JACK Intelligent Agents®
Teams Manual

@ 0 AKX

L AUTONOMOUS -
O sortware

AOS

Copyright
Copyright © 2002-2012, Agent Oriented Sotve Pty Ltd
All rights resered.

No part of this document may be reproduced, transferred, sold, or otherwise disposed of,
without the written permission of thevaer.

US Government Restricted Rights

The ACK™ Modules and relant Softvare Material hee been deesloped entirely at prate
expense and are accordingly pided with RESTRICTED RIGHTS. Use, duplication, or
disclosure by Geernment is subject to restrictions as set forth in subparagraph (c)(1)(ii) of
DFARS 252.227-7013 or subparagraph (c)(1) and (2) of the Commercial Computear8oftw
Restricted Rights and 48 CFR 52.2270-19, as applicable.

Trademarks

All the trademarks mentioned in this document are the property of their respmaters.

TeamsManual

Release5.5

2 10-June-05
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

Publisher Information

Agent Oriented Softare Pty Ltd.

P.O. Box 639,

Carlton South, \¢toria, 3053

AUSTRALIA

Phone: +61 3 9349 5055

Fax: +61 3 9349 5088

Web: http://www.agentsoftware.com

If you find ary errors in this document orowld like to suggest impx@ments, please let us
know.

Teams Manual

Release 5.5

10-June-05 3
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

The ACK™ documentation set includes the faling manuals and practicals:

Document

Description

Agent Manual

Teans Manual

Devel opnent Envir onnent
Manual

JACOB Manual

WebBot Manual

Desi gn Tool Manual

Graphi cal Plan Editor Mnual

JACK Si m Manual

Traci ng and Loggi ng Manual

Agent Practicals

Teans Practicals

Describes theAICK programming language and
infrastructureJACK canbeusedto developapplications
involving BDI agents.

Describes theAICK Teams programming language
extensions. ACK Teams can be used to veéop
applications that wolve coordinated aatity among
teams of agents.

Describes hw to use theAICK Development
Ernvironment (JDE). The JDE is a graphical
development emronment that can be used tovdp
JACK agent and tearbased applications.

Describes hw to use ACOB. ACOB is an object
modelling language that can be used for ipt@cess
transport and object initialisation.

Describes he to use theAICK WebBot to deelop
JACK enabled web applications.

Describes hw to use the Designobl to design and
build an application within theATK Development
Environment.

Describes he to use the Graphical Plan Editor to
develop graphical plans within th&CK Development
Environment.

Describes he to use theAICK Sim framevork for
building and running repeatable agent simulations.

Describes the tracing and logging toolsaitable with
JACK.

A set of practicals designed to introduce the basic
concepts imolved in ACK programming.

A set of practicals designed to introduce the basic
concepts imolved in Teams programming.

TeamsManual

Release5.5

10-June-05

Copyright © 2002-2012, Agent Oriented Software Pty Ltd

Table of Contents

1 OV IV IBW & ottt e e e e 9
11 Background 9
1.2 Team-Oriented Programming. ettt e e 9
1.3 Team-Oriented CONCEPLSttt 10
131 == 2 10
1.3.2 ROIE . o e 10
1.3.3 Teamdata oo 10
134 Teamplan 11
1.4 The Team Framework. o e e e e 11
14.1 SUUCTUNE. . . o e e e e e e 11

Teams and ROIES i 11

Role Definition 12

Team FOrmationot 13

Task TeaAMS.o e 14
1.4.2 Behaviour. e 14

@eamAchieve 15
1.4.3 Belief Propagation 15
15 Example: Martian VIsitors 15
2 TEaAMS . . . 27
2.1 Team Definition. e 27
2.2 Team Declarations 28

#requires role Rol eType reference(min,max) 28
#perforns role RoleType . 28
#synt hesi zes teandata DataType ref (rl.sl1, r2.s2, ...). 29
#inherits teandata DataType ref (rl.s1, r2.s2, ...) 29

2.3 Team Management. e 30
2.3.1 Team CONStrUCtioN o 30
2.3.2 The Team Manager i e e i 30
2.3.3 Initial Team Formation 31
234 Dynamic Team Formation 32
2.35 Initialising Teams 33
2.4 The Team Base Classot e e e 34
3 ROIES .. e 37
3.1 Role Definition o e 37
3.2 Role Declarations.t e 38

#handl es event Event Type reference. 39
#posts event EventType reference. 39
#synt hesi zes teandata DataType reference. 39

Teams Manual

Release 5.5

10-June-05 5
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

#inherits teandata DataType reference 40
#container nethod .. 40
#container nenber 40

3.3 The Role Base Classot e e 40
3.4 The RoleContainerBase Class 42
3.5 The Generated RoleType Class.t e 44
3.6 The Generated RoleTypeContainer Classc oo i i ittt i i i 44
4 TeamPlans 45
4.1 TeamPlan Definition 45
4.2 TeamPlan Declarations 47

#requires rol e Rol eType rol econtainer_ref as role_ref. . . . 47
#requires role Rol eType rolecontainer_ref as role_ref (size) 47
#uses rol e Rol eType rol econtainer_ref as role_ref. 48
#uses rol e Rol eType rol econtainer_ref as role_ref (size) . . 48
#uses rol e Rol eType rol econtainer _ref. 48
#applicable_for role Rol eType roleinstance_ref 49
#applicable_fromrol e Rol eType roleinstance_ref. 49

4.3 Task Team Establishment. 49
4.4 TeamPlan Membersand Methods 50
45 Team Goal Handling. ettt 50
4.6 TeamPlan @-statements i 51
46.1 The @eamAchi eve Statement. 51
Getting Return Values Through @ eamAchieve 53

Exception Propagation for @ eamichievecciiuunnn. 53

5 Team Belief Connections i e 55
51 Source Data Definition 55
5.2 Target Data Definition. e 57
5.3 Belief Connection DynamicCst 59
5.4 Synthesizing Belief Connection Definition 60
54.1 Role Declarations. i 61
5.4.2 Source Declarations. 61
5.4.3 Target Declarations 61
5.4.4 AnExample 62
5.5 Inheriting Belief Connection Definition. 66
55.1 Role Declarations. i 67
55.2 Source Declarations. e 67
55.3 Target Declarations e 67
554 AnExample 68
6 Team Formation 71
6.1 RoleType Instance State Management 71
TeamsManual

6 i

Copyright © 2002-2012, Agent Oriented Software Pty Ltd

6.2 Role Handling Events and Messagesoi it 73
N X . . o 77
Teams Manual
Release 5.5
10-June-05 7

Copyright © 2002-2012, Agent Oriented Software Pty Ltd

TeamsManual
Release5.5

10-June-05
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

Overview

1 Overview
1.1 Background

JACK Teams™ (€ams) isan etension to ACK Intelligent Agents that prxades a team-
oriented modelling franveork. As Teams hbilds upon the concepts cAGK, this document
assumethatthereadeiis familiarwith JACK IntelligentAgents It alsoassumethattheuser
is familiar with the use ofAICOB for initialising data.

The most immediate dérence betweenebmsand ACK is the introduction of theeam
reasoning entity This entity encapsulatesambehaiour in a Bams application in the same
way that the Agent entity encapsulates agent\netain a ACK application.

Like a ACK agent, a team is also an widual reasoning entity with itsam beliefs, desires
andintentions (BDI). It includes declarationsgarding which roles the team itself may
perform for other teams and which roles feof to other sub-teams to fill. In addition to the
normal knevledge-hiilding and practical reasoning iIAGK agentsteam reasoning is also
concerned with the coordination of sub-teams.

As with ACK, behaiour is specified in the form of plansedms introduces theanpl an
construct for the specification of team-oriented b&ha Because 8ams is anmxdension of
JACK, all the core functionality ofACK is available within a team. In particulaa team can
use ACK plans as well as teamplans.

1.2 Team-Oriented Pr ogramming

The Teams gtension preides ateam-oriented modelling framwork. Team-oriented
programming is an intuite paradigm for engineering group action in multi-agent systems.
Team-oriented programming is conceptuallypdul, as it allevs the softvare engineer to

specify:

* What a team is capable of doing;

* Which components are needed to form a particular type of team;

* Whether a team is willing to takon a particular role within another team;

* Coordinated beh@our among the team members; and

» Team knavledge.

In short, the concept of team-oriented programmingesete encapsulate coordination
actvity. It extendstheagentconceptby associatingaskswith roles. However, theflexibility

of multi-agent systems is retained. Although team members act in coordination by being

given goals according to the specificationythee indvidually responsible for determining
how to satisfy those goals.

Teams Manual

Release 5.5

10-June-05 9
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

Overview

A team'sstructurecancontainteamsn any combinatiorandin any number Thehierarcly is
not restricted to a terlevel design or indct to a hierarch Layers of teams can be
encapsulated within othenels, and the structure can be added to or altered dinae
during the process. In otheowds, teams can be created in snyers, where each layer is
encapsulated within the xtdayer, and so on.

Both conceptually andxelicitly in a model, teams entitiegist independent of their team
members. 6r instance, teams can reason about they belong as members in enclosing
teams, or about which teamsyheclude asub-teams. The teams concept encapsulates
coordination actiity, and e&tends the agent concept by associating tasks with roles.

1.3 Team-Oriented Concepts

The Teams gtension introduces the weconcepts ofeam, role, teamdata andteamplan. The
TeamsModelincludesall theprogrammingelementof the JACK BDI AgentModel, but with
anextendedsemantic$or someelementsAgentscompiledunderthe JACK BDI Agentmodel
and teams compiled under theams Model can communicate as peersvéder, problems
may arise if agents compiled under tA€€& BDI Agent Model are used as elements of a
team.

1.3.1 Team

In Teams, aeam is a distinct reasoning entity which is characterised by the roles it performs
and/or the roles it requires others to perform. fohmation of a gren team is achved by
attachingsub-teams capable of performing the roles required by the team. Notetibat a
team may be attached to more than he in a containing team and as a sub-team inyman
teams. As the sub-team®f the giventeammayrequirerolesto be performedon their behalf,
amulti-level hierarcly (or perhaps a more comglstructure) may result.

The team is automatically proled with objects to hold the actual role/sub-team selections.
These objects are kwo asrole containers.

1.3.2 Role

A rol e in Teams is a distinct entity which contains a description ofatiitfes that the
participants in a team/sub-team relationship mustipeo A role defines a relationship
between teams and sub-teams. fdie relationship isxpressed in terms of tlgoal and
belief exchanges implied by the relationship.

1.3.3 Teamdata

Teandat a is anadditionto the JACK datamodelconceptfor changgropagtiondeclarations.
This allows propagtionof beliefsfrom teamto sub-teanandvice versa. A teamdatalement
defines hw a propagted belief is accepted by the reweg team, and incorporated into its
belief structures.

TeamsManual

Release5.5

10 10-June-05
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

Overview

1.3.4 Teamplan

A t eanpl an specifies hay a task is achieed in terms of one or more roles. It typically
containsstepsdeterminingwhich of the sub-teamsiominatedo performtheroleswill in fact
perform each role (a process knmoastask team formation It also dictates the steps
directing each sub-team to acleespecific goals.

Teams pruides additional constructs to support bothwinéis (the est abl i sh reasoning
method and th@ eamAchi eve statement). TheALK @aral | el statement supports non-
sequentiatoordinationof sub-teanbehaiour. Asteambehaiour embodiedn at eanpl an is
specified in terms of roles, it is decoupled from the actual sub-teamid@hal hus team
behaiour can be specified and understood independently of sub-teamduzha

1.4 The Team Framework

1.4.1 Structure

1.4.1.1 Teams and Roles

A structural relationship between teams is catered for vieotaeoncept. Aole defines the
meansof interactingbetweera containingteam(arole tendeer) anda containedeam(arole
performerorrole filler). The role defines which goals the role tenderer may request the role
performerto achiere, andit alsodefineshe countergoalsthattherole performemayrequire

from the role tenderer

The team-role structure defined by statements specifying which roles a team can perform,
and which roles must be performed by sub-teams. Tdexdarations are specified in the

team's type definitions, where the containing team requires certain roles to be filled, and the
contained team must be able to perform certain roles.

A teamcanperformrolesfor a containingteamandcanalsocontainsub-teamsvhich perform
roles on its behalf. Theub-teams can in turn contain sub-teams which can perform roles on
their behalf etc.

The following code sgments illustrate he these team and role definitions may look.

t eam Conmpany ext ends Team {
#performs rol e ConpanyRol e;
/1 mnimmof 3 PlatoonRole fillers required. No upper limt
#requires role Pl atoonRol e pl at oons(3,0);
/1 exactly 1 Commander role filler required
#requires rol e ConmandRol e conmand(1, 1);
/1 0 or nore ScoutRole fillers required
#requires role ScoutRol e scout(0,0);

Teams Manual

Release 5.5

10-June-05 11
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

Overview

rol e Pl at oonRol e extends Role {
#handl es event Movenent m
#posts event Wt hdraw w;

In the abee example, role definitions fatonpanyRol e, ConmandRol e andScout Rol e would
also be required.

