role object tags as a java.util.Enumeration
// object. These are also the actors defined as role fillers.
//

Role nextFiller()
//
// Uses nextTag() to find an active role filler.
//

String nextTag()
//
// The nextTag() method manages a local enumeration of tags
// to provide the available tags one at a time. If roles are added or
// removed the enumeration is reset, otherwise it will cycle through
// the tags indefinitely.
//

boolean rolesInitialized()
//
// Returns true if the min/max constraints are met.
//

Roles

TeamsManual
Release5.5

44 10-June-05
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

3.5 The Generated RoleT ype Class
A role definition forRoleType results in two classes:

• a class namedRoleType that extends theRole base class; and

• a class namedRoleTypeContainer that extends theRoleContainer base class.

TheRoleType classes provide runtime type checking methods that the kernel uses.

3.6 The Generated RoleT ypeContainer Class
The generatedRoleTypeContainer class extendsRoleContainer and provides a method
createRole() for constructingRoleType objects within the context of the container.

TeamPlans

Teams Manual
Release 5.5
10-June-05 45
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

4 TeamPlans
A teamplan specifieshow ataskis achievedin termsof oneor moreroles.It typically contains
stepsdeterminingwhichof thesub-teamsnominatedto performtherolesin theroleobligation
structure will in fact perform each role (a process known astask team formation). It also
dictates the steps directing each sub-team to achieve specific goals.

Teams provides additional constructs to support both activities (the establish() reasoning
method and the@teamAchieve statement). TheJACK @parallel statement supports non-
sequential coordination of sub-team behaviour. As team behaviour (embodied in ateamplan)
is specified in terms of roles, it is decoupled from the actual sub-team behaviour. Thus team
behaviour can be specified and understood independently of sub-team behaviour.

4.1 TeamPlan Definition
 TeamPlan definitions take the form shown below:

teamplan PlanType extends TeamPlan
{

#handles event EventType event_ref;

 // possible declarations about required roles etc.

 // Plan method definitions, reasoning methods
 // and JACK Agent Language declarations describing
 // relationships to other components etc.

 // optional relevant method
 static boolean relevant (EventType event_ref)
 {
 // code to determine if the plan
 // is relevant
 }

 // optional context method
context()

 {
 // logical condition to determine which
 // plan instances are applicable
 }

 // optional establish method
#reasoning method establish()

 {
 // code to establish the task team for the task
 }

TeamPlans

TeamsManual
Release5.5

46 10-June-05
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

body()
 {
 // The plan body. This describes the actual steps
 // an agent performs when it executes this plan.
 // It includes Java code, JACK Agent Language
 // @-statements, and in addition @teamAchieve
 // statements for use within TeamPlans.
 }
}

Each component of this definition is explained in the following table:

Table 4-1: Components of a TeamPlan definition

Syntax Term Description

teamplan A Teams Language keyword used to introduce a
TeamPlan definition.

PlanType The name of your derivedTeamPlan class.

extends TeamPlan Thispartof thestatementplaysthesameroleasin Java
– it indicates that the teamplan being defined inherits
from a Teams Language base class calledTeamPlan.
TheTeamPlan base class provides the generic plan
processingimplementationandtheoverridablestubfor
task team formation.

#handles event

EventType event_ref

Specifiestheeventtypethatthisplanhandles.Theplan
mayplacefurtherconstraintsonits applicabilityvia the
relevant() andcontext() methods.

static boolean

relevant(EventType

event_ref)

Code to determine if the plan is relevant for the
instance of the event being handled.

context() Logical condition to determine which plan instances
are applicable.

#reasoning method

establish()

Code to establish the task team for the plan.

body() Describes the actual work done by the team when the
plan is executed. It is the plan's top-level reasoning
method. If it succeeds the plan succeeds. If it fails the
plan fails.

TeamPlans

Teams Manual
Release 5.5
10-June-05 47
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

4.2 TeamPlan Declarations
The teamplan can use any of the declarations that are available in JACK agent plans. In
addition they can have declarations relating to the roles required to establish the task team for
the plan and a declaration specifying the role for which the plan is applicable.

#requires role RoleType rolecontainer_ref as role_ref

This declaration states that the current plan requires an instance of the roleRoleType. This
declaration is used in the teamplans of the role tenderer, where the reference to the role
container instancerolecontainer_ref can be used to access the role container to find an
appropriateinstanceof theroleRoleType to satisfythis role in thetaskteam.Thisselectionof
theroleinstanceoccursduringthetaskteamestablishmentphase.Duringthisphase,role_ref
will be set to refer to the selected performer and will subsequently be used as a reference to
this role instance in the plan.role_ref is used to issue a@teamAchieve. This is because the
team executing the plan needs a reference to the role filler (via the role reference) in order to
issue the@teamAchieve.

The#requires role declarations are used instead of the#uses role declarations when the
plan is to use the defaultestablish reasoning method to select the role instance.

Eventsarepostedto therolefiller by the@teamAchieve statementvia therolespecification.As
such,theprogrammerneednotdeclarethattheeventbeinghandledby therolefiller is posted
in the plan.

Each component of the#requires role declaration is explained in the following table:

Table 4-2: Components of the#requires role declaration

#requires role RoleType rolecontainer_ref as role_ref (size)

This form of the#requires role declarationis thesameasthepreviousversionexceptthatit
specifies that the plan now needssize performers from therolecontainer_ref. During the
team establishment phase, the variablerole_ref will be set to an array that contains the
selected performers.

Component Meaning

#requires role Specifies that the plan makes use of this role.

RoleType The role type that is used by the plan.

rolecontainer_ref A local reference that is used to perform operations on the
role container.

role_ref A local reference that is used to perform operations on the
role instance.

TeamPlans

TeamsManual
Release5.5

48 10-June-05
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

#uses role RoleType rolecontainer_ref as role_ref

Thisdeclarationstatesthatthecurrentplanmakesuseof aninstanceof theroleRoleType. The
declaration is used in the teamplans of the role tenderer, where thereference to the role
container instancerolecontainer_ref can be used to access the role container to find an
appropriateinstanceof theroleRoleType to satisfythis role in thetaskteam.role_ref will be
usedasa referenceto this role instancein theplan.role_ref is usedto issuea@teamAchieve.
This is because the team executing the plan needs a reference to the role filler (via the role
reference) in order to issue the@teamAchieve.

The#uses role declarations are used instead of the#requires role declarations when the
plan overrides the defaultestablish reasoning method to select the role instance.

Eventsarepostedin therolefiller by the@teamAchieve statementvia therolespecification.As
such,theprogrammerneednotdeclarethattheeventbeinghandledby therolefiller is posted
in the plan.

Table 4-3: Components of the#uses role declaration

#uses role RoleType rolecontainer_ref as role_ref (size)

This form of the#uses role declaration is the same as the previous version except that it
specifies that the plan now needssize performers from therolecontainer_ref. During the
team establishment phase, the variablerole_ref will be set to an array that contains the
selected performers.

#uses role RoleType rolecontainer_ref

This lastanonymous role usage declaration form provides direct access to the team's role
container for reviewing and selecting performers, and for team-level manipulation of
resources,suchasassignmentor revocationof roles.Thecontaineris referredto with its team
reference name, i.e.rolecontainer_ref.