Theteam-role declarations determine which team-team structures cailtlae bun time.

1.4.1.2 Role Definition

Therole definition does not contain implementation — only a description oadtiigiés that
thetwo participantsn therole relationshipmustprovide. A role definitionhastwo parts:first,

a davnwards interace that declares theents an entity must handle to ¢aén the role, and
second, an upards interce that declares theents the team entity requiring the role needs
to handle.

A role definition, such as the at oonRol e definition shavn abwe, results in tw Java classes
being generated by the compil@ne is named by thewginRol eType type. The second
generated class is a specialised 'container’ for instance®iaftape called

Rol eTypeCont ai ner. The latter is referred to aga@e container, as its purpose is to contain
Rol eType objects. In thecaseof thePI at oonRol e definitionshavn above, the compilerwould
automatically generate thedwava classes! at oonRol e andpPl at oonRol eCont ai ner .

When the declaration is made that a team requiregea gole, the result is a role-defined
container to be filled by sub-teams. Haequires rol e Rol eType reference(nin, max)
statemenaddsafield to theteamclassof namer ef er ence andtypeRol eTypeCont ai ner. The
#requi res rol e declaratiorallowsthe specificatiorof boundsfor the containeywhichresults
in team formation constraints

The agumentsyi n andmax in the#r equi r es declaration specify thewer and upper bounds

for the number of performers in order for the team to be considered formed. A zero upper
bound dictates an unlimited upper bound. Note that these bounds are not enforced by the
infrastructure in order to allodynamic attachment/detachment of sub-teams. In practice, a

role container can contain an unspecified number of role objects.

In the team definitionlustrated abwee, the declarations state thatoapany team requires
three sub-teams able to perform #het oonRol e role, another sub-team able to perform the
CommandRol e role, and one or more sub-teams able to performacihe Rol e role.
Furthermore, theonpany team is declared to be a performer ofdh&anyRol e role, which
would be a role required by some other team type.

TeamsManual

Release5.5

12 10-June-05
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

Overview

It should be noted that the declarationsvabdefine hav an actual team structure may look,
but they do notidentify theactualteaminstancespr whattheteamtypesarein theactualteam
structure.

1.4.1.3 Team Formation

Theoverall lifetime of a team has twphases. The first phase is for setting up an indgial
obligation structure. The second phase constitutes the actual operation of the team.

At run time, teams undgo a team formation phase intended to identify the particular sub-
team instances that &lon roles in a team. This first phase is initiated via a

TeanFor mat i onEvent that is posted by thesknel when each team is constructed. Bwualef
theTeanFor mati onEvent IS handled by a plan that identifies the role fillers according to an
initialisation file in JACOB format. The follaving is an @ample of an initialisation fite

<Team : nane "conpany 1"

:roles (
<Rol e :nane "hqg" :type " Command"
fillers (

<Team : nanme "cndgrp 8">

)

>
<Rol e :nane "unit" :type "Subordi nate"

fillers (
<Team : nanme "pl atoon 1"
:roles (
<Rol e :nane "hqg" :type " Command"
fillers (
<Team : nanme "cndgrp 23">
>)
<Rol e :nane "unit" :type "Subordi nate"
fillers (
<Team : nanme "section 1">
<Team : nane "section 2">
<Team : nanme "section 3">
>)

)

>

TheTeamdramenork is flexible atthis point, but it includesthenotionof afully formedteam
as a team for which all necessary role perforrhare been identified.

The frameavork will allow a team instance to complete its team formation phase without
necessarily satisfying all the role filling constraints.wieeer, the team will only be

considered formed when its role containment constraints are all filled. This is a state that a
program may query

Teams Manual

Release 5.5

10-June-05 13
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

Overview

At this stage the initial role obligion structurdias been constructed. It is possible to
dynamically modify this structure during prograreeution. This is discussed in the chapter
on Team Formation.

1.4.1.4 Task Teams

Task teams aredynamicallyformedsub-groupsvithin ateam createdo performateamtask.
Whenchoserto handleanevent,theinitial stepof ateamplans to establishthetaskteam,by
selecting which role performers to use from within the team foraheus roles needed
within the task/plan.

Task teams are not defined separatelyare contained within the teamplatefining the
teamtasks. A teamplaruses¢r equi r es and/or#uses declarationgo declaretherolesneeded
for the task team. The teamplan may also includsadnbl i sh() reasoningnethod that
defines hw the task tears to be established for the task. This is illustrated in the code
segment belw:
t eanpl an ConpanyFor nat i onMove extends TeanPl an {
#requires role PlatoonRol e platoons as |eft;
#requires role PlatoonRol e platoons as right;

#requires role PlatoonRol e pl atoons as depth;
#requires role CommandRol e conmand as hq;

#r easoni ng net hod
est abl i sh()

/] code to establish the task teamfor the task

}
body ()

/1 body of the plan to performthe task
}

The establisistep of a teamplan is a proper plan step, and mvajvanary amount of
reasoning by the team enfigs well as ngotiations with the candidate sub-teams. The
outcomaeis eitheracompleteassignmenof sub-teamso therolesrequiredby theteamplanor
aplan failure allwing the team to choose an altermatplan for handling the sameemt. If
there is dai | () reasoning method associated with the plan, it does noxeaited if the
establ i sh() method éils.

There is a defultest abl i sh() method which fills the required roles uniquely at random, if
possible. Haever, the defult establish method only assigns #hequi r es roles and not the
#uses roles.

1.4.2 Behaviour

Theconceptof teamsrequiringrolesandteamsperformingrolesprovide aframevork where
group behaiours and indiidual behs&iours can be clearly separated. Group behat is

TeamsManual

Release5.5

14 10-June-05
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

Overview

specified in terms of the roles that are required to aehliee desired betimur. This
behaiour is specified independently of the actual teams performing the rolegevétothe
team has access to its sub-teams through the role consainels able to perform reasoning
based on the actual team membership when necessary

The team is a separate entity and hasws iamplans for the specification of team
behaiour. Within these teamplans, tl@eamchi eve statement can be used to help
coordinate the bekeur of the sub-teams.

@ eamAchi eve

The@eamAchi eve Statement is used to actte a sub-team by sending aem to the sub-
team. The team that sent tBeamachi eve then waits until the eent has been processed by
the sub-team.

In combination with theAICK @ar al | el statement, a wide range of team hetiars can be
implemented.

1.4.3 Belief Propagation

In addition to communicating via the normal messagrepassing in agent-oriented
programming, €&ams also prades a capability for thpropagtion of team beliefs. This
propa@tioncanbebothfrom teamto sub-teamandfrom sub-teanto team. In thelattercase,
thecapabilityis providedwithin Teamso combinethe propa@tedsub-teanbeliefswithin the
team. The use oféeBm beliefs in conjunction with thedm coordination statements enables
sophisticated team behaurs to be implemented.

1.5 Example: Martian Visitors

Thisis asimpleexampleto illustratethe basicstepsin building ateamcontainingseveralsub-
teams. In thisxample, a team of Martians are coming to visit Earth.

The team will be contained within a spacecraft which willdtao Earth. Each spacecraft
contains at least 3 sub-teams (Martians) capable of performing the role required to pilot the
spacecraftlt alsocontains3 Martianscapableof carryingoutthedutiesperformedby abasic

crev memberand 3 capable of performing the task of gsmerson when the craft &g at

its destination.

In reality, only one Martian allocated to each of these roles is required when the spacecraft
performs the task of visiting Earth. ¥ever, 3 Martians are specified per role to ensure that
there are backup teams, in casg Blartian becomes umailable.

In thisexample thespacecraftontains3 Martiansub-teamsEachof theMartiansub-teamss
capable of performing each of the 3 roles in spacecraft team's rolatwvligtructure. This
meanghatin practicea Martiansub-teantouldberesponsibldor morethanonerolein atask

Teams Manual

Release 5.5

10-June-05 15
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

Overview

team. However, in this example, the establish method ensures that each Martian sub-team is
only alocated to one role in the task team.

16

TeamsManual
Release5.5

10-June-05
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

Overview

The steps wolved in lilding this application are as folis:

Step 1. Create the two team types
Spacecraft.team
public team Spacecraft extends Team {
#requires rol e Spokesperson sp(3,3);
#requires role Pilot pi(3,3);
#requires role Crew cr(3,3);
#uses plan Visit;
#handl es event PerfornVisit;
public Spacecraft(String name)
super (nane) ;
#posts event PerfornVisit pfv;
public void visit(String planet)
post WhenFor med(pfv. vi sit Pl anet (pl anet));
}
Marti an.team
public team Marti an extends Team {
#performs rol e Spokesperson;
#performs role Pilot;
#performs role Crew,
#uses pl an SpeakG eeti ng;
#uses plan Travel;
#uses pl an Wat chMoni tor;
public Martian(String nane)
super (nane) ;

}

The team definitionare \ery similar to the definitions for ACK agent, gcept that the
keywordt eamis used, and theeamclass is gtended. Most of the declarations contained in
these team definitions should already dmifiar from preious ACK agent programming.

Thenew declarationdllustratedhereare#per f or ns rol e and#r equi res rol e. As previously
discussed, this specifies that a spacecraft must contain 3 sub-teams capable of performing the
role of spokesper son, 3 sub-teams capable of performing the rolei 0bt, and 3 sub-teams
capableof performingtherole of &rew. Thesecouldbe 3 entirelydifferentsub-teamsgor each

of the roles or there could beeylap. In this ample, there are only 3 Martians within the
spacecraft team and each is capable of performing all 3 roles.

Teams Manual

Release 5.5

10-June-05 17
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

Overview

The Spacecraft team definition also includessat method which postsrer f or mvi si t

event using theost WhenFor red method. Theost WienFor med method puts thevent in a

special queue so that it gets posted asynchronously when the team has completed its team
formation phase andubt the initial role obligtion structure.

Themarti an teamcontaingtper f or ms r ol e declarationgo indicatethatteamsof thistypeare
capable of performing the rolgsokesper son, Pi | ot andcr ew.

Step 2: Create the main &va program and the initialisation file
Step 2.1: Ceate the main &va program

The main Jga program must construct instances of the spacecraft and Martian teams. These
will be the instances attached to the specific roles in the initialisatiorrillne main

program, the sub-teammsust be constructed before the containing team, so thaalifleady

exist when the containing team attempts wddits role obligtion structure

public class AlienProgram {

public static void main(String [] args)

{
new Martian("Dennis");
new Martian("Ral ph");
new Martian("Jacquie");
Spacecraft spacecraft = new Spacecraft("Enterprise");
spacecraft.visit("Earth");
}
}
TeamsManual
Release5.5
18 10-June-05

Copyright © 2002-2012, Agent Oriented Software Pty Ltd

Overview

Step 2.2: Ceate the initialisation file

In thisexample,it is assumedhatthisinitialisationfile is calledscenari o. def . It containghe
following:

<Team : nane "Enterprise"

:roles (
<Rol e :type "Spokesperson" :nane "sp"
fillers (
<Team : nanme "Denni s@fortal " >
<Team : nane "Ral ph@®portal" >
<Team : nane "Jacqui e@fportal " >
N)
<Role :type "Pilot" :name "pi"
fillers (
<Team : nane "Denni s@portal" >
<Team : nane "Ral ph@gportal" >
<Team : name "Jacqui e@fportal " >
N)
<Role :type "Crew' :nanme "cr"
cfillers (
<Team : nane "Denni s@portal" >
<Team : nane "Ral ph@®portal" >
<Team : nane "Jacqui e@fportal " >
)
>

>

Notetherelationshipbetweerthe namesf instancesndrolesin themainprogramandin the
team definitions in the initialisation fil&lso note that the team names are in the form
name@gpor t al andthatif yourapplicationis organisednto packagesthenthe packageletails
must be included in the type specifications.

Teams Manual

Release 5.5

10-June-05 19
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

Overview

Step 3: Create the ole definitions files

There are 3 role definition files required in thiample. Thg are:

Crew.rol e
public role Crew extends Role

#handl es event DoWatch wm
}

Spokesperson.rol e
public role Spokesperson extends Role

#handl es event DoGreeting dg;

Pilot.role
public role Pilot extends Role

#handl es event PilotCraft st;
}

In all threecasestheserolesindicatethe dovnwardinterfacebetweerateamthatcanperform
thatrole and a team that requires a sub-team to perform that role. This indicateantise e

that will be posted from the containing Spacecraft team to the Martian sub-team capable of
performingtherole. Thismeanghatthe Martiansub-teanmusthave atleastoneplancapable

of handling each specifiedent.

Roledefinitionscanalsoincludeadditionaldeclarationsvhichwill bediscussedh thechapter
onRoles.