Component Meaning

#uses role Specifies that the plan makes use of this role.

RoleType The role type that is used by the plan.

rolecontainer_ref A local reference that is used to perform operations on the
role container.

role_ref A local reference that is used to perform operations on the
role instance.

TeamPlans

Teams Manual
Release 5.5
10-June-05 49
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

#applicable_for role RoleType roleinstance_ref

Thisdeclarationoccursin plansof therolefiller. It indicatesthattheplanshouldnotonly react
to the event it handles, it should also test for applicability based on the currently active role.

Table 4-4: Components of the#applicable_for role declaration

#applicable_from role RoleType roleinstance_ref

This declaration occurs in plans of the role tenderer. It indicates that the plan should not only
reactto theeventit handles,it shouldalsotestfor applicabilitybasedontherolerelationshipit
is currently acting under. This form of applicability declaration checks that it has a peer
relationship with the team that initiated the@teamAchieve.

Table 4-5: Components of the#applicable_from role declaration

4.3 Task Team Establishment
Thetask team establishment stage is an initial execution stage for a teamplan, for the purpose
of establishingwhichparticularroleperformersto usefor theplan.Technically, thetaskteam
establishmentstageis achievedby areasoningmethodthatis performedprior to theplanbody
whenaplanis chosenfor execution.Taskteamestablishmentmayfail, in whichcasetheplan
fails.

Component Meaning

#applicable_for role Specifies that this plan is only applicable for certain
roles.

RoleType The role type that this plan is applicable for.

roleinstance_ref A local reference that is used to perform operations on
the role instance.

Component Meaning

#applicable_from role Specifies that this plan is only applicable for certain
peer role relationships.

RoleType The role type that this plan is applicable for.

roleinstance_ref A local reference that is used to perform operations on
the role instance.

TeamPlans

TeamsManual
Release5.5

50 10-June-05
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

The task team establishment method is defined in a teamplan as a reasoning method:

#reasoning method establish()

 {
 ...
 }

There is a default task team establishment method,defaultEstablish(), which fills all the
#requires role usages with distinct performers. They are selected by repeatedly calling the
nextFiller() method of the appropriate role containers. The default establishment only
selectsactiveroleobjects(discussedin thechapteronTeam Formation), andrequiresall fillers
to bedistinct. The#uses role declarationsarethenleft unfilled; for thepluralcase,thearray
is constructed though left unfilled.

An explicit establish() reasoning method will override the default task team establishment
method and be solely responsible for identifying and assigning task team role fillers.

Alternatively, an application may override a role container'snextFiller() method by means
of the#container method statement in the role definition.

4.4 TeamPlan Members and Methods
TheTeamPlanhasaccessto thesamemembersandmethodsdescribedin thechapteronJACK
Agent plans in theAgent Manual. In addition, the TeamPlan has the#reasoning method
establish() which was described in the section onTask Team Establishment.

4.5 Team Goal Handling
TheTeamModellingFramework includesall JACK BDI programmingfacilities,andprovides
extra team goal handling support through the additional@teamAchieve statement.

The@teamAchieve statement is used in a teamplan to sub-task a goal for a team member. The
statement may then succeed or fail depending on whether the team member succeeded or
failed in reaching the goal. The infrastructure deals with the necessary inter-team
coordination, and in particular, takes care of the required task control to deal with all cases of
success, failure, or exception propagation.

The JACK @parallel statement is used in a teamplan as a program control structure to sub-
task goals for several team members in parallel, or more precisely, to progress on several
branchesof activity in theteamplanin parallel.Thesuccessor failureof thestatementdepends
on the successes and failures of the parallel branches involved. The programmer specifies
whether all branches need to succeed or whether it is sufficient that at least one branch
succeed. The programmer also specifies whether to wait for all branches to complete before
the statement completes, or whether to complete the statement as soon as possible (e.g. with
the first successful branch, if the success of one branch is sufficient).

TeamPlans

Teams Manual
Release 5.5
10-June-05 51
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

The@parallel statementprovidesaverypowerful mechanismfor expressingteamplans.The
implied task synchronisation reduces the effort of programming coordinated activity, in
particular while focusing on the "success paths". Recovery procedures, contingency planning
and their effect on coordination, require careful design and use of the task control statements
available in JACK.

The underlying concept is that in failing a sub-task, a sub-team may qualify the failure, i.e.
"fail for a reason", for which the teamplan might include a contingency. This is a slightly
different execution model than BDI, where failing to complete a plan results in a reposting of
the goal, to allow another plan to be used. For team tasks, the recovery on failure needs to be
dealt with at the teamplan level as it, for instance, may involve re-tasking other sub-teams as
well asthesub-teamfailing its task.At thesametime,therecoverymayalsoallow someother
parallel tasks to progress without interrupts.

Further, the choice of which particular response to make at the team level in reaction to the
failure of a sub-team to complete its task is a dynamic choice that may depend both on any
partial success the sub-team has had towards its goal, and the more global situation at hand,
including the current state of other sub-teams.

4.6 TeamPlan @-statements
The teamplan reasoning methods can use any of the @-statements that are available in JACK
agent plans. In addition they can combine the@teamAchieve and JACK @parallel statements
to coordinateandsub-tasksub-teamsthathavebeenselectedto performparticularrolesaspart
of the teamplan's task team.

The@teamAchieve statement is described in more detail in the next sections.

4.6.1 The @teamAchieve Statement
The@teamAchieve declarationis usedto activateasub-team(rolefiller) by postinganeventto
the sub-team. The team that posted the@teamAchieve then waits until the event has been
processed.

Note: @team_achieve has been deprecated in favour of@teamAchieve.

The@teamAchieve has the following form:

@teamAchieve(roleinstance_ref, EventInstance)

Each parameter of the above definition is described in the following table:

TeamPlans

TeamsManual
Release5.5

52 10-June-05
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

Table 4-6: Components of the@teamAchieve statement

TheEventInstance usedin the@teamAchieve is obtainedby accessingtheeventdeclarationin
the role that the plan uses. For example, a plan might contain the following lines:

teamplan Plan9 extends TeamPlan {

#requires role RoleA rolecontainer as role_ref;

body()
 {
 ...

@teamAchieve(role_ref, role_ref.eventref.postingMethod());
 ...
 }
 }

This example would require that a role,RoleA, had declared an event with an event reference,
eventref. The posting method of this event is called to generate an event instance inline.

Optionally, theeventcanbepre-constructedandareferencekeptlocally in theplan.This local
reference to the event instance could be used to check the value of event members after the
@teamAchieve has returned.

As mentioned previously, @teamAchieve suspends the execution of the containing teamplan
until theeventhasbeenprocessedin thesub-team.A @teamAchieve terminatessuccessfullyif
the event has been successfully handled by the sub-team, otherwise it fails.

Component Meaning

@teamAchieve Introducesthe@teamAchieve statement,which issuesa
directive to a sub-team, via the role.

roleinstance_ref A local reference to the role object that defines the
relationship between the team (role tenderer) and sub-
team (role filler). Theroleinstance_ref is obtained
from one of the following statements;#uses role,
#requires role, #applicable_for role or
applicable_from role.

EventInstance EventInstance is a reference to an event derived from
MessageEvent. It is declared and instantiated as for a
normalJACK statement(see,for instance,@send). The
event being sent to the sub-team (role filler) must be
declared as being#handles event by the role.

TeamPlans

Teams Manual
Release 5.5
10-June-05 53
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

The@teamAchieve statement can also be used to post events back to the peer of the team
performing the plan, with the following syntax:

@teamAchieve(roleinstance_ref.peer, EventInstance)

4.6.1.1 Getting Return V alues Thr ough @teamAchieve

Thetechniquefor communicatingtheresultsof theprocessingof a@teamAchieve eventto the
commanding team is as follows:

The sub-team plan handling an event sub-tasked by a@teamAchieve can change the fields of
its localcopy of theevent.Whentheplansucceeds,thesefieldsarecopiedbackinto theevent
instance that was originally used in the teamplan executing the@teamAchieve. Thus, if a
handle to that event instance is maintained, it is then possible to retrieve all fields that have
been changed.

4.6.1.2 Exception Pr opagation f or @teamAchieve

During the handling of an event sub-tasked with@teamAchieve, a team may throw a Java
exception. If this is not caught by the handling plan, it is propagated back to the team that is
executing the@teamAchieve statement in the following way:

• If the exception is aTeamException, then the same exception is thrown to the teamplan
executing the@teamAchieve;

• If the original exception is not aTeamException, then aTeamError is thrown to the
teamplan executing the@teamAchieve.

A @teamAchieve may also be interrupted by an exception thrown to it by a parallel execution
branch in the teamplan. In this case, the infrastructure notifies the active sub-team so that a
TeamAbort is thrown to the plan handling the@teamAchieve event.

TeamPlans

TeamsManual
Release5.5

54 10-June-05
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

Team Belief Connections

Teams Manual
Release 5.5
10-June-05 55
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

5 Team Belief Connections
The notion of team belief connections focuses on how beliefsets of teams and sub-teams may
be connected through role relationships. Team Belief Connections are either directed
'upwards', synthesizing beliefs of sub-teams into a containing team, or 'downwards', allowing
sub-teams to inherit beliefs from a containing team. In both instances, the connection is
between sub-teams that fill specified roles in the containing team's Role Obligation Structure
and the containing team.

The propagation dynamics of a belief connection, both synthesizing and inheriting, are
asynchronous, and allow for source-end filtering to avoid or delay propagation, as well as
target end synthesizing. Default plans for source-end filtering are provided – these plans can
be overridden by the user if desired. Target end synthesis is implemented using theteamdata

construct.

5.1 Sour ce Data Definition
A genericcapabilityfor propagatingchangesis providedaspartof thebeliefsetinfrastructure.
This propagation includes filtering when the#propagates changes declaration is used with
an optional event type as described below.

Beliefset types to be connected must include declaration statements of the following form:

#propagates changes;

or

#propagates changes EventType;

in their definition.

A #propagates changes statementmarksthatthebeliefsetmaybeasourcebeliefsetin ateam
belief connection, and it provides an implementation of the connection dynamics, so that
changes to the beliefset are propagated correctly.

Team Belief Connections

TeamsManual
Release5.5

56 10-June-05
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

If an event type is specified in a#propagates changes statement, it will be sub-tasked to
allow the team to block propagation selectively. Event types used for propagation in this way
must implement thePropagationEvent interface:

 public interface PropagationEvent {

 public Event propagate(
 String team,

Tuple newTuple,
Tuple keyDiscard,
Tuple negateDiscard,
BeliefState truthValue,

 boolean wasAssert
);
 }

The parameters are described below:

Table 5-1: Parameters for thepropagate method

Note thatpropagate returns an event – this will typically be achieved by defining a suitable
posting method in the usual way and then invoking the posting method from within
propagate. An example of how to construct such an event is provided in the synthesizing
belief connection example presented later in this chapter.

If changes to a belief type are to be propagated through the team hierarchy, the fields must be
transportable. This means that either the fields must be declared as JACOB objects in an api
file (refer to theJACOB Manual for more details) or they must be defined as a Java class that
implementsjava.io.Serializable.

Note: If a propagated belief type is instantiated in a capability rather than at the agent level,
then the capability must declare that it posts the propagation event. If the user has not defined
the propagation event, then the event to be posted isaos.team.ChangePropagation.

Parameter Description

team The name of the sub-team whose change is
propagated.

wasAssert Whetherthetupleconcernedwasassertedor
retracted.

truthValue The resultingBeliefState.

newTuple The tuple concerned.

keyDiscard Theopposingtupleretractedby virtueof the
key constraint, if any.

negateDiscard The contradictory tuple being retracted, if it
was believed.

Team Belief Connections

Teams Manual
Release 5.5
10-June-05 57
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

5.2 Target Data Definition
Theteamdata construct is provided to encapsulate the behaviour and data associated with the
targetendof ateambeliefconnection.Eachteamdatais definedasatypelevel entityusingthe
keywordteamdata, and it has the following form:

teamdata Type ... {

 ... // declarations

 }

A teamdata is usually an extension of a normal JACK beliefset, which provides the
declarations of fields and queries. The extension part defines the behaviours associated with
the receipt of change propagations from the sources involved in the connection.

A teamdata definition includes two reasoning methods:

• a#connection method which defines the behaviour when teams are added to or removed
from the connection, and

• a#synthesis method which defines the computation to be performed on receipt of a
propagated belief. This method is invokedregardless of whether the connection is
synthesizing or inheriting.

The#synthesis method is invoked to receive a propagated belief. It has the following
prototype:

#synthesis method(
 String team,
 boolean wasAssert,
 BeliefState truthValue,
 XXXX__Tuple newTuple,
 XXXX__Tuple keyDiscard,
 XXXX__Tuple negateDiscard
)

XXXX__Tuple is a placeholder for the type of the incoming tuple; it must be replaced with the
actual type. The parameters are described in the following table:

Team Belief Connections

TeamsManual
Release5.5

58 10-June-05
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

Table 5-2: Parameters for the#synthesis method

The typical behaviour is for the synthesis method to add (selectively) the propagated tuple to
the beliefset part of the teamdata. This beliefset can be of a different type to that of the
propagatedbeliefset.However, if multiplesourcesareinvolvedin aconnection,thosesources
must all be of the same type.

The synthesis method should be written for optimal performance. If a change propagation
update requires any lengthy computation, then the synthesis method should defer that
computation and instead post an asynchronous event for that purpose.

The#connection method is areasoningmethodwhich is invokedasynchronouslywhenasub-
team is added to or removed from a role, and when this results in a change to whether or not
there is a belief connection for that team. If the team belief is connected through multiple
roles, then only the first addition or the last remove will result in a belief connection change
and an associated#connection method invocation. It has the following prototype:

#connection method(boolean added, String team)

The parameters are described below:

Table 5-3: Parameters for the#connection method

Parameter Description

team The name of the sub-team whose change is
propagated.

wasAssert Whetherthetupleconcernedwasassertedor
retracted.

truthValue The resultingBeliefState.

newTuple The tuple concerned.

keyDiscard Theopposingtupleretractedby virtueof the
key constraint, if any.

negateDiscard The contradictory tuple being retracted, if it
was believed.