TeamsManual

Release5.5

20 10-June-05
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

Overview

Step 4: Create the events

DoG eeti ng. event
event DoG eeting extends MessageEvent
String planet;

#posted as
speakGreeting(String p)

pl anet = p;
}
DoWat ch. event
event DoWat ch extends MessageEvent

#posted as
wat ch()
{

}
}

PerfornVisit. event
event PerfornVisit extends MessageEvent
{

String planet;

#posted as
visitPlanet(String p)

pl anet = p;
}
PilotCraft.event
event PilotCraft extends MessageEvent
{ String planet;

#posted as
start(String p)

pl anet = p;

Teams Manual

Release 5.5

10-June-05

Copyright © 2002-2012, Agent Oriented Software Pty Ltd

21

Overview

Step 5: Create the plans used by the Martian sub-teams

WAt chMbni t or. pl an

pl an Wat chMoni t or extends Pl an
{

#handl es event DoWatch dw;
body()

System out. println(get Agent (). name()+" on watch");

}
SpeakGr eeti ng. pl an

pl an SpeakG eeti ng extends Pl an

#handl es event DoGreeting dg;
body()
{

Systemout.println("Hello "+dg. pl anet);
Systemout.println("l am"+get Agent (). name());

}
}

Travel . pl an

pl an Travel extends Pl an
#handl es event PilotCraft pc;
body()

Systemout. println(getAgent().name()+" flying craft to "+
pc. pl anet);

@wai t For (el apsed(10.0));

System out. println(getAgent (). name()+
" arriving at "+pc.pl anet);

}

The 3 plans required are implemented as agent plans. Thisis because there are no sub-teams
within the Martian teams, so there is no requirement to establish atask team to perform the

task or for the new plan statements which enable coordinated activity between the sub-teams.
Teanpl ans are only required when the plan requires sub-teams to perform roles on its behalf.

TeamsManual

Release5.5

22 10-June-05
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

Overview

Step 6: Create the plan used by the spacecr aft team

i mport java.util.Enuneration;
i mport java util.Vector;

teanpl an Visit extends TeanPl an
#handl es event PerfornVisit pfv;
#uses rol e Spokesperson sp as speaker;
#uses role Pilot pi as pilot;
#uses role Crew cr as crew,

#uses i nterface Teamteam

/**
* establish the task team
*/
#r easoni ng net hod
establish()
Vector busy = new Vector();
crew = (Crew) pickRol e(busy,cr);
crew != null;
pilot = (Pilot) pickRole(busy,pi);
pilot !'= null;
speaker = (Spokesperson) pickRol e(busy, sp);
speaker !'= null;
}

Rol e pi ckRol e(Vector busy, Rol eContainer rc)
for (Enumeration e = rc.tags(); e.hasMreEl enments();)

Role r = rc.find((String) e.nextEl enment());
if (r.state == Rol e. ACTI VE &&
I busy. contains(r.actor))

busy. add(r. actor);
return r;

}

return null;

body()
{

System out. println("Team established for craft: "
+t eam nane());
Systemout.println(" crew = + crew. actor);
Systemout.println(" pilot =" + pilot.actor);
Systemout.println(" spokesperson =" +
speaker. actor);

@arallel (Parall el FSM ALL, fal se, nul |)

@ eamAchi eve(crew, crew.wm watch());
@ eamAchi eve(pilot, pilot.st.start(pfv.planet));

b

Teams Manual

Release 5.5

10-June-05 23
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

Overview

@ eamAchi eve(speaker,
speaker . dg. speakG eeti ng(pfv. pl anet));

}

The spacecraft team has eCont ai ner members (one per role that it has declared that it
requires). In the teamplan the first task is to iterate through the appropriate role containers to
select the particular role object to perform the required roles for a particular instantiation of
the plan. This forms the task team for the plan. The role object selected wilbaltess to

both the containing team and sub-teawoived in the relationship.

The#uses rol e declarations indicate that within this plan three sub-teams are required — one
to fill therole of spokesper son, oneto fill therole of pi | ot , andonetofill therole of crew. In
this example, iteration to maka selection occurs through the respeatble containers.

As this plan requires that each sub-team only be responsible for one particular ro$y;'a "b
vectoris usedto keeptrackof which sub-teamsrealreadyallocatedo roles.Eachinstanceof

a role has details about the containing team and the sub-team. Thecreleimiember

contains the name of the instance of the sub-team that is capable of performing the role. The
selection of sub-teams to perform specific roles for this task occurstigathe an's

establ i sh() method

TheRol eCont ai ner baseclasscontainsaamethod(t ags()) whichreturnsits currentrole object
tags as @ava. uti | . Enunerati on object. The role object tags relate to the role fillers or role
performersaandcanbepassednto therole container'si nd() methodto returntherol e object
that corresponds to the tag.

In thisexample theest abl i sh() reasoningnethodmakesuseof amethodcalledpi ckRol e() .
The method bgins by iterating through the required role container and then performing a
find() toreturntheactualrole objectrelatedto thetag. Whenselectinga suitablesub-teamit

is a case of selecting the first role object which hadwe\ofRrol e. ACTI VE, and which does
not relate to a sub-team that has already been allocated (i.e. not alreadyusyttector).

The test forRrol e. ACTI VE is not strictly necessary in this application as we do nat hegy
dynamic attachment/detachment of teams in the roleatldigstructure. In this application,
the formation of the role oblagion structure will hae been completed before theert is
posted to actiate the plan.

TeamsManual

Release5.5

24 10-June-05
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

Overview

Duringtheattachment/detachmeaoit sub-teamso therole obligationstructuretherole object
can be in diferent states. The role objestiss and is added to the container before the
attachment handshaking between team and sub-team has comple®ey,tbe sub-team
may still refuse the attachment. Similatlye role object)asts, hut is not actre when the
teamhasinitiatedadetachmenprocesshbecausé¢he sub-teammaystill beperformingtasksin
therole. Thedetachmentannotgo aheaduntil the sub-teanhasfinishedall of thetasksin the
role. Therole object is markd as actie when the role attachment procedure has completed,
and before the role detachment procedure has started. If dynamic attachment/detachment is
occurring in an application, it is not siafent only to look at the presence of a role object to
know whether or not the team it refers to is performing in that role, one should also test
whether or not the role objectAsT! VE.

If the task team is successfully established, the plan badybe executed. This plan body
illustrates hav the@ eamAchi eve statement can be used in combination withgtzeal | el
statemento coordinateéhebehaiour of thesub-teamsThe @ar al | el statemenbperatedike
a control structure in which the body statements xeewged as parallel tasks, while the
@ar al | el statementitselfis postponedintil its terminationconditionholds. In thisexample,
the aguments used in th@ar al | el statement are as folls:

mode Paral | el FSM ALL

This means thepar al | el statement will succeed after all the branche® lsacceeded,
but fail immediately if ag branch &ils. All ongoing sub-statements will be notified on
failure.

termination condition: f al se

Thismeanghattheabortmechanisns turnedoff andnotused(i.e. thereis notermination
condition). This is discussed in more detail in Agent Manual.

notification: nul |

Thisargumentis for a userdefinedJasa exceptionobject. If it is notnull, theexceptionis
thrown to actve branches that areexuting in parallel if thygare required to terminate
(i.e.if theterminationconditionis encountered)f thereis noterminationcondition,asin
this example, this can be null.

The@ eamAchi eve declarations usedto activateasub-tean{rolefiller) by postinganeventto
the sub-team. The team that posted tleneusinga eamAchi eve waits until the gent has
been processed.

In the Martian Vsit example, the first gument is th&ol eType instance obtained from the

Rol eTypeCont ai ner instance.Thesecondarguments anevent instancebeingsentto thesub-
team. In thexample, the eents are constructed using posting methods frentdactories

accessed via the sub-teanmneType instances.

Teams Manual

Release 5.5

10-June-05 25
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

Overview

Step 7: Compile and run the program
Step 7.1: Compilethe program

To compile the xample:

java aos. main.JackBuild -r -nmap=team

Step 7.2: Run the program
To run the program:

Theteamstructurecanbespecifiedoy usinga Java propertyto specifyaninitialisationfile that
contains details of the teams. The most straighHoitway of doing this is by associating a
file to be read in with theeam St ruct ure property via the b flag. In this @ample, the
initialisation file was shavn earlier Assuming that the file is calledenari o. def , the
program runs as foles:

java -DTeam Structure=scenario.def AlienProgram

The output from thexample is:

Team est abli shed for craft: Enterprise@fortal
crew Ral ph@#ort al
pi | ot Denni s@fport al
spokesper son Jacqui e@port al

Ral ph@#fortal on watch

Denni s@gportal flying craft to Earth

Denni s@gportal arriving at Earth

Hell o Earth. | am Jacqui e@%port al

TeamsManual

Release5.5

26 10-June-05
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

Teams

2 Teams

In Teams, a teans a distinct BDI reasoning entity which is characterised by the roles it
performs and the roles it requires others to perform. The formation\wratgam is

achieved by attaching sub-teams (either statically or dynamically) capable of performing the
roles required by the team. Note that a sub-team may be attached to more than one role in a
containing team. As the sub-teams of theegiteam may require roles to be performed on

their behalf, a multi-leel hierarcly (or perhaps a more comglstructure) may result. The

team is automatically pwided with objects to hold the actual sub-team selections. These
objects are knen asrole containers.

2.1 Team Definition

Team definitiongake the form shan belaw:
t eam TeamType extends Team

{

eam decl arati ons and definitions

/1t
/1 all JACK agent declarations can al so be used

/1 constructor
public TeanType(String nane)
super (nane) ;
}

Each component of this definition ispained in the follaing table:

Syntax Term Description

t eam A Teams Languageskword used to introduce a&am
definition.

TeaniType The name of your demedTeamclass

ext ends Team This partof thestatemenplaysthesamerole asin Java

—it indicateghattherole beingdefinedinheritsfrom a
Team's base class calleghm Therol e base class
implements all the underlying methods thatvile a
team's core functionality

Table 2-1: Components of agam definition

Teams Manual

Release 5.5

10-June-05 27
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

Teams

2.2 Team Declarations

Theteamtypedefinitionhasthe samerangeof declarationsvailableasanagentdefinition.In
addition, it has declarations that are specific to the team concept. These are the declarations
thatrelateto rolesrequired rolesperformedandbelief propagtionin theteamstructure The

team declarations are described in the ¥alhgy sub-sections.

#requires rol e Rol eType reference(m n, max)

The statement of the forfnequires rol e Rol eType reference(nin, max) IS a declaration
that teams of the type being defined require a sub-team or sub-teams vethe g,
Rol eType.

Technically the#r equi res rol e statement adds a field to the team class of nameence
and typerol eTypeCont ai ner. The aguments specify the upper anavir bounds for the
number of role performers. Aalue of zero forax specifies the datilt upper bound. A zero
upperboundis anunlimitedupperbound.A zerofor theminimumvaluespecifiesazerolower
bound.

TheRol eTypeCont ai ner type is created automatically by the compiler when there is a role
defined of typerol eType.
A #requires rol e Statement:

+ declares a local reference to the role container which will contain the instances of the role
objects for sub-teams attached to the team in this particular capacity;

* is an implicit declaration that the team performspé role; that is, it can and must
handle the eents posted within the role.

#perfornms rol e Rol eType

This statement is a declaration that the team of the type being defined is able to perform a
given role Rol eType.
A #performs rol e Statement:

* adds to the team alent handling and posting declarations specified in the role type
definition;

» implicitly requires plans to handle theemts declared as handled in the role type;
» implicitly allows plans to post thevents declared as posted in the role type.

TeamsManual

Release5.5

28 10-June-05
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

Teams

#synt hesi zes teandata Dat aType ref (rl.sl1l, r2.s2, ...)

Thisis adeclaratiorthatcanbefoundwithin ateamthatis aroletenderer. A roletenderewmill
have#requi res rol e declarations specifying that it requires sub-teams to perform particular
roles on its behalf.
The declaration has the form

#synt hesi zes teandata DataType ref(rl.sl, r2.s2, ...)

where

* DataType IS the type of theeandat a. This is described in the chapter Team Belief
Connections.

* ref is areference name.

* ri isthe required role container reference name.

* si isthe reference name of the data used in the correspaeigingesi zes teandat a
declaration in theol e definition.

Note that one or more belief connection sources are required. Belief atiopag described
further in the chapter ofeam Belief Connections.

#inherits teandata DataType ref (rl1.s1, r2.s2, ...)

Thisis adeclaratiorthatcanbefoundwithin ateamthatis arole performer. A role performer
will have #per f or s rol e declaration(s) specifying that it can perform a particular role on
behalf of a role tenderer

The declaration has the form
#i nherits teandata DataType ref(rl1.s1, r2.s2, ...)

where

* DataType IS the type of theeandat a. This is described in the chapter Team Belief
Connections.

* ref is areference name.

* ri isthe role type performed.

* si is the reference name of the data used in the correspenditgits teandat a
declaration in th&ol e definition.

Note that one or more belief connection sources are required. Belief atiopag described
further in the chapter ofeam Belief Connections.

Teams Manual

Release 5.5

10-June-05 29
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

Teams

2.3 Team Management

2.3.1 Team Construction

Thebaseclassteamhasaconstructotakingast ri ng agumenthatrepresentthenameof the
teamto beconstructedA teamdefinitionmustthusincludea constructothatinvokesthebase
class team constructor with the team name yided. As part of the construction, therkel
posts areanfor mati onEvent for establishing the team structure (alsownas the role
obligation structure)and areanst art Event to trigger application leel initialisation.

TheTeanFor mat i onEvent extendsvessageEvent , but uses BDI behaour with the follaving
BDI behaviour attributes set:

Behaviour Attribute | Setting Effect

Recover repost | The event is reposted on plaailure, so that
anotheiapplicableplancanbetried. If nonew
applicable plan is found, thenent
processingdils.

Appl i cabl eSet once The applicable set is computed only once,
rather than being recomputed after each plan
failure. On gent failure, the net applicable
plan is selected from the set computed
initially for the event.

Appl i cabl eChoi ce first The plan instance generated by #hees
pl an declaration that occurs first in the body
of the agent or capability is chosen.

Appl i cabl eExcl usi on failed | Plans that hae failed are rcluded from the
applicable plan set.

Pl anBi ndi ngs single | Oneapplicableplanof eachrelevantplantype
is added to the applicable plan set.

Table 2-2: The BDI behsiour attritutes for thereantor mat i onEvent

Thereis adefault planfor the TeanFor mat i onEvent . This planuseghedefaultteammanager
described in the ¢ section.

2.3.2 The Team Manager

Theteammanagers responsibldor coordinatingheassemblyf theteamstructure Thiscan
be done using team initialisation files, or in the code.

TeamsManual

Release5.5

30 10-June-05
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

Teams

2.3.3 Initial Team Formation

The team structure can be specified by usinya Pgaoperty to point to a file that contains
details of the teams required. The most straightiotway of doing this is by associating a
file to be read in with theeam St ruct ure property via the b flag. This flag is used when
running your application with va.

An example of the use of this flag folls:

java -DTeam Structure=fil enane ApplicationC ass

The team initialisation filés specified using th&COB Object Modelling Language. The
format of a team initialisation file is as fols.
<Team : nane " TeanNane"
:roles (
<Rol e :type "Rol eType" :name "rol ei nstance_ref"

fillers (
<Team : name " TeamNane" >

)

>

The followving table details the meaning of each of the syntactical elements in the team
initialisation file:

Entity | Label Code Entity Mapping
Team ' nane Class name of theeam.
:rol es An aggr@ation of role bindings.
Rol e type Class name of the role.
. nane A reference to the role instance as it appears in code.
fillers | A section that specifies the fillers of the role. This can be a
reference to a team that is specified later in the file or the
team can be fully specified inline.

Table 2-3: The syntactical elements in the team initialisation file

Teams Manual

Release 5.5

10-June-05 31
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

Teams

Note: In the abwe example, thereanNane for thefi | | ers is mentioned. This format requires
that thetreamNare be fully specified in another separasamentry in the team initialisation
file.

Alternatively you can specify the entire team structure inline.

This allows the entire team structure to be specified as one monaghtmentry or as a
number of distinct team/role relationships.

The initialisation file can specify a structure that is a superset of those team entities that you
declarein code.This allowsthe provision of acentral,predetermine@ndprecisestructurefor

the team. Using this method, the team structure can be better planned and changes can be
made quickly and easily in the one location.

Relationships described in the initialisation file as part of role and team relationships must be
legal according to thexésting #requires rol e, #perforns rol e and ClassTeamandRrol e)
declarations in code.

Note:

* Therol einstance_ref thatoccursin theinitialisationfile must matchthereferencename
that appears in youACLK code.

* TheRol eTypes must be gien with their package path (i.e. their full class names).

* TeamNameS must be full team instance names (i.e. the name plus the portal name).

2.3.4 Dynamic T eam Formation

It is possible to write custom team formation plans tonalloy part of a team structure to be
constructed dynamically at runtime. This is avpdul technique which alles, for xample,
dynamic specification of team structure at the topllehile the laver level structure is
handled by the team initialisation file.

To specifythatamanuallyformedteamis preferredaddaplanto theteam'splansetto handle
theTeanFor mati onEvent . The dehult plan has a rank of zero, so adding plan with the
standard plan ranls) will cause this defult to be werridden.

Theplanto handletheteamformationeventis thenresponsibldor specifyingthe structureof
roles as thgrelate to the current team. Specification of team structuodves attaching
teams to roles and roles to teams. This can bewachiey posting &ol eCont rol event with
itSassign(String role, String container, String actor) posting method.d detach
teamstheRol eCont rol eventis postedwith its revoke() postingmethod.Thisis discussedn
more detail in the chapter dieam Formation.

TeamsManual

Release5.5

32 10-June-05
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

Teams

2.3.5 Initialising Teams

If the plan that processes theanfor mat i onEvent succeeds, & art TeanEvent IS posted by
the kernel. Its purpose is to enable team-specific initialisations.

The deéult plan handlingt ar t TeanEvent succeeds without doing ahing.

Thisplancouldbeoverriddento startanapplication Any planthatreactso ast art TeanEvent
will doasthedefaultplanhasaplanrankof zero.Any new planyou write with adefaultrank
of 5 will therefore bexecuted in preference to the dek plan.

St art TeanEvent extendsevent, but uses BDI behaour with the follaving non deéult BDI

behaiour attritutes:

Behaviour Attribute

Setting

Effect

Appl i cabl eSet

Appl i cabl eChoi ce

Pl anBi ndi ngs

once

first

single

The applicable set is computed only once, rath
thanbeingrecomputedaftereachplanfailure.On
event failure, the net applicable plan is selected
from the set computed initially for theent.

The first plan instance generated by#bees
pl an declaration that occurs first in the body of
the agent or capability is chosen.

Only one applicable plan of each redat plan

type is added to the applicable plan set.

Table 2-4: The BDI behsiour attributes for thest art TeanEvent

er

Teams Manual
Release 5.5
10-June-05

Copyright © 2002-2012, Agent Oriented Software Pty Ltd

33

Teams

2.4 The Team Base Class

TheTeamclassis usedasthebaseclassfor teamslt providestheimplementation$or theteam
'lifetime’ andincludesthe coreteamcapabilities Thefollowing methodsareavailablewithin a
team:

void canPer f or nRol e(String role, boolean yes)

1

/I A support method whereby a team marks whether it actually can
/I perform a role. See also RoleContainer.active

1

Rol eCont ai ner fi ndCont ai ner (String role,String cntr)

1

/I Looks up the role container matching a #required role
/l declaration.

1

Rol eCont ai ner fi ndCont ai ner (String role)

1

/I Looks up the role container matching a #performed role
/l declaration.

1l

Rol e fi ndPerfor nedRol e(String team,String role,String cntr)
1l

/I Looks up the role object that for a performer represents the

/I activated obligation of performing the given role for the named
/[team, and that team's container.

1

Rol e fi ndRequi r edRol e(String team,String role,String cntr)
1

/I Looks up the role object that for a role tenderer represents the
/I activated role obligation of a team performing the given role in
/I the given container.

1

Rolelnfo[] getRoles()

1

/I Gets the Rolelnfo table for this team. This contains

/I the Rolelnfo object corresponding to the #requires role
/I statements, and is used by the default team formation procedure.

void post WhenFor ned(Event e)

1

/I This is the same as the postEvent method in an agent,
/l but it waits until the team formation stage is

/I complete before posting the event.

1

boolean rol eslnitiali zed(Rolelnfo[] roles)

1l

/I A reflection support method that uses the Rolelnfo table as
/I guide in determining whether required roles have been initialised.

1l

TeamsManual

Release5.5

34 10-June-05
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

Teams

Tean(String n)

/1

/1 The base class constructor. Al teaminstances need to be assigned
/1 unique names at construction. The teamw || be registered with the
/1 comruni cation system under that nane, and other agents/teans can
/1 thus send nessages to this teamusing that nane.

/1

Teams Manual

Release 5.5

10-June-05 35
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

Teams

36

TeamsManual
Release5.5

10-June-05
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

Roles

3 Roles

A rol e in Teams is a distinct entity which contains a description ofabiitfes that that the
two participants in a team/sub-team relationship mustig/go A role defines a relationship
between teams and sub-teams. The relationshypressed in terms of theent and belief
exchanges implied by the relationship.

The role construct functions atavevels:

1.

To specify the requirements of a role for the tenderer (the team requiring the role) and the
filler (the team praiding the role). This specification alls run-time checking of the

events that the role tenderers and fillers claim to handle and post. The role functions as an
interface definition that declares what an entity that fillsrargrole must be capable of

doing in terms of wents handled and posted, and in terms of belief pedjmey It is also
necessary for the role tenderer to be able to handl@®declared as posted, and post

events declared as handled in the role specification.

Like an inter&ce in Jaa, the role specification does not contain implementation — only a
description of thedcilities that the tw participants in the role relationship mustyide.

A role operates in a similar manner to a proxydujlitating sub-tasking between
participants in the role relationship. Specificatble instances arevaked in plans to
allow @ eamAchi eve statements to be issued to role performers.

3.1 Role Definition

Role definitions ta& the form shan belawv:

rol e Rol eType extends Role

decl arations of events handl ed by the role perforner
decl arations of events posted by the role perforner

decl arations of teandata synthesized fromthe role
per f or mer

decl arations of teandata inherited by the role perforner
decl arations of role container nethods and nenbers

ot her Java met hods and nenbers

e e
e e

Teams Manual

Release 5.5

10-June-05 37
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

Roles

Each component of this definition igptained in the follaving table:

Syntax Term Description

role A Teams Languageskword used to introduce a Role
definition.

Rol eType The name of your demedRol e class

ext ends Rol e This partof thestatemenplaysthesamerole asin Java

—it indicateghattherole beingdefinedinheritsfrom a
Teams base class called e. TheRol e base class
implements all the underlying methods thatvle a
role's core functionality

Table 3-1: Components of a Role definition

Thecompilergenerateswo classesrom arole definition. Thefirst classis theRol eType. The
second generated class class is a specialised "container” for instance®iodthe: called
Rol eTypeCont ai ner. Thislatterclassis usedin TeamsandTeamPlanso groupthe performers
of arole.

Whenateamis declaredo requirearole (e.g.Rol eType), theresultingJava classfor theteam
will include a field of the corresponding container tyge eTypeCont ai ner. The access to
individual role performers is indirect through such a container

Further in a teamplan, the declaration of using a role resultRsneaype member or

Rol eType array member local to the plan. Thiseg a modelling acntage by allwing
teamplans to operate with selected, transient sub-groupings thakistiguging and for the
purpose of carrying out the teamplan.

3.2 Role Declarations

The role functions as an intade definition that declares what an entity that fillssargrole
must be capable of doing in terms wéets handled and posted, and in terms of belief
propagtion. It is also necessary for the role tenderer to be able to haedis declared as
posted, and postrents declared as handled in the role specification.

In general, a role definition will require declarations for the Valhg:

* Events thattherole performemustbeableto handleandthattherole performemaypost
upward to the role tenderer

* Teandat a that the role performer may inherit from the role tenderer or that the role
tenderer may synthesize from the role performer

TeamsManual

Release5.5

38 10-June-05
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

Roles

* Rol e Contai ner methodghatallow thedefinitionof methodsandmembergo beaddedo
the automatically create@l eTypeCont ai ner class.

Each declaration is described in the faliog sub-sections:

#handl es event Event Type reference

This statement declares that a role performer must be capable of handmegtaof e

Event Type. Theref erence becomes a data field referring to the approprietatanstance
factory to be used by thAGQK kernel. It is through this reference that therg's posting
method can be accessed when it is necessary to createnaimstance to be sent from the
tendering team to the performing team.

The role gents are sub-taskl througha eamAchi eve statements. The role tenderer can sub-
task a role performer with the@ents declared as handled.

#posts event Event Type reference

This statement declares that a role tenderer must be capable of handliegtasf e

Event Type. r ef er ence becomes a data field of the generaesht Type class initialisation to

theappropriateeventinstanceactoryby the JACK kernel.lt is throughthis referencehatthe

event's posting method can be accessed when it is necessary to creatd arstance to be
sent from the performing team to the tendering team.

The role gents are sub-taskl througha eamAchi eve statements. The role performer can sub-
task a role tenderer with theents declared as posted.

#synt hesi zes teandata Dat aType reference

This is a statement for declaring a synthesizing team belief conneetienence identifies

the beliefset (of typeat aType) to be synthesized. There must be a corresponding declaration
for the teamdata to be populated through this belief padfmagin the team definition. It will

be of the form:

#synt hesi zes teandata SynthData data(rol e_ref.reference)
whererol e_ref refers to the reference in theequi r es declaration for the role in the
tendering team definition amdf er ence is the reference in th&ynt hesi zes declaration in

the role definition. The data is directed from the role performing sub-team(s) to the tendering
team.

This is described in more detail in the chaptefieam Belief Connections.