Parameter Description

added Whether the sub-team has been added to or
removed from the role.

team The name of the sub-team that has been
added to or removed from the role.

Team Belief Connections

Teams Manual
Release 5.5
10-June-05 59
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

#connection method and#synthesis method invocations are synchronized, ensuring that a
team performs only one such method at a time.

5.3 Belief Connection Dynamics
The computation flow in a team belief connection is as follows:

1. The starting point is that a beliefset which propagates change is updated. This defines the
belief detail to be propagated.

2. Thebeliefsetinvolvedneedsto includea#propagates changes statementin its definition.
That statement results in amoddb() callback that posts a kernel event, named
ChangePropagation, for propagating the change.

– The kernel event is aBDIGoalEvent, so as to allow user code to override the whole
propagation procedure at the source end.

– Thekernelplansfor handlingChangePropapagtion havea rankof 4 or less,to allow a
user's plan at the default plan rank, which is 5, to have precedence. If the user plan
fails, the default handler will be invoked.

3. The change propagation runs as a parallel task for the source beliefset team. The default
handler reviews the role relationship and determines the set of teams to which the belief
detailshouldbepropagated.It thenspawnsanew, paralleltaskfor eachtargetteamto deal
with per-target-team filtering and the actual inter-team transfer.

4. The#propagates changes statement may nominate an event type for the kernel to use so
as to perform a per-target-team source end propagation filtering. When an event type is
nominated,thedefaulthandlerwill @subtask thateventasameansof decidingwhetheror
not to propagate the change to a given team, and when this propagation is to occur. The
former is decided by the event succeeding or failing, and the latter is decided by means of
delaying success.

5. The per-team change propagation task next transfers the belief detail to the target team.
This is achieved by sending aPropagationMessage event to the target team. The standard
way of handling this event uses the teamdata elements as described in points 6 and 7 that
follow. However, it is possible for a user to provide a team with special purpose plans to
handlePropagationMessage eventsin otherways.Suchspecialpurposeplansshouldbeof
higherprecedencerankthanthestandardplanwhichhasaprecedencerankof 5.Thefields
of thePropagationMessage event are described in the following table.

Team Belief Connections

TeamsManual
Release5.5

60 10-June-05
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

Table 5-4: Fields of thePropagationMessage event

6. Upon receiving a change propagation notification, the target team first ensures change
propagation sequencing by waiting on a semaphore. This semaphore is also used by
connectionmethodcalls,to ensurethata teamonly performsone#connection method or
#synthesis method at a time.

7. In turn, the target team propagation task completes the propagation by invoking the
synthesis method of the teamdata involved, one at a time, followed by a signal to the
sequencing semaphore.

All distributionfiltering is doneatthesourceendof achangepropagation,andall synthesizing
computation is done at the target end. Further, at the target end, the change propagations are
sequential, allowing only one change propagation at a time to occur.

5.4 Synthesizing Belief Connection Definition
A synthesizing team belief connection maps sub-teams' beliefs into corresponding beliefs at
the containing team level. This is achieved by propagating information from the sub-team
beliefsets to the containing team(s). In order to create a synthesizing team belief connection,
appropriate declarations must be included in the

• role that provides the sub-team/team linkage

• the sub-teams that are the source for the connection

• the team that is the target for the connection.

Parameter Description

from The name of the sub-team whose change is
propagated.

source The reference name of the source beliefset.

wasAssert Whetherthetupleconcernedwasassertedor
retracted.

truthValue The resultingBeliefState.

newTuple The tuple concerned.

keyDiscard Theopposingtupleretractedby virtueof the
key constraint, if any.

negateDiscard The contradictory tuple being retracted, if it
was believed.

Team Belief Connections

Teams Manual
Release 5.5
10-June-05 61
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

In addition

• a teamdata definition must be provided for the target team

• the source beliefsets must include#propagate changes statements.

5.4.1 Role Dec larations
To associateasynthesizingbeliefconnectionwith arole,thefollowing statementform is used:

#synthesizes teamdata stype sref;

stype andsref identify asource beliefset that will be involved in a synthesizing belief
connection – the target for the connection isnot specified. Multiple declarations are allowed
within a role definition.

Recall that a role defines a team/sub-team interface. Within a role type definition, the
#synthesizes teamdata declaration declares that any sub-team that performs this role must
provide a data item namedsref of typestype. Likewise, any team that requires this role
shouldhavea targetdatadeclarationthatinvolvesthisparticulardataitemor it will beunable
to receive the propagated beliefs.

5.4.2 Sour ce Declarations
A sub-teambecomesasourcein asynthesizingbeliefconnectionby filling arolethatcontains
a#synthesizes teamdata declaration. Thus the sub-team must include an appropriate
#performs role declaration and fill the role in the containing team's Role Obligation
Structure. Also a data item with the type and the reference specified within the role must be
defined either directly within the sub-team definition, or indirectly through the sub-team's
capabilitystructure.Thedataitemcanbedefinedeitherthrougha#private data declaration,
a#exports data declaration in a capability, a#synthesizes teamdata or through a
#inherits teamdata declaration. The latter two cases require that the sub-team is the target
for another belief connection.

5.4.3 Target Declarations
A teambecomesatargetin asynthesizingbeliefconnectionby requiringarole thatcontainsa
#synthesizes teamdata declaration. Thus the team must include an appropriate#requires

role declaration and a#synthesizes teamdata declaration that binds the data item specified
in the role with the role container that contains the sub-teams that fill the role.

Team Belief Connections

TeamsManual
Release5.5

62 10-June-05
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

A #synthesizes teamdata declaration has the following form in the team definition:

#synthesizes teamdata ttype tref(rcref1.sref1,rcref2.sref2,...);

where

ttype is the type of the target teamdata

tref is the name of the target teamdata reference

rcrefi is the name of the ith role container reference

srefi is the name of the ith source data item reference which is to be synthesized.

As indicatedabove, teamdatacanbesynthesizedfrom beliefsspecifiedin morethanonerole.
In thiscase,multiple#requires role statementswill berequiredin theteamandthetypesof
the source beliefs must be the same. Note thatttype refers to the type of the target teamdata,
not the type of the source data.

Recallthattheteamdatatypeis typically achievedby extendingabeliefsettype.Dependingon
the application, that beliefset type may be the same as the source data type or it may be
different.

The above declaration results in the creation of a teamdata instance. The intention is that the
data to be contained in this instance will be provided solely from the data sources for the
connection – hence there is no mechanism to populate the instance at construction time. This
teamdatainstanceis thenaccessibleto thetargetteamandthroughthe#uses data declaration,
to thetargetteam'scapabilitiesandplansasthoughit hadbeendeclaredas#private data. In
particular, a teamdata instance can be used as a source belief for another belief connection.

The#synthesizes teamdata statement results in code that ensures that when role fillers are
added to or removed from any of the indicated role containers the corresponding beliefset
changepropagationpathis addedor removed.Theactualsynthesizingcomputationis defined
separately (via the#synthesis method of the teamdata definition). Although a connection is
defined in terms of role filling, it is maintained on a sub-team basis. Thus if a connection
involvesmultiple rolesandonesub-teamfills morethanoneof theroles,achangeto thatsub-
team's beliefset is propagated only once to the teamdata, and not once for each role container
that contains the sub-team.