Teams Manual

Release 5.5

10-June-05 39
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

Roles

#inherits teandata DataType reference

For aninheritingbelief connectionarole definitionneeddo includean#i nheri ts teandat a

Dat aType ref er ence Statement detailing the type and reference name of the source beliefset/
teamdata concerned. This statement is similar testhe hesi zes t eandat a role statement,

but is directed from the tendering team to the performing team.

This is described in more detail in the sectionesm Belief Connections.

#cont ai ner net hod

This statement alles the definition of methods to be added toRki@TypeCont ai ner class.
The statement form is similar to a reasoning method AC&KJlan. An outline is gien
below:

#cont ai ner met hod
publ i c bool ean doSonet hi ng(i nt x)

{
}

Thegenerategol eTypeCont ai ner classextendsabaseclassnamedRol eCont ai ner. Thisbase

class preides a number of useful methods for inspecting the container and accessing the role
performers. These are described in the section oRotla€ont ai ner Base d ass. The

#cont ai ner net hod statement may be used to yioe userdefined methods in the role

container

#cont ai ner nenber

This statement alles the definition of data members to be added tedherypeCont ai ner
class.

The statement has the follong form:
#cont ai ner nmenber <vari abl e decl arati on>

For example,
#cont ai ner nenber public MyDataType ny _data = initial _val ue;

3.3 The Role Base Class

TheRrol e base class pwides implementations needed for maintaining role relationships
betweerteamsRole definitionsextendrol e with specificdeclarationsallowing thekernelto
review and enforce type safety in terms of ifiesm @ent handling and posting.

In a program, role objects V@three diferent uses.

TeamsManual

Release5.5

40 10-June-05
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

Roles

1. The roles performed by a team are represented by role objects.erténandling and
event posting of these roles are added to the requirements of the team instance that are
checled at runtime.

2. The roles required by a team are represented by role container objects, eduicblk
objects representing the particular fillers attached.

3. When a team task is started, by one team issu@gaimAchieve goal to a sub-team, then
the team task in the sub-team is associated with a pair of role objects:

— one role object is to represent the role that the sub-team is acting within; and

— anotherole objectis to representhe peer role thatthetenderingeamis automatically
attached to by virtue of utilising the role of the sub-team.

All threeuseswill usethespecificrole typesthatextendtheRrole baseclass.Thebaseclassin
itself merely contains common data membersyademmon methods and the service
methods that specific role classes wiénide.

TheRole class implements the follang interface:

String actor

I

/I Keeps the name of the team that the role object is a proxy for.
I

boolean mrror

1

/l'Is true when the role object identifies
/I the role tenderer.

1

Rol e peer

1

/I This is set only for role objects of team tasks, where it holds
/I the peer role object for the team task.

1

int state

1

/I Keeps the role object's activity state, which is one of INACTIVE,
/I ACTIVE or DETACHED

/I This is discussed further in the section on

/I Team For mati on.

1

String tag

1l

/Il ldentification of the role object. This is assigned at

/I role object construction to a unique identification number.
1l

Teams Manual

Release 5.5

10-June-05 41
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

Roles

TaskJunction tasks

1l

/I Keeps track of team tasks in progress under this role. Note that

/I for a team task, it is the peer of its role object that represents

/Il the role obligation, and thus where the tasks performed under that
/I obligation are tracked.

1

Cur sor noTasks()

1

/I Returns tasks.idle(). This allows a team to check whether
/I or not it is performing tasks within a particular role.

/I noTasks will be true when it is not performing any

/I tasks within the role.

1

void int set St at e(int n)

1

/I Method to set the role object's activity state.

/I This method would only be used explicitly for non-standard role
/I change procedures.

1

3.4 The RoleContainer Base Class

TheRolecontainer class is used as the base class for all role containers. It contains common
members and methods, and stubs tovaermden by specific role containers.

TheRoleContainer class implements the follong interface:

boolean active

1l

/[This is set to true by default. A team can set it to false to

/I prevent any new tasks from being started under that role. If it
/l'is set to false, any pre-existing tasks will continue to be

/I performed. The standard role assignment protocol looks at this
/I and refuses a role assignment when the performed role is not
/I active.

1

String nane

1

/I This is the reference name associated with this role container.
/I For a performed role, the reference name has the form

/" __HR_xxx_performs" where "xxx" is the role type for this

/I container. For a required role, the reference name is given by
/I the programmer.

1

String role

1

/I The type name of role objects that the container is intended for.
1

Team t eam

1

/I The team that the container belongs to.
1

TeamsManual

Release5.5

42 10-June-05
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

Roles

t mMmn=20

in
/1
/1 The m ni mum nunber of role objects that are expected to be in this
/1 role container.

/1

int max = 0

/1

/1 The maxi mum nunber of role objects that are expected to be in this
/!l role container, or zero for unlimted

/1

Role find(String actor)
Returns the role object for an actor if the container contains it.

/1
/1
/1 The rol e contai ner keeps roles tagged by the actor, and it can
/1 therefore only contain one role object for any given actor

/1

Returns the nunber of role objects added to the rol e container

Enuner ati on tags()

/1

/1 Returns the current role object tags as a java.util.Enuneration
/1 object. These are also the actors defined as role fillers.

/1

Rol e nextFiller()

/1
/1l Uses nextTag() to find an active role filler.
/1

t
/1
/1 The nextTag() mnethod nanages a | ocal enuneration of tags

/! to provide the available tags one at a tinme. If roles are added or
/1l renoved the enuneration is reset, otherwise it will cycle through
/1 the tags indefinitely.

/1

olean roleslnitialized()

Returns true if the m n/max constraints are mnet.

Teams Manual

Release 5.5

10-June-05 43
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

Roles

3.5 The Generated RoleT ype Class

A role definition forrol eType results in tw classes:
* aclass namerbl eType that xtends thezol e base class; and

* aclass namemrbl eTypeCont ai ner that extends therol eCont ai ner base class.
TheRol eType classes pnde runtime type checking methods that teenlel uses.

3.6 The Generated RoleT ypeContainer Class

The generategbol eTypeCont ai ner class gtendsRol eCont ai ner and preides a method
creat eRol e() for constructingrol eType objects within the conke of the container

TeamsManual

Release5.5

44 10-June-05
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

TeamPlans

4 TeamPlans

A t eanpl an specifiehow ataskis achiezedin termsof oneor moreroles.It typically contains
stepsdeterminingwhich of the sub-team&ominatedo performtherolesin therole obligation
structure will in fict perform each role (a process knaastask team formation). It also
dictates the steps directing each sub-team toaekjgecific goals.

Teams pruides additional constructs to support bothwtogis (the est abl i sh() reasoning
method and th@ eamachi eve statement). Th@ACK @ar al | el statement supports non-
sequential coordination of sub-team bebar. As team behaour (embodied in aeanpl an)
is specified in terms of roles, it is decoupled from the actual sub-teawvidgh@hus team
behaiour can be specified and understood independently of sub-teamdugha

4.1 TeamPlan Definition

TeamPlan definitions takthe form shan belav:
t eanpl an Pl anType extends TeanPl an

#handl es event Event Type event ref;

/1 possible declarations about required roles etc.
Pl an nethod definitions, reasoning nethods

and JACK Agent Language decl arations descri bing
rel ati onships to other conponents etc

~ I~
~ I~

/1 optional relevant nethod
static bool ean rel evant (Event Type event _ref)

/1 code to determine if the plan
/1 is relevant

}

/1 optional context method
cont ext ()

/1 logical condition to deternine which
/1 plan instances are applicable

}

/1 optional establish nmethod
#reasoni ng nmet hod establish()

// code to establish the task team for the task

Teams Manual

Release 5.5

10-June-05 45
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

TeamPlans

}

body()
{

~ e~~~
~ e~~~

@ st atenent s,

The plan body. This describes the actual steps
an agent perforns when it executes this plan.
It includes Java code, JACK Agent Language
and in additi on @eamAchi eve
statements for use within TeanPl ans.

Each component of this definition igptained in the follaving table:

Syntax Term Description

t eanpl an A Teams Languageskword used to introduce a
TeamPlan definition.

Pl anType The name of your demedTeanPl an class.

ext ends TeanPl an

#handl es event
Event Type event _ref

static bool ean
rel evant (Event Type
event _ref)

cont ext ()

#r easoni ng et hod
establ i sh()

body ()

This partof thestatemenplaysthesamerole asin Java
— it indicates that the teamplan being defined inherits
from a Teams Language base class catied! an.
TheTeanPl an base class pvides the generic plan
processingmplementatiorandtheoverridablestubfor
task team formation.

Specifiegsheeventtypethatthis planhandlesTheplan
mayplacefurtherconstraint®nits applicabilityvia the
rel evant () andcont ext () methods.

Code to determine if the plan is ned@t for the
instance of thewent being handled.

Logical condition to determine which plan instances
are applicable.

Code to establish the task team for the plan.

Describes the actualosk done by the team when the
plan is &ecuted. It is the plan's topvig reasoning
method. If it succeeds the plan succeeds. #ili the
plan fils.

Table 4-1:

Components of aéamPlan definition

46

TeamsManual

Release5.5

10-June-05

Copyright © 2002-2012, Agent Oriented Software Pty Ltd

TeamPlans

4.2 TeamPlan Declarations

The teamplan can useyaof the declarations that areaglable in ACK agent plans. In
addition thg can hae declarations relating to the roles required to establish the task team for
the plan and a declaration specifying the role for which the plan is applicable.

#requires rol e Rol eType rol econtainer_ref as role_ref

This declaration states that the current plan requires an instance of tke ¢ol@e. This
declaration is used in the teamplans of the role tendehere the reference to the role
container instanceol econt ai ner _ref can be used to access the role container to find an
appropriatanstanceof therole Rol eType to satisfythisrolein thetaskteam.This selectionof
theroleinstanceoccursduringthetaskteamestablishmenphaseDuringthisphasey ol e_r ef

will be set to refer to the selected performer and will subsequently be used as a reference to
this role instance in the plarol e_ref is used to issue@eamchi eve. This is because the

team gecuting the plan needs a reference to the role filler (via the role reference) in order to
issue the@ eanAchi eve.

The#requires rol e declarations are used instead of#hees rol e declarations when the
plan is to use the datiltest abl i sh reasoning method to select the role instance.

Eventsarepostedo therolefiller by the @ eamAchi eve statementia therole specificationAs
such,the programmeneednot declarethatthe eventbeinghandledoy therolefiller is posted
in the plan.

Each component of the equi res rol e declaration isxglained in the follaing table:

Component M eaning
#requires role Specifies that the plan medkuse of this role.
Rol eType The role type that is used by the plan.

rol econtainer _ref | Alocal reference that is used to perform operations on the
role container

rol e_ref A local reference that is used to perform operations on the
role instance.

Table 4-2: Components of ther equires rol e declaration

#requires role Rol eType rol econtainer_ref as role_ref (size)

Thisform of the#r equi res rol e declarations the sameasthe previousversionexceptthatit
specifies that the plan waneedssi ze performers from theol econt ai ner _r ef . During the
team establishment phase, tlagiabler ol e_ref will be set to an array that contains the
selected performers.

Teams Manual

Release 5.5

10-June-05 47
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

TeamPlans

#uses rol e Rol eType rol econtainer_ref as role_ref

Thisdeclaratiorstateghatthe currentplanmakesuseof aninstanceof therole Rol eType. The
declaration is used in the teamplans of the role tendehere the ef er ence to the role
container instanceol econt ai ner _ref can be used to access the role container to find an
appropriatanstanceof therole Rol eType to satisfythisrole in thetaskteam.rol e_ref will be
usedasareferencdo thisroleinstancen theplan.rol e_ref isusedto issuea @ eamichi eve.
This is because the teamxeeuting the plan needs a reference to the role filler (via the role
reference) in order to issue taeamichi eve.

The#uses rol e declarations are used instead of#hequi res rol e declarations when the
plan overrides the delultest abl i sh reasoning method to select the role instance.

Eventsarepostedn therolefiller by the @ eamAchi eve statemenvia therole specificationAs
such,the programmeneednot declarethatthe eventbeinghandledby therolefiller is posted
in the plan.

Component Meaning
#uses rol e Specifies that the plan med&kuse of this role.
Rol eType The role type that is used by the plan.

rol econtainer_ref | A local reference that is used to perform operations on the
role container

rol e_ref A local reference that is used to perform operations on the
role instance.

Table 4-3: Components of theuses rol e declaration

#uses rol e Rol eType rol econtainer_ref as role_ref (size)

This form of thetuses rol e declaration is the same as thevpras \ersion &cept that it
specifies that the plan waneedsi ze performers from theol econt ai ner _ref . During the
team establishment phase, tlagiabler ol e_ref will be set to an array that contains the
selected performers.

#uses rol e Rol eType rol econt ai ner_r ef

This lastanonymous role usage declaration form prdes direct access to the team's role
container for reiewing and selecting performers, and for teamelenanipulation of
resourcessuchasassignmenor revocationof roles.Thecontaineis referredto with its team
reference name, i.eol econt ai ner _ref.

TeamsManual

Release5.5

48 10-June-05
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

TeamPlans

#appl i cable_for role Rol eType rol ei nstance_r ef

Thisdeclaratioroccursin plansof therolefiller. It indicateghatthe planshouldnotonly react
to the @ent it handles, it should also test for applicability based on the currently emlt.

Component Meaning

#appl i cabl e_for role | Specifies that this plan is only applicable for certain
roles.

Rol eType The role type that this plan is applicable for

rol ei nstance_r ef A local reference that is used to perform operations on
the role instance.

Table 4-4: Components of theappl i cabl e_for rol e declaration

#appl i cabl e fromrol e Rol eType rol ei nstance_r ef

This declaration occurs in plans of the role tendér@rdicates that the plan should not only
reactto theeventit handlesijt shouldalsotestfor applicabilitybasedntherolerelationshigt

is currently acting undef his form of applicability declaration checks that it has a peer
relationship with the team that initiated t@eamAchi eve.

Component M eaning

#appl i cabl e_fromrole | Specifies that this plan is only applicable for certain
peer role relationships.

Rol eType The role type that this plan is applicable for

rol ei nst ance_r ef A local reference that is used to perform operations on
the role instance.

Table 4-5: Components of theappl i cabl e_from rol e declaration

4.3 Task Team Establishment

Thetask team establishment stage is an initiabecution stage for a teamplan, for the purpose
of establishingvhich particularrole performerdo usefor the plan. Technically thetaskteam
establishmenstages achiezedby areasoningnethodthatis performedprior to theplanbody
whenaplanis choserfor execution.Taskteamestablishmentayfail, in which casetheplan
fails.

Teams Manual

Release 5.5

10-June-05 49
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

TeamPlans

The task team establishment method is defined in a teamplan as a reasoning method:

#reasoni ng nmet hod establish()

{
}

There is a defult task team establishment methged aul t Est abl i sh(), which fills all the
#requires rol e usages with distinct performers. Jare selected by repeatedly calling the
next Fi | | er () method of the appropriate role containers. Thaweéstablishment only
selectsactiverole objects(discussedh thechapteron Team Formation), andrequiresall fillers

to bedistinct. The#uses rol e declarationg@rethenleft unfilled; for theplural casethearray

is constructed though left unfilled.

An explicit est abl i sh() reasoning methoavill override the defult task team establishment
method and be solely responsible for identifying and assigning task team role fillers.

Alternatively, an application maywerride a role containert@xt Fi | | er () method by means
of the#cont ai ner net hod statement in the role definition.

4.4 TeamPlan Members and Methods

TheTeamPlarhasaccesso thesamememberandmethodsiescribedn thechapteron JACK
Agent plans in thégent Manual. In addition, the @&amPlan has the easoni ng net hod
establ i sh() which was described in the section @ask Team Establishment.

4.5 Team Goal Handling

TheTeamModelling Frameavork includesall JACK BDI programmindacilities,andprovides
extra team goal handling support through the additi@&mchi eve statement.

The @ eamAchi eve statement is used in a teamplan to sub-task a goal for a team ménhgber
statement may then succeedail dlepending on whether the team member succeeded or
failed in reaching the goal. The infrastructure deals with the necessastearter

coordination, and in particulaiakes care of the required task control to deal with all cases of
success dilure, or @ception propaagtion.

The ACK @aral | el statement is used in a teamplan as a program control structure to sub-
task goals for seeral team members in parallel, or more precjdelprogress on seral

branche®f actvity in theteamplarin parallel.Thesuccessr failureof thestatementlepends

on the successes ardall@ires of the parallel branchevatved. The programmer specifies

whether all branches need to succeed or whether itfisisnf that at least one branch

succeed. The programmer also specifies whetheaitdav all branches to complete before

the statement completes, or whether to complete the statement as soon as possible (e.g. with
the first successful branch, if the success of one brancHimenij.

TeamsManual

Release5.5

50 10-June-05
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

TeamPlans

The@aral | el statemenprovidesavery powerful mechanisnior expressingeamplansThe
implied task synchronisation reduces therefof programming coordinated agty, in

particular while focusing on the "success paths". Regoprocedures, contingenplanning

and their diect on coordination, require careful design and use of the task control statements
available in ACK.

The underlying concept is that iailing a sub-task, a sub-team may qualify du&ife, i.e.

"fail for a reason”, for which the teamplan might include a contingdings is a slightly
different ececution model than BDI, wheraifing to complete a plan results in a reposting of
the goal, to allev another plan to be userReam tasks, the regery on filure needs to be
dealt with at the teamplarnvel as it, for instance, mayvalve re-tasking other sub-teams as
well asthesub-teanfailing its task.At thesametime, therecovery mayalsoallow someother
parallel tasks to progress without interrupts.

Further the choice of which particular response to enakthe team &l in reaction to the
failure of a sub-team to complete its task is a dynamic choice that may depend bgth on an
partial success the sub-team has ha@tds its goal, and the more global situation at hand,
including the current state of other sub-teams.

4.6 TeamPlan @-statements

The teamplan reasoning methods can ugeathe @-statements that aradable in ACK
agent plans. In addition thean combine th@ eamAchi eve and ACK @ar al | el Sstatements
to coordinateandsub-tasksub-teamshathave beenselectedo performparticularrolesaspart
of the teamplan's task team.

The @ eanichi eve statement is described in more detail in thda sBections.

4.6.1 The @ eamAchi eve Statement

The @ eamAchi eve declaratioris usedto activatea sub-tean{rolefiller) by postinganeventto
the sub-team. The team that posteddtamichi eve then vaits until the eent has been
processed.

Note: @ eam achi eve has been deprecated avdur of @ eamichi eve.

The@eamAchi eve has the follaing form:

@ eamAchi eve(rol ei nstance_ref, Eventlnstance)

Each parameter of the almdefinition is described in the folling table:

Teams Manual

Release 5.5

10-June-05 51
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

TeamPlans

Component M eaning

@ eamAchi eve Introduceshe @ eamichi eve statementwhichissuesa
directive to a sub-team, via the role.

rol ei nst ance_ref A local reference to the role object that defines the
relationship between the team (role tenderer) and sub-
team (role filler). Theol ei nst ance_ref is obtained
from one of the follwing statementsiuses rol e,
#requires rol e, #applicable_for role Or
applicable_fromrole.

Event | nst ance Event | nst ance IS a reference to avent derved from
MessageEvent . It is declared and instantiated as for a
normalJACK statemen(see for instance@end). The
event being sent to the sub-team (role filler) must b
declared as beinghandl es event by the role.

19%

Table 4-6: Components of th@ eamAchi eve Statement

TheEvent | nst ance usedn the@ eamichi eve is obtainedby accessingheeventdeclaratiorin
the role that the plan usesarfexample, a plan might contain the fallmg lines:

teanpl an Pl an9 extends TeanPl an {
#requires role Rol eA rol econtai ner as role_ref;

body ()
{

@éamAchi eve(role_ref, role_ref.eventref. posti ngMet hod());

}
}

This example would require that a rolepl eA, had declared arvent with an gent reference,
event ref . The posting method of thisent is called to generate aveat instance inline.

Optionally, theeventcanbepre-constructedndareferencekeptlocally in theplan. Thislocal
reference to thevent instance could be used to check thlee of @ent members after the
@ eamAchi eve has returned.

As mentioned prgously, @ eamAchi eve suspends thexecution of the containing teamplan
until theeventhasbeenprocesseth thesub-teamA @ eanachi eve terminatesuccessfullyf
the event has been successfully handled by the sub-team, othervaig® it f

TeamsManual

Release5.5

52 10-June-05
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

TeamPlans

The @ eamAchi eve Statement can also be used to pwshts back to the peer of the team
performing the plan, with the folldng syntax:

@ eamAchi eve(rol ei nstance_ref. peer, Eventlnstance)

4.6.1.1 Getting Return V alues Thr ough @ eamAchi eve

Thetechniqudor communicatingheresultsof the processingf a @ eamAchi eve eventto the
commanding team is as folls:

The sub-team plan handling areat sub-taskd by a@ eamAchi eve can change the fields of
its local copy of theevent.Whenthe plansucceedghesefieldsarecopiedbackinto the event
instance that as originally used in the teamplaxeeuting the@ eamachi eve. Thus, if a
handle to that\ent instance is maintained, it is then possible to vetrdd fields that hae
been changed.

4.6.1.2 Exception Pr opagation f or @ eamAchi eve

During the handling of anvent sub-taséd with@ eamachi eve, a team may thw a Jaa
exception. If this is not caught by the handling plan, it is prapatjback to the team that is
executing thea eamAchi eve statement in the folleing way:

* If the exception is areanExcept i on, then the samexeeption is thran to the teamplan
executing the@ eamAchi eve;

» If the original exception is not deankxcept i on, then areantrror is thravn to the
teamplan recuting the@ eamAchi eve.

A @eamAchi eve may also be interrupted by axception thravn to it by a parallel>ecution
branch in the teamplan. In this case, the infrastructure notifies the sighi-team so that a
TeamAbor t IS throvn to the plan handling th@ eamachi eve event.

Teams Manual

Release 5.5

10-June-05 53
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

TeamPlans

54

TeamsManual
Release5.5

10-June-05
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

Team Belief Connections

5 Team Belief Connections

The notion of team belief connections focuses am beliefsets of teams and sub-teams may
be connected through role relationshipsam Belief Connections are either directed
‘'upwards', synthesizing beliefs of sub-teams into a containing teamwoentdods', alleving
sub-teams to inherit beliefs from a containing team. In both instances, the connection is
between sub-teams that fill specified roles in the containing team's Rolat®hbligtructure
and the containing team.

The propagtion dynamics of a belief connection, both synthesizing and inheriting, are
asynchronous, and allev for source-end filtering tovaid or delay propaation, as well as
target end synthesizing. Daflt plans for source-end filtering are yided — these plans can
be wverridden by the user if desiredar@et end synthesis is implemented using: terdat a
construct.

5.1 Source Data Definition

A genericcapabilityfor propagtingchangess providedaspartof thebeliefsetinfrastructure.
This propagtion includes filtering when thepr opagat es changes declaration is used with
an optional gent type as described belo
Beliefset types to be connected must include declaration statements of thengpflarm:
#propagat es changes;
or
#propagat es changes Event Type;

in their definition.

A #propagat es changes Statemeninarksthatthebeliefsetmaybeasourcebeliefsetin ateam
belief connection, and it pvaes an implementation of the connection dynamics, so that
changes to the beliefset are progiggl correctly

Teams Manual

Release 5.5

10-June-05 55
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

Team Belief Connections

If an event type is specified in#pr opagat es changes Statement, it will be sub-tas#t to
allow the team to block propagon selectiely. Event types used for propaiipn in this vay
must implement ther opagat i onEvent interface:

public interface Propagati onEvent ({

public Event propagate(
String team
Tupl e newTupl e,
Tupl e keyDi scard,
Tupl e negat eDi scard,
Bel i ef State truthVal ue,
bool ean wasAssert

}

The parameters are described telo

Parameter Description

t eam The name of the sub-team whose change is
propagted.

wasAsser t Whetherthetupleconcernedvasassertear
retracted.

trut hval ue The resultinggel i ef St at e.

newTupl e The tuple concerned.

keyDi scard Theopposingupleretractedy virtue of the
key constraint, if ap

negat eDi scard The contradictory tuple being retracted, if it
was beliged.

Table 5-1: Parameters for ther opagat e method

Note thatpr opagat e returns anwent — this will typically be achied by defining a suitable
posting method in the usuaby and then woking the posting method from within

pr opagat e. An example of hav to construct such avent is preided in the synthesizing
belief connectionxample presented later in this chapter

If changes to a belief type are to be praad through the team hierayckhe fields must be
transportable. This means that either the fields must be decla®@@B bbjects in an api
file (refer to theJACOB Manual for more details) or themust be defined as avdaclass that
implementg ava. i o. Seri al i zabl e.

Note: If a propagted belief type is instantiated in a capability rather than at the ageit le
then the capability must declare that it posts the patpaygeent. If the user has not defined
the propagtion event, then thewent to be posted i®s. t eam ChangePr opagat i on.

TeamsManual

Release5.5

56 10-June-05
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

Team Belief Connections

5.2 Target Data Definition

Theteamdata construct is praided to encapsulate the belwur and data associated with the
targetendof ateambeliefconnectionEachteamdatas definedasatypelevel entity usingthe
keywordt eandat a, and it has the folleing form:

teandata Type ... {

/] decl arati ons

}

A teamdata is usually axtension of a normalACK beliefset, which pnades the
declarations of fields and queries. Thésasion part defines the bef@urs associated with
the receipt of change propatgns from the sourcesvolved in the connection.

A teamdata definition includes dweasoning methods:

e a#connection met hod which defines the betimur when teams are added to or reet
from the connection, and

» a#synthesis nethod which defines the computation to be performed on receipt of a
propagted belief. This method is wokedregar dless of whether the connection is
synthesizing or inheriting.