5.4.4 An Example
Suppose that aSection team requires aSoldier role and aPrivate team performs the
Soldier role. Furthermore, suppose that thePrivate team maintains its current location and
ammunition level in beliefsets of typeLocation andAmmunition respectively. A synthesizing
team belief connection that will enable theSection team to monitor the location and
ammunition levels of its members is to be established. This data will be stored in teamdata of
typeSectionLocation andSectionAmmunition respectively.

Team Belief Connections

Teams Manual
Release 5.5
10-June-05 63
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

1. Source data definition

TheLocation andAmmunition beliefsets could be defined as follows:

beliefset Location extends OpenWorld {
#value field double x;
#value field double y;

#linear query get(logical double x,logical double y);
#propagates changes;

 }

beliefset Ammunition extends OpenWorld {
#key field String type;
#value field int count;
#indexed query get(logical String t,logical int c);
#indexed query get(String t,logical int c);
#propagates changes AmmoChangePropagation;

 }

Note that the latter beliefset,Ammunition, propagates changes through the
AmmoChangePropagation filter event. When a change occurs, the kernel will sub-task an
instanceof thisevent,for decidingwhetherandwhenthechangepropagationis to occur. The
AmmoChangePropagation event will be similar to the following:

event AmmoChangePropagation extends BDIGoalEvent
 implements PropagationEvent {

 ...

#posted as
 report(...)
 {
 ...
 }

 public Event propagate(String team,
 Tuple newTuple,
 Tuple keyDiscard,
 Tuple negateDiscard,
 BeliefState truthValue,
 boolean wasAssert)
 {
 // just call the posting method ...
 return report(...);
 }
 }

The application can then include a plan to handle thisAmmoChangePropagation event. The
change propagation will then occur only if and when the plan succeeds.

Note: The#propagates changes declaration results in amoddb() method associated with the
beliefset.Thismeansthattheprogrammermustnot includetheirown moddb() methodwithin
the beliefset.

Team Belief Connections

TeamsManual
Release5.5

64 10-June-05
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

2. Target data definition

TheSectionAmmunition beliefset is teamdata that accumulates thecount of sub-team's
Ammunition beliefsets. A possible definition for this is outlined below:

teamdata SectionAmmunition extends Ammunition {

#connection method(boolean added, String team)
 {
 }

#synthesis method
 (String team,
 boolean asserted,
 BeliefState tv,
 Ammunition__Tuple is,
 Ammunition__Tuple was,
 Ammunition__Tuple lost)
 {
 logical int current;
 if (get(is.type,current)) {
 // binds current
 } else {
 current.unify(0);
 }
 if (is != null) {
 int delta = is.count;
 if (lost != null)
 delta -= lost.count;
 add(is.type, current.getValue() + delta);
 }
 }
 }

SectionLocation makes use of explicit replication as follows:

teamdata SectionLocation extends Location {

 Hashtable locations = new Hashtable();

 Location location(String team)
 {
 return (Location) locations.get(team);
 }

#connection method(boolean added, String team)
 {
 if (added) {
 if (locations.get(team) == null) {
 Location location = new Location();
 location.attach(handler);
 locations.put(team, location);
 }
 } else {
 locations.remove(team);
 }
 }

Team Belief Connections

Teams Manual
Release 5.5
10-June-05 65
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

#synthesis method
 (String team,
 boolean asserted,
 BeliefState tv,
 Location__Tuple is,
 Location__Tuple was,
 Location__Tuple lost)
 {
 Location location = (Location) locations.get(team);
 if (asserted)
 location.add(is, tv);
 else
 location.remove(is, tv);

 double sum_x = 0;
 double sum_y = 0;
 int n = locations.size();

 for (Enumeration e = locations.elements();
 e.hasMoreElements();) {
 Location location = (Location) e.nextElement();
 logical double x;
 logical double y;
 location.get(x,y);
 sum_x += x.getValue();
 sum_y += y.getValue();
 }
 sum_x /= n ;
 sum_y /= n ;
 add(sum_x,sum_y);
 }
 }

Note: The code in the above example also invokes the attach() method when a belief
replication beliefset is created, providing the local handler as the argument. This statement is
a JACK detail that is hidden in the generated code for beliefsets, but which must be dealt with
explicitly for belief replication. The purpose is to attach the new beliefset object to the correct
EventRecipient (i.e. the entity that is to handle any event being posted by the beliefset),
which in practice is the enclosing team.

In the example, the local handler is inherited from the ultimate base class, BeliefSet, via the
explicit base class, Location. The local handler is thus available since the synthesized belief
extends a beliefset. In the general case, the synthesized belief may need to capture the
EventRecipient explicitly by implementing the EventSource interface, which in fact is the
attach() method.

3. Role declarations

The Soldier role could contain the following declarations:

role Soldier extends Role {
#synthesizes teamdata Location location;
#synthesizes teamdata Ammunition ammo;

 ...
 }

Team Belief Connections

TeamsManual
Release5.5

66 10-June-05
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

4. Source declarations

ThePrivate team needs to perform theSoldier role and to define the data sources specified
within that role:

team Private extends Team {
#performs role Soldier;

#private data Location location();
#private data Ammunition ammo();

 ...
 }

5. Target declarations

TheSection team could incorporate declarations similar to the following:

team Section extends Team {
#requires role Soldier left(3,3);
#requires role Soldier right(3,3);
#requires role Soldier depth(3,3);

#synthesizes teamdata SectionLocation location
 (left.location, right.location, depth.location);

#synthesizes teamdata SectionAmmunition ammo
 (left.ammo, right.ammo, depth.ammo);
 ...
 }

5.5 Inheriting Belief Connection Definition
 An inheriting team belief connection maps a team belief into separate sub-team beliefs.
Conceptually this is done by means of a distribution computation that translates the team
belief individually for each sub-team, followed by a (virtual) replication of the translated
belief into the corresponding sub-team's belief. Often a sub-team will perform a role for one
team only, but in the general case the sub-team may fill the same role for many teams and the
inherited belief connection will combine belief updates from all the teams in the same way as
a synthesizing belief connection.

In order to create an inheriting team belief connection, appropriate declarations must be
included in the

• role that provides the team/sub-team linkage

• the teams that are the source for the connection

• the sub-teams that are the target for the connection.

In addition

• a teamdata definition must be provided for the target sub-teams

• the source beliefsets must include#propagates changes statements.

Team Belief Connections

Teams Manual
Release 5.5
10-June-05 67
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

5.5.1 Role Declarations
To associate an inheriting belief connection with a role, the following statement form is used:

#inherits teamdata stype sref ;

stype andsref identify asource beliefset that will be involved in an inheriting belief
connection – the target for the connection isnot specified. Multiple declarations are allowed
within a role definition.

Recallthataroledefinesateam/sub-teaminterface.Within aroletypedefinition,a#inherits

teamdata declaration declares that any team that requires this role must provide a data item
namedsref of typestype. Likewiseany teamthatperformsthis roleshouldhaveatargetdata
declarationthatinvolvesthisparticulardataitemor it will beunableto receive thepropagated
beliefs.