The#synt hesi s net hod IS invoked to receie a propagted belief. It has the follang
prototype:

#synt hesi s net hod(
String team
bool ean wasAssert,
Bel i ef State truthVal ue,
XXXX__Tupl e newTupl e,
XXXX__Tupl e keyDi scard,
XXXX__Tupl e negat eDi scard
)

XXxX__Tupl e is a placeholder for the type of the incoming tuple; it must be replaced with the
actual type. The parameters are described in theniolptable:

Teams Manual

Release 5.5

10-June-05 57
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

Team Belief Connections

Parameter Description

t eam The name of the sub-team whose change is
propagted.

wasAsser t Whetherthetupleconcernedvasassertear
retracted.

truthval ue The resultinggel i ef St at e.

newTupl e The tuple concerned.

keyDi scard Theopposingupleretractedy virtue of the
key constraint, if ap

negat eDi scard The contradictory tuple being retracted, if fit
was beliged.

Table 5-2: Parameters for thésynt hesi s method

The typical behaour is for the synthesis method to add (selety) the propaated tuple to
the beliefset part of the teamdata. This beliefset can be deeedif type to that of the
propa@tedbeliefset However, if multiple sourcesareinvolvedin aconnectionthosesources
must all be of the same type.

The synthesis method should be written for optimal performance. If a changegtimpag
update requires grlengthy computation, then the synthesis method should defer that
computation and instead post an asynchroneaistéor that purpose.

The#connecti on net hod is areasoningnethodwhichis invokedasynchronouslywhenasub-
team is added to or rewmed from a role, and when this results in a change to whether or not
there is a belief connection for that team. If the team belief is connected through multiple
roles, then only the first addition or the last remwill result in a belief connection change
and an associatedonnecti on net hod invocation. It has the follsing prototype:

#connecti on net hod(bool ean added, String team

The parameters are described belo

Par ameter Description

added Whether the sub-team has been added tg or
removed from the role.

t eam The name of the sub-team that has been
added to or rem@&d from the role.

Table 5-3: Parameters for theconnect i on method

TeamsManual

Release5.5

58 10-June-05
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

Team Belief Connections

#connecti on net hod and#synt hesi s met hod invocations are synchronized, ensuring that a
team performs only one such method at a time.

5.3 Belief Connection Dynamics

The computation fl@ in a team belief connection is as folis

1. The starting point is that a beliefset which pragiag change is updated. This defines the
belief detail to be propagted.

2. Thebeliefsetinvolvedneeddo includea#pr opagat es changes Statemenin its definition.
That statement results imaddb() callback that posts a&eknel @ent, named
ChangePr opagat i on, for propa@ting the change.

— The kernel eent is aBDI Goal Event , SO as to al user code towv@rride the whole
propagtion procedure at the source end.

— Thekernelplansfor handlingchangePr opapagt i on have arankof 4 or less,to allow a
user's plan at the dailt plan rank, which is 5, to & precedence. If the user plan
fails, the dedult handler will be imoked.

3. The change propagjon runs as a parallel task for the source beliefset team. Tddtdef
handler reiews the role relationship and determines the set of teams to which the belief
detailshouldbepropagted.lt thenspavnsanew, paralleltaskfor eachtargetteamto deal
with pertarget-team filtering and the actual inteam transfer

4. The#propagates changes Statement may nominate areat type for the é&rnel to use so
as to perform a pdarget-team source end projaign filtering. When anvent type is
nominatedthedefaulthandlerwill @ubt ask thateventasa meansf decidingwhetheror
not to propagte the change to avgn team, and when this proign is to occurThe
former is decided by thevent succeeding oriling, and the latter is decided by means of
delaying success.

5. The perteam change propagon task ngt transfers the belief detail to thedat team.
This is achiged by sending Br opagat i onMessage event to the taget team. The standard
way of handling thiswent uses the teamdata elements as described in points 6 and 7 that
follow. However, it is possible for a user to pide a team with special purpose plans to
handlerr opagat i onMessage eventsin otherways.Suchspecialpurposeplansshouldbe of
higherprecedenceankthanthestandarglanwhich hasaprecedenceankof 5. Thefields
of thePr opagat i onMessage event are described in the foling table.

Teams Manual

Release 5.5

10-June-05 59
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

Team Belief Connections

Parameter Description

from The name of the sub-team whose change is
propagted.

source The reference name of the source beliefset.

wasAsser t Whetherthetupleconcernedvasassertear
retracted.

truthval ue The resultinggel i ef St at e.

newTupl e The tuple concerned.

keyDi scard Theopposingupleretractedy virtue of the
key constraint, if ap

negat eDi scard The contradictory tuple being retracted, if fit
was beliged.

Table 5-4: Fields of therr opagat i onMessage event

6. Upon recering a change propagon notification, the tget team first ensures change
propagtion sequencing byaiting on a semaphore. This semaphore is also used by
connectiormethodcalls,to ensurehata teamonly performsone#connect i on net hod Or
#synt hesi s net hod at a time.

7. Inturn, the taget team propaion task completes the propdign by irvoking the
synt hesi s net hod Of the teamdata wolved, one at a time, foleed by a signal to the
sequencing semaphore.

All distributionfiltering is doneatthe sourceendof a changepropagtion,andall synthesizing
computation is done at the gat end. Furtheiat the taget end, the change propaigns are
sequential, allwing only one change propaigon at a time to occur

5.4 Synthesizing Belief Connection Definition

A synthesizing team belief connection maps sub-teams' beliefs into corresponding beliefs at
the containing teamVel. This is achieed by propagting information from the sub-team
beliefsets to the containing team(s). In order to create a synthesizing team belief connection,
appropriate declarations must be included in the

» role that preides the sub-team/team linkage
» the sub-teams that are the source for the connection
* the team that is the @t for the connection.

TeamsManual

Release5.5

60 10-June-05
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

Team Belief Connections

In addition
» ateamdata definition must be yiaed for the taget team
* the source beliefsets must incluge opagat e changes Statements.

5.4.1 Role Declarations

To associatasynthesizindgelief connectiorwith arole, thefollowing statementorm s used:

#synt hesi zes teantdata stype sref;

stype andsref identify asource beliefset that will be wolved in a synthesizing belief
connection — the tget for the connection isot specified. Multiple declarations are alied
within a role definition.

Recall that a role defines a team/sub-team iterf\Wthin a role type definition, the

#synt hesi zes t eandat a declaration declares thatyasub-team that performs this role must
provide a data item namedef of typestype. Likewise, ay team that requires this role
shouldhave atargetdatadeclaratiorthatinvolvesthis particulardataitem or it will beunable
to receve the propagted beliefs.

5.4.2 Source Declarations

A sub-teanbecomes sourcean asynthesizingeliefconnectiorby filling arolethatcontains
a#synt hesi zes teandat a declaration. Thus the sub-team must include an appropriate
#performs rol e declaration and fill the role in the containing team'’s Role @iodig

Structure. Also a data item with the type and the reference specified within the role must be
defined either directly within the sub-team definition, or indirectly through the sub-team's
capabilitystructure The dataitem canbedefinedeitherthrougha#pri vat e dat a declaration,
a#exports data declaration in a capabilita#synt hesi zes t eandat a or through a

#inherits teandata declaration. The latter tvcases require that the sub-team is thgetar

for another belief connection.

5.4.3 Target Declarations

A teambecomestargetin asynthesizindelief connectiorby requiringarole thatcontainsa
#synt hesi zes t eandat a declaration. Thus the team must include an appropsiat@i r es

rol e declaration and &ynt hesi zes t eandat a declaration that binds the data item specified
in the role with the role container that contains the sub-teams that fill the role.

Teams Manual

Release 5.5

10-June-05 61
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

Team Belief Connections

A #synt hesi zes t eandat a declaration has the follng form in the team definition:

#synt hesi zes teandata ttype tref(rcrefl.srefl,rcref2.sref2,...);

where

ttype IS the type of the tget teamdata
tref is the name of the tget teamdata reference
rcrefi is the name of the ith role container reference

srefi is the name of the ith source data item reference which is to be synthesized.

As indicatedabove, teamdataanbe synthesizedrom beliefsspecifiedn morethanonerole.
In this casemultiple #r equi res rol e statementsvill berequiredin theteamandthetypesof
the source beliefs must be the same. Notet that refers to the type of the tpat teamdata,
not the type of the source data.

Recallthattheteamdatdypeis typically achiezedby extendinga beliefsetype.Dependingn
the application, that beliefset type may be the same as the source data type or it may be
different.

The aboe declaration results in the creation of a teamdata instance. The intention is that the
data to be contained in this instance will bevted solely from the data sources for the
connection — hence there is no mechanism to populate the instance at construction time. This
teamdatanstances thenaccessibléo thetargetteamandthroughthe#uses dat a declaration,

to thetargetteam'scapabilitiesandplansasthoughit hadbeendeclaredas#pri vate data. In
particular a teamdata instance can be used as a source belief for another belief connection.

The#synt hesi zes t eandat a Statement results in code that ensures that when role fillers are
added to or remed from ag of the indicated role containers the corresponding beliefset
changepropagtionpathis addedor removed. Theactualsynthesizingcomputations defined
separately (via thesynt hesi s net hod of the teamdata definition). Although a connection is
defined in terms of role filling, it is maintained on a sub-team basis. Thus if a connection
involvesmultiple rolesandonesub-teanfills morethanoneof theroles,a changeo thatsub-
team's beliefset is propaigd only once to the teamdata, and not once for each role container
that contains the sub-team.

5.4.4 An Example

Suppose that gect i on team requires sol di er role and ari vat e team performs the

Sol di er role. Furthermore, suppose that thevat e team maintains its current location and
ammunition leel in beliefsets of typeocati on andAmuni ti on respecirely. A synthesizing

team belief connection that will enable gketi on team to monitor the location and

ammunition leels of its members is to be established. This data will be stored in teamdata of
typesecti onLocati on andsSect i onAnmuni ti on respectrely.

TeamsManual

Release5.5

62 10-June-05
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

Team Belief Connections

1. Source data definition

TheLocati on andammuni ti on beliefsets could be defined as folg

bel i efset Location extends QpenWrld {
#val ue field double x;
#val ue field double y;

#l i near query get(logical double x,logical double y);
#propagat es changes;

bel i efset Ammunition extends QpenWrld {
#key field String type;
#value field int count;
#i ndexed query get(logical String t,logical int c);
#i ndexed query get(String t,logical int c);
#propagat es changes AmmopbChangePr opagati on

Note that the latter beliefsetmuni ti on, propagtes changes through the

AmmoChangePr opagat i on filter event When a change occurs, therikel will sub-task an
instanceof this event,for decidingwhetherandwhenthe changepropagtionis to occur The
AmmoChangePr opagat i on event will be similar to the folling:

event AmnmoChangePr opagati on extends BDI Goal Event
i mpl enents Propagati onEvent {

#posted as
report(...)

}

public Event propagate(String team
Tupl e newTupl e,
Tupl e keyDi scard
Tupl e negat eDi scard,
Bel i ef State truthVal ue,
bool ean wasAssert)

/1 just call the posting nethod ..
return report(...);

}
}

The application can then include a plan to handleathisChangePr opagat i on event. The
change propagion will then occur only if and when the plan succeeds.

Note: The#propagat es changes declaration results inrddb() method associated with the
beliefset.This meanghatthe programmemustnotincludetheir own noddb() methodwithin
the beliefset.

Teams Manual

Release 5.5

10-June-05 63
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

Team Belief Connections

2. Tarmget data definition

Thesecti onAmmuni ti on beliefset is teamdata that accumulates:thet of sub-team's

Ammuni ti on beliefsets. A possible definition for this is outlined lelo
t eandat a Secti onAnmuniti on extends Amunition {

#connecti on net hod(bool ean added, String team

{
}

#synt hesi s net hod
(String team
bool ean asserted,
Belief State tv,
Ammunition_ Tuple is,
Ammuni tion__Tupl e was,
Ammuni tion__Tuple | ost)
| ogical int current;
if (get(is.type,current)) {
/1 binds current
} else {
current. unify(0);

}

if (is!=null) {
int delta = is.count;
if (lost '= null)

delta -= |l ost.count;
add(is.type, current.getValue() + delta);

}
Secti onLocati on makes use oflicit replication as folla/s:
t eandat a SectionLocati on extends Location {
Hasht abl e | ocati ons = new Hasht abl e();
Location location(String tean)

return (Location) |ocations.get(team;

#connecti on met hod(bool ean added, String team

if (added) ({
if (locations.get(team) == null) {
Location location = new Location();
| ocati on. attach(handl er);
| ocations. put(team | ocation);

} else {
| ocations. remove(team;

64

TeamsManual
Release5.5
10-June-05

Copyright © 2002-2012, Agent Oriented Software Pty Ltd

Team Belief Connections

#synt hesi s net hod
(String team
bool ean asserted,
Belief State tv,
Location_ Tuple is,
Location__Tupl e was,
Location__Tuple | ost)

{
Location location = (Location) |ocations.get(team;
if (asserted)
| ocation.add(is, tv);
el se
| ocation.remove(is, tv);
doubl e sumx = 0;
double sumy = O;
int n = locations.size();
for (Enuneration e = |ocations.elenents();
e. hasMoreEl enents();) {
Location | ocation = (Location) e.nextEl enent();
| ogi cal double x;
| ogi cal double vy;
| ocation. get(x,Yy);
sum x += X. get Val ue();
sumy += y.getVal ue();
}
sumx /= n ;
sumy /= n ;
add(sum x, sumy);
}

}

Note: The code in the above example also invokes the at t ach() method when a belief
replication beliefset is created, providing the local handl er as the argument. This statement is
aJACK detail that is hidden in the generated code for beliefsets, but which must be dealt with
explicitly for belief replication. The purpose isto attach the new beliefset object to the correct
Event Reci pi ent (i.e. the entity that isto handle any event being posted by the beliefset),
which in practice is the enclosing team.