5.5.2 Source Declarations
A teambecomesasourcein aninheritingbelief connectionby requiringa role thatcontainsa
#inherits teamdata declaration. The team must therefore include an appropriate#requires

role declaration. Also, a data item with the type and the reference specified within the role
must be defined either directly within the team definition, or indirectly through the team's
capabilitystructure.Thedataitemcanbedefinedeitherthrougha#private data declaration,
a#exports data declarationin acapability, a#synthesizes teamdata declarationor through
a#inherits teamdata declaration. The latter two cases require that the team is the target for
another belief connection.

5.5.3 Target Declarations
A sub-teambecomesa targetin aninheritingbeliefconnectionby filling arole thatcontainsa
#inherits teamdata declaration. Thus the sub-team must include an appropriate#performs

role declaration and fill the role in the containing team's Role Obligation Structure. The sub-
teammustalsoincludea#inherits teamdata declarationthatbindsthedataitemspecifiedin
the role with the role type. Note that this binding differs to that in a synthesizing belief
connection, as a role performer does not have access to the role container.

Team Belief Connections

TeamsManual
Release5.5

68 10-June-05
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

A #inherits teamdata declaration has the following form in the sub-team definition:

#inherits teamdata ttype tref (rtype1.sref1, rtype2.sref2, ...);

where

ttype is the type of the target teamdata,

tref is the name of the target teamdata reference,

rtypei is the type of the performed role, and

srefi is the name source data item in the performed role that is to be inherited.

As indicatedabove,teamdatacanbeinheritedfrom beliefscontainedin morethanonerole.In
this case, multiple#performs role statements will be required in the sub-team and the types
of the source beliefs must be the same. Note thatttype refers to the type of the target
teamdata, not the type of the source data.

Recallthattheteamdatatypeis typically achievedby extendingabeliefsettype;dependingon
the application, that beliefset type may be the same as the source data type or it may be
different.

The above declaration results in the creation of a teamdata instance. The intention is that the
data to be contained in this instance will be provided solely from the data sources for the
connection – hence there is no mechanism to populate the instance at construction time. This
teamdatainstanceis thenaccessibleto thesub-team,andits capabilitiesandplansasthoughit
had been declared as#private data – in particular, it can be used as the source belief of
another belief connection.

The#inherits teamdata statementresultsin codethatensuresthatwhenrolefillers areadded
to or removed from any of the indicated role containers the corresponding beliefset change
propagation path is added or removed. The actual synthesizing computation is defined
separately (via the#synthesis method of the teamdata definition). Although a connection is
defined in terms of role filling, it is maintained on a sub-team basis. Thus, if a connection
involves multiple roles and one sub-team fills more than one of the roles, a change to the
containing team's beliefset is propagated only once to the sub-team's teamdata, and not once
for each role container that contains the sub-team.

5.5.4 An Example
SupposethataCompany teamrequiresaFireSupport roleandaPlatoon teamcanperformthe
FireSupport role. Furthermore, suppose that theCompany team maintains the current enemy
location in a beliefset of typeLocation. An inheriting team belief connection that will enable
thePlatoon teamto monitortheenemylocationis to beestablished.Thisdatawill bestoredin
teamdata of typeEnemyLocation.

Team Belief Connections

Teams Manual
Release 5.5
10-June-05 69
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

1. Source data definition

TheLocation beliefset definition developed for the synthesizing belief connection example
can be used:

beliefset Location extends OpenWorld {
#value field double x;
#value field double y;

#linear query get(logical double x,logical double y);
#propagates changes;

 }

2. Target data definition

TheEnemyLocation beliefset is teamdata that mirrors the enemy location maintained by the
Company team. A possible definition for this is outlined below:

teamdata EnemyLocation extends Location {

#connection method(boolean added, String team)
 {
 }

#synthesis method
 (String team,
 boolean asserted,
 BeliefState tv,
 Location__Tuple is,
 Location__Tuple was,
 Location__Tuple lost)
 {
 if (is != null) {
 add(is.x, is.y);
 }
 }
 }

3. Role declarations

TheFireSupport role could contain the following declaration:

role FireSupport extends Role {
#inherits teamdata Location enemyLocation;

 ...
 }

4. Source declarations

TheCompany teamrequiresa teamto performtheFireSupport roleandit mustdefinethedata
sources specified within that role:

team Company extends Team {
#requires role FireSupport fireSupport;

 ...

#private data Location enemyLocation();
 ...
 }

Team Belief Connections

TeamsManual
Release5.5

70 10-June-05
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

5. Target declarations

The Platoon team needs to perform the FireSupport role and to create the teamdata instance
to receive the enemy location:

team Platoon extends Team {
#performs role FireSupport;

 ...

#inherits teamdata EnemyLocation reportedEnemyLocation
 (FireSupport.enemyLocation);
 ...
 }

TeamFormation

Teams Manual
Release 5.5
10-June-05 71
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

6 Team Formation
This chapter describes team formation. It includes a description of the process that occurs
when sub-teams are attached to the role obligation structure of a containing team. During the
process of attachment/detachment, the associated role instances pass through various states.
This process of attachment is carried out during the initialisation phase when the team is
constructed.In addition,it is possibleto havesub-teamsdynamicallyattached/detachedto the
role obligation structure while the application is running.

Teams have a capability, TeamCap. This capability includes plans that handle the initial team
formationwith thesub-taskinganddefaulthandlingof aTeamFormationEvent, andtheposting
of aStartTeamEvent. The initialisation process is triggered automatically as part of the team
instance construction.

An applicationmayoverridethehandlingof aTeamFormationEvent simplyby definingaplan
that handles the event (the default plan is of precedence rank 0, and therefore a new plan –
with standard rank 5 – will have higher precedence.)

TheTeamCap capabilityalsoincludeshandlingof RoleControl events.Theseeventsareposted
by the application level to assign or revoke a sub-team as a role performer. When they are
posted, the infrastructure layer posts additional events that result in any negotiation and
detachment/attachment required to connect a sub-team to a containing team. The application
layer may include plans that are involved in the negotiation and/or react to the success or
failure of attachment/detachment. TheRoleControl events therefore allows dynamic
modification of role obligation structures during the lifetime of an application.

If theapplicationlayerrequiresanon-JACK agent/team(e.g.anagentwrittenin analternative
language) to perform a role, the application code would need to carry out the attachment and
negotiation on both sides of the relationship without the use ofRoleControl events.

6.1 RoleType Instance State Management
A RoleType instance can be in one of three states (INACTIVE, ACTIVE or DETACHED). When the
RoleType object is created, it is initially in theACTIVE state. However, it will not be available/
visible until it is actually added to a role container. The posting of aRoleControl event
constructed using theassign posting method results in an attempt to add theRoleType object
to thespecifiedrolecontainer. If theobjectis successfullyaddedto therolecontainer, thenthe
object will be in theACTIVE state.

Whentheteamrevokesarole,theRoleType objectis placedin theDETACHED state.Thismeans
that any plans that already have access to the object can continue to access the object but no
new activity shouldbeallowedaccesstheobject.It is theusersresponsibilityto checkthestate
of theRoleType object.

Team Formation

TeamsManual
Release5.5

72 10-June-05
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

TheRoleType object will change from theDETACHED to theINACTIVE state when the team
filling the role finishes processing all tasks associated with the role. It will also be removed
from the role container at that point.

The interaction diagram in the following figure illustrates the interaction between a tendering
team and a suggested role performer for processing an ASSIGN action.

Figure 6-1: Interactions for adding a role performer

On thetenderingteamside,theASSIGNactionis initiatedvia aRoleControl(ASSIGN) event,
that asks for the addition of a role performer to a given RoleContainer. This is a synchronous
request, and the RoleControl handler does not return control to the invoking task after having
issued theSubTeamProtocol(ASSIGN) message, but waits until the actor team has processed
and replied to it.

On the (suggested) performer side, the infrastructure layer queries the application level
whether the suggested addition is to be accepted. This is done by sub-tasking a
RoleEvent(QUERY) event, to be handled by the application level and passed or failed. If the
event handling fails, the suggested action is understood as rejected, and a
SubTeamProtocol(REJECT) message is sent to the tendering team. This results in a transition
for theRoleType instanceto Void state(i.e. theRoleType instanceis markedasDetached andit
is removed from theRoleTypeContainer). Further, aRoleEvent(REJECTED) is posted on the
tenderer team side, so as to allow application level reasoning about the rejected addition.

TeamFormation

Teams Manual
Release 5.5
10-June-05 73
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

If thehandlingof theRoleEvent(QUERY) eventsucceeds,thesuggestedactionis understoodas
accepted,andaSubTeamProtocol(ACCEPT) messageis sentto thetenderingteam.This results
in aRoleType instance state transition toActive, and the posting of aRoleEvent(ASSIGNED)
event,soasto allow applicationlevel reasoningabouttheacceptedaddition.Ontheperformer
side, aRoleEvent(ASSIGN) event is posted to notify about a successful assignment.

The following figure illustrates the interaction between a tendering team and a suggested role
performer for processing a REVOKE action.

Figure 6-2: Interactions for removing a role performer}}

Onthetenderingteamside,theREVOKE actionis initiatedvia aRoleControl(REVOKE) event,
that asks for the removal of a role performer from a given RoleContainer. This is a
synchronousrequest,andtheRoleControlhandlerdoesnot returncontrolto theinvoking task
directly after having issued theSubTeamProtocol(REVOKE) message, but waits until the actor
team has processed and replied to it. First, however, theRoleType instance concerned is
marked asDetached, to block subsequent attempts to issue further team tasks to the role
performer.

On the performer side, the infrastructure then waits until all tasks under the role have been
completedbeforereturningaSubTeamProtocol(CONFIRM) messageto therole tenderingteam.
As application level notifications,RoleEvent(REMOVE) andRoleEvent(REMOVED) events are
posted on the performer and tendering sides respectively.

6.2 Role Handling Events and Messages
SubTeamProtocol [sent and handled event]

TheSubTeamProtocol event is used for the role handling protocol between teams. This is
an infrastructure message event that isnot used at application level.

Team Formation

TeamsManual
Release5.5

74 10-June-05
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

RoleControl [handled event]

TheRoleControl event is posted by the application level for assigning or revoking a sub-
team to be a role performer. The same event type is used for both ASSIGN and REVOKE
actions, and it is defined with a range of posting methods.

event RoleControl extends Event {
#posted as

 assign(String role, String container, String actor)
 // role is the role type
 // container is the reference to the role container
 // actor is the team name (to be assigned)

#posted as
 revoke(String role, String container, String actor)
 // role is the role type
 // container is the reference to the role container
 // actor is the team name (to be revoked)
 }

RoleControl(ASSIGN)

The ASSIGN action event is constructed through theassign posting method. This is
handled by the infrastructure, resulting in the team interaction to establish the given
actor as role filler. For example:

 import martian.Crew;

teamplan RescueMartian extends TeamPlan {
#handles event Rescue re;
#posts event RoleControl rc;
#uses interface Team team;

body()
 {
 // post a RoleControl event to add a sub-team
 // to the role obligation structure
 if(@subtask(rc.assign("martian.Crew", "cr", re.name)))
 System.out.println("rescued "+re.name);
 else
 System.out.println("could not rescue "+re.name);

 }
 }

RoleControl(REVOKE)

The REVOKE action event is constructed through therevoke posting method. This is
handledby theinfrastructure,resultingin theteaminteractionto revokethegivenactor
as role filler.

TeamFormation

Teams Manual
Release 5.5
10-June-05 75
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

RoleEvent [posted event]

The infrastructure posts RoleEvent events to connect with the application level for
notifications and application level reasoning. The event is a polymorphic event that is
posted in different modes for different purposes.

event RoleEvent extends BDIGoalEvent {
#set behavior Recover never;

 public String team;
 public String container;
 public String role;

 public int mode;
 public final static int QUERY = -1;
 public final static int REJECT = 0;
 public final static int ASSIGN = 1;
 public final static int REJECTED = 2;
 public final static int ASSIGNED = 3;
 public final static int REMOVE = 5;
 public final static int REMOVED = 7;
 }

RoleEvent(QUERY)

TheQUERY modeis sub-tasked by theinfrastructurewhile handlinga roleperformer
ASSIGN action, and the purpose is for the application level to decide whether or not
the proposed addition should be accepted. If the event handling succeeds, the addition
is accepted, and if it fails, the addition is rejected.

RoleEvent(REJECT)

The REJECT mode isposted by the infrastructure for the role performer as a
notification that the addition has been rejected.

RoleEvent(ASSIGN)

The ASSIGN mode isposted by the infrastructure for the role performer as a
notification that the addition has been accepted.

RoleEvent(ASSIGNED)

The ASSIGNED mode isposted by the infrastructure for the role tenderer as a
notification that the addition has been accepted.

RoleEvent(REJECTED)

The REJECTED mode isposted by the infrastructure for the role tenderer as a
notification that the addition has been rejected.

RoleEvent(REMOVE)

The REMOVE mode isposted by the infrastructure for the role performer as a
notification that the team has been removed as performer of a role.

Team Formation

TeamsManual
Release5.5

76 10-June-05
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

RoleEvent(REMOVED)

The REMOVED mode isposted by the infrastructure for the role tenderer as a
notification that a team has been removed as performer of a role.

Teams Manual
Release 5.5
10-June-05 77
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

Index

Symbols
#applicable_for role 49
#applicable_from role 49
#connection method 57, 58, 60
#container member 40
#container method 40
#container method() 50
#handles event 39
#inherits teamdata 29, 40, 67
#performs role 17, 18, 28
#posts event 39
#propagates changes 55
#reasoning method establish 50
#requires role 12, 17, 28, 47, 50
#synthesis method 57, 60
#synthesizes teamdata 29, 39, 61
#uses role 24, 48, 50
@parallel 11, 25, 45, 50
@teamAchieve 11, 25, 39, 45, 50, 51

exception propagation 53
returning values 53

A
Active 73
active 42
actor 41
assign posting method 32
attach method 65

B
BDI 9
behaviour 14
belief 9
belief connection dynamics 55, 59
belief exchange 10
belief propagation 10

C
canPerformRole() 34
compile example 26
contained team 11

containing team 11
create sub-team 18

D
-D flag 26
defaultEstablish() 50
desire 9
Detached 73
dynamic team formation 32

E
establish 14
establish reasoning method 11, 14, 24, 45,

50
establish() 50
EventRecipient 65

F
fail reasoning method 14
find() 43
findContainer() 34
findPerformedRole() 34
findRequiredRole() 34

G
getRoles() 34
goal exchange 10
group behaviour 14

H
handler 65
hierarchy 10

I
inheriting team belief connection 66
inherits teamdata 68
initialisation file 13, 18, 19, 26

example 13
intention 9

TeamsManual
Release5.5

78 10-June-05
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

J
JACK Intelligent Agents 9
JACOB 9, 13

M
max 43
min 43
mirror 41
moddb() 63
multi-level hierarchy 10

N
name 42
nextFiller 50
nextFiller() 43
nextTag() 43
noTasks 42

P
peer 41
plan body 25
plan failure 14
postWhenFormed() 34
propagate sub-team belief 15
propagate team belief 15
propagated belief types 56

in capabilities 56
propagates changes 59
propagation 10
PropagationEvent 56
PropagationMessage 59

R
revoke posting method 32
Role 37
role 10, 11, 20, 37, 42

declaration 11
declarations 38

#container member 40
#container method 40
#handles event 39
#inherits teamdata 40
#posts event 39

#synthesizes teamdata 39
definition 12, 37

Role Base Class 40
actor 41
mirror 41
noTasks() 42
peer 41
setState() 42
state 41
tag 41
tasks 42

role container 10, 12
role filler 11
role object 25
role obligation structure 13, 14, 18, 30, 71
role performer 11, 13
role relationship 10
role tenderer 11
Role.ACTIVE 24
RoleContainer 24
RoleContainer Base Class 42

active 42
find() 43
max 43
min 43
name 42
nextFiller() 43
nextTag() 43
role 42
rolesInitialized() 43
size() 43
tags() 43
team 42

RoleControl 74
RoleControl event 32, 71

assign posting method 32
revoke posting method 32

RoleControl(ASSIGN) 72
RoleControl(REVOKE) 73
RoleEvent 75
RoleEvent(ASSIGN) 72
RoleEvent(ASSIGNED) 72
RoleEvent(QUERY) 72
RoleEvent(REJECTED) 72

Teams Manual
Release 5.5
10-June-05 79
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

RoleEvent(REMOVE) 73
RoleEvent(REMOVED) 73
rolesInitialized() 34, 43
RoleTypeContainer 40
run example 26

S
setState() 42
size() 43
StartTeamEvent 33, 71
state 41
sub-team 10, 11, 18
SubTeamProtocol 73
SubTeamProtocol(CONFIRM) 73
SunTeamProtocol(ACCEPT) 72, 73
SunTeamProtocol(ASSIGN) 72
SunTeamProtocol(REJECT) 72
SunTeamProtocol(REVOKE) 73
synthesizes teamdata 62
synthesizing team belief connection 60

T
tag 41
tags() 43
task team 14, 25
task team establishment 49
task team formation 11, 45
task teams 14
tasks 42
team 10, 27, 42

construction 30
declarations 28

#inherits teamdata 29
#performs role 28
#requires role 28
#synthesizes teamdata 29

definition 12, 17, 27
formation 31
initialisation file 13, 31
management 30
manager 30

Team Base Class 34
canPerformRole() 34
findContainer() 34

findPerformedRole() 34
findRequiredRole() 34
getRoles() 34
postWhenFormed() 34
rolesInitialized() 34
Team() 35

team belief connections 55
team extension 10
team formation 10, 13, 71
team formation constraints 12
team goal handling 50
team hierarchy 10
team structure 10, 26
team type definition 11
Team() 35
Team.Structure property 26, 31
TeamAbort 53
TeamCap 71
teamdata 10, 57

declarations 57
#connection method 57
#synthesis method 57

definition 57
TeamError 53
TeamException 53
TeamFormationEvent 13, 30, 32, 71
team-oriented 9
Teamplan 9
teamplan 11, 14, 45

@-statements 51
@teamAchieve 51

declarations 47
#applicable_for role 49
#applicable_from role 49
#requires role 47
#uses role 48

definition 45
members 50
methods 50

team-role declaration 12
team-role structure 11
Teams 9
Teams framework 13
teams reasoning 9

TeamsManual
Release5.5

80 10-June-05
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

TeamStartEvent 30
termination condition 25

	1 Overview
	1.1 Background
	1.2 Team-Oriented Programming
	1.3 Team-Oriented Concepts
	1.3.1 Team
	1.3.2 Role
	1.3.3 Teamdata
	1.3.4 Teamplan

	1.4 The Team Framework
	1.4.1 Structure
	1.4.1.1 Teams and Roles
	1.4.1.2 Role Definition
	1.4.1.3 Team Formation
	1.4.1.4 Task Teams

	1.4.2 Behaviour
	@teamAchieve

	1.4.3 Belief Propagation

	1.5 Example: Martian Visitors

	2 Teams
	2.1 Team Definition
	2.2 Team Declarations
	#requires role RoleType reference(min,max)
	#performs role RoleType
	#synthesizes teamdata DataType ref (r1.s1, r2.s2, ...)
	#inherits teamdata DataType ref (r1.s1, r2.s2, ...)

	2.3 Team Management
	2.3.1 Team Construction
	2.3.2 The Team Manager
	2.3.3 Initial Team Formation
	2.3.4 Dynamic Team Formation
	2.3.5 Initialising Teams

	2.4 The Team Base Class

	3 Roles
	3.1 Role Definition
	3.2 Role Declarations
	#handles event EventType reference
	#posts event EventType reference
	#synthesizes teamdata DataType reference
	#inherits teamdata DataType reference
	#container method
	#container member

	3.3 The Role Base Class
	3.4 The RoleContainer Base Class
	3.5 The Generated RoleType Class
	3.6 The Generated RoleTypeContainer Class

	4 TeamPlans
	4.1 TeamPlan Definition
	4.2 TeamPlan Declarations
	#requires role RoleType rolecontainer_ref as role_ref
	#requires role RoleType rolecontainer_ref as role_ref (size)
	#uses role RoleType rolecontainer_ref as role_ref
	#uses role RoleType rolecontainer_ref as role_ref (size)
	#uses role RoleType rolecontainer_ref
	#applicable_for role RoleType roleinstance_ref
	#applicable_from role RoleType roleinstance_ref

	4.3 Task Team Establishment
	4.4 TeamPlan Members and Methods
	4.5 Team Goal Handling
	4.6 TeamPlan @-statements
	4.6.1 The @teamAchieve Statement
	4.6.1.1 Getting Return Values Through @teamAchieve
	4.6.1.2 Exception Propagation for @teamAchieve

	5 Team Belief Connections
	5.1 Source Data Definition
	5.2 Target Data Definition
	5.3 Belief Connection Dynamics
	5.4 Synthesizing Belief Connection Definition
	5.4.1 Role Declarations
	5.4.2 Source Declarations
	5.4.3 Target Declarations
	5.4.4 An Example

	5.5 Inheriting Belief Connection Definition
	5.5.1 Role Declarations
	5.5.2 Source Declarations
	5.5.3 Target Declarations
	5.5.4 An Example

	6 Team Formation
	6.1 RoleType Instance State Management
	6.2 Role Handling Events and Messages

	Index