In the example, thelocal handl er isinherited from the ultimate base class, Bel i ef Set , viathe
explicit base class, Locat i on. Theloca handl er isthus available since the synthesized belief
extends a beliefset. In the general case, the synthesized belief may need to capture the

Event Reci pi ent explicitly by implementing the Event Sour ce interface, which in fact isthe
attach() method.

3. Roledeclarations

The sol di er role could contain the following declarations:
role Sol di er extends Rol e {

#synt hesi zes teandata Location | ocati on;
#synt hesi zes teandata Amrunition anmo;

}

Teams Manual

Release 5.5

10-June-05 65
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

Team Belief Connections

4. Source declarations

Theprivat e team needs to perform tbe di er role and to define the data sources specified
within that role:

team Private extends Team {
#performs role Sol dier;

#private data Location |location();
#private data Amunition ammo();

}
5. Tamget declarations

Thesect i on team could incorporate declarations similar to the fohg:

t eam Section extends Team {
#requires role Soldier left(3,3
#requires role Soldier right(3,
#requires role Soldier depth(3

)
)

#synt hesi zes teantdata SectionLocation |ocation
(left.location, right.location, depth.location);

#synt hesi zes teandata Secti onAmmuniti on amo
(left.amm, right.amo, depth.anmp);

}
5.5 Inheriting Belief Connection Definition

An inheriting team belief connection maps a team belief into separate sub-team beliefs.
Conceptually this is done by means of a distidn computation that translates the team

belief indvidually for each sub-team, folled by a (virtual) replication of the translated

belief into the corresponding sub-team's belief. Often a sub-team will perform a role for one
team only but in the general case the sub-team may fill the same role fgrtewms and the
inherited belief connection will combine belief updates from all the teams in the sanasw

a synthesizing belief connection.

In order to create an inheriting team belief connection, appropriate declarations must be
included in the

* role that preides the team/sub-team linkage

* the teams that are the source for the connection

» the sub-teams that are thegetrfor the connection.

In addition
» ateamdata definition must be yiced for the taget sub-teams

» the source beliefsets must incluge opagat es changes Statements.

TeamsManual

Release5.5

66 10-June-05
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

Team Belief Connections

5.5.1 Role Declarations

To associate an inheriting belief connection with a role, theviollp statement form is used:

#inherits teandata stype sref ;

stype andsref identify asource beliefset that will be wolved in an inheriting belief
connection — the tget for the connection isot specified. Multiple declarations are alied
within a role definition.

Recallthatarole definesateam/sub-tearnmterface Within arole typedefinition,a#i nherits

t eandat a declaration declares thatyateam that requires this role mustyide a data item
namedcksr ef Of typest ype. Likewiseary teamthatperformsthis role shouldhave atargetdata
declaratiorthatinvolvesthis particulardataitemor it will beunableto receve the propagted
beliefs.

5.5.2 Source Declarations

A teambecomes sourcein aninheritingbelief connectiorby requiringarole thatcontainsa
#inherits teandata declaration. The team must therefore include an appropriedei r es

rol e declaration. Also, a data item with the type and the reference specified within the role
must be defined either directly within the team definition, or indirectly through the team's
capabilitystructure The dataitem canbedefinedeitherthrougha#pri vat e dat a declaration,
a#exports data declarationn acapability a#synt hesi zes t eandat a declaratioror through
a#inherits teandat a declaration. The latter twcases require that the team is thgdafor
another belief connection.

5.5.3 Target Declarations

A sub-teanbecomestargetin aninheritingbelief connectioroy filling arolethatcontainsa
#inherits teandata declaration. Thus the sub-team must include an approppiateor ns

rol e declaration and fill the role in the containing team's Role @fdig Structure. The sub-
teammustalsoincludea#i nheri ts t eandat a declaratiorthatbindsthedataitem specifiedn
the role with the role type. Note that this bindindeds to that in a synthesizing belief
connection, as a role performer does neehaccess to the role container

Teams Manual

Release 5.5

10-June-05 67
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

Team Belief Connections

A #inherits teandata declaration has the follang form in the sub-team definition:
#inherits teandata ttype tref (rtypel.srefl, rtype2.sref2, ...);

where
ttype is the type of the tget teamdata,

tref is the name of the tget teamdata reference,
rtypei is the type of the performed role, and

srefi is the name source data item in the performed role that is to be inherited.

As indicatedabove, teamdataanbeinheritedfrom beliefscontainedn morethanonerole.In

this case, multipleper f or s rol e statements will be required in the sub-team and the types
of the source beliefs must be the same. Notet that refers to the type of the tpet

teamdata, not the type of the source data.

Recallthattheteamdatdypeis typically achiezedby extendingabeliefsettype;dependingn
the application, that beliefset type may be the same as the source data type or it may be
different.

The aboe declaration results in the creation of a teamdata instance. The intention is that the
data to be contained in this instance will bevted solely from the data sources for the
connection — hence there is no mechanism to populate the instance at construction time. This
teamdatanstanceas thenaccessibléo the sub-teamandits capabilitiesandplansasthoughit

had been declared as i vat e dat a — in particulayit can be used as the source belief of

another belief connection.

The#i nheri ts t eandat a Statementesultsin codethatensureshatwhenrolefillers areadded

to or rem@ed from ag of the indicated role containers the corresponding beliefset change
propagtion path is added or rewed. The actual synthesizing computation is defined
separately (via thesynt hesi s net hod of the teamdata definition). Although a connection is
defined in terms of role filling, it is maintained on a sub-team basis. Thus, if a connection
involves multiple roles and one sub-team fills more than one of the roles, a change to the
containing team's beliefset is prop#gd only once to the sub-team's teamdata, and not once
for each role container that contains the sub-team.

5.5.4 An Example

Supposéhata conpany teamrequiresaFi r eSupport roleandapl at oon teamcanperformthe

Fi reSupport role. Furthermore, suppose that thepany team maintains the current enemy
location in a beliefset of typecat i on. An inheriting team belief connection that will enable
thepl at oon teamto monitortheenemylocationis to beestablishedThis datawill bestoredn
teamdata of typenenyLocati on.

TeamsManual

Release5.5

68 10-June-05
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

Team Belief Connections

1. Source data definition

TheLocat i on beliefset definition desloped for the synthesizing belief connectigaraple
can be used:
bel i efset Locati on extends OQpenWrl d {

#val ue field double x;
#val ue field double y;

#1 i near query get (logical double x,|ogical double y);
#pr opagat es changes;

}
2. Tamget data definition

TheEnenyLocat i on beliefset is teamdata that mirrors the enemy location maintained by the
Conpany team. A possible definition for this is outlined belo

t eandat a EnemyLocation extends Location {

#connecti on met hod(bool ean added, String team

{
}

#synt hesi s net hod
(String team
bool ean asserted,
BeliefState tv,
Location__Tuple is,
Location__Tupl e was,
Location__Tuple lost)

3. Role declarations

TheFi resupport role could contain the foeing declaration:

rol e FireSupport extends Role {
#i nherits teandata Location enenylLocation

}
4. Source declarations

Theconpany teamrequiresateamto performtheri reSupport role andit mustdefinethedata
sources specified within that role:

t eam Conpany extends Team {
#requires role FireSupport fireSupport;

#iprivate data Location enenylLocation();

Teams Manual

Release 5.5

10-June-05 69
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

Team Belief Connections

5. Target declarations

The PI at oon team needs to perform the Fi r eSupport role and to create the teamdata instance
to receive the enemy location:

team Pl at oon extends Team {
#performs role FireSupport;

#i nherits teandata EnenyLocation reportedEnenyLocati on
(Fi reSupport.enemylLocation);

TeamsManual

Release5.5

70 10-June-05
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

Team Formation

6 Team Formation

This chapter describes team formation. It includes a description of the process that occurs
when sub-teams are attached to the role atiig structuref a containing team. During the
process of attachment/detachment, the associated role instances pass #riouglstates.

This process of attachment is carried out during the initialisation phase when the team is
constructedln addition,it is possibleto have sub-teamslynamicallyattached/detached the

role obligation structure while the application is running.

Teams hee a capabilityTeancap. This capability includes plans that handle the initial team
formationwith thesub-taskinganddefaulthandlingof aTeanfor mat i onEvent , andtheposting

of astart TeanEvent . The initialisation process is triggered automatically as part of the team
instance construction.

An applicationmayoverridethehandlingof a Teanfor mat i onEvent simply by definingaplan
that handles thevent (the dedult plan is of precedence rank 0, and thereforenepten —
with standard rank 5 — will ke higher precedence.)

TheTeantap capabilityalsoincludeshandlingof Rol eCont r ol events.Thesesventsareposted

by the application kel to assign or ke a sub-team as a role performi&ihen thg are

posted, the infrastructure layer posts additiomahés that result in gmeyotiation and
detachment/attachment required to connect a sub-team to a containing team. The application
layer may include plans that areahved in the ngotiation and/or react to the success or

failure of attachment/detachment. THaeeCont r ol events therefore alles dynamic

modification of role obligtion structures during the lifetime of an application.

If theapplicationlayerrequiresanon-JACK agent/team(e.g.anagentwrittenin analternatve
language) to perform a role, the application codeld/ need to carry out the attachment and
negotiation on both sides of the relationship without the useiafcont rol events.

6.1 RoleType Instance State Management

A Rol eType instance can be in one of three state&sdTi VE, ACTI VE or DETACHED). When the
Rol eType Object is created, it is initially in thecTi VE state. Havever, it will not be aailable/
visible until it is actually added to a role contairiéne posting of &ol eControl event
constructed using thesi gn posting method results in an attempt to addkéheType object
to thespecifiedrole containerlf theobjectis successfullyaddedo therole containerthenthe
object will be in thexcTi VE state.

Whentheteamrevokesarole,theRol eType objectis placedin the DETACHED state. Thismeans
that aly plans that already ke access to the object can continue to access the objexi b
new actiity shouldbeallowedaccessheobject.lt istheusergesponsibilityto checkthestate
of theRol eType Object.

Teams Manual

Release 5.5

10-June-05 71
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

Team Formation

TheRol eType object will change from theeTACHED to thel NACTI VE state when the team
filling the role finishes processing all tasks associated with the role. It will also beegmo
from the role container at that point.

The interaction diagram in the folling figure illustrates the interaction between a tendering
team and a suggested role performer for processing an ASSIGN action.

RokContoif ARSTGN)

SubTeanProooo Il.“A.SSIGN];_

_ ReleEvem(QUERY)
Py
fail pazz
ShbTearProtocol(REJECT)
RolcE vem(REJECTED) 1 |
| SubTeanProtocolf ACCEFT)
Role Evemf ASSIGNED) | | _ RgleEvemrASEIGHN)

Figure 6-1: Interactions for adding a role performer

Onthetenderingeamside,the ASSIGNactionis initiatedvia aRol eCont r ol (ASSI GN) event,
that asks for the addition of a role performer toveigiRoleContaineiT his is a synchronous
request, and the RoleControl handler does not return control tostkenig task after hang
issued thesubTeanPr ot ocol (ASSI G\) message, i waits until the actor team has processed
and replied to it.

On the (suggested) performer side, the infrastructure layer queries the applieation le
whether the suggested addition is to be accepted. This is done by sub-tasking a

Rol eEvent (QUERY) event, to be handled by the applicationdleand passed oaited. If the

event handlingdils, the suggested action is understood as rejected, and a

SubTeanPr ot ocol (REJECT) message is sent to the tendering team. This results in a transition
for theRol eType instanceo Voi d state(i.e.therol eType instancds markedasbet ached andit

is remaed from therol eTypeCont ai ner). Further arol eEvent (REJECTED) is posted on the
tenderer team side, so as toallapplication lgel reasoning about the rejected addition.

TeamsManual

Release5.5

72 10-June-05
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

Team Formation

If thehandlingof theRol eEvent (QUERY) eventsucceedshesuggestedctionis understoo@s
acceptedanda subTeanPr ot ocol (ACCEPT) messagés sentto thetenderingeam.This results
in aRol eType instance state transition 46t i ve, and the posting of Rol eEvent (ASSI GNED)
event,soasto allow applicationlevel reasoningabouttheacceptedddition.Onthe performer
side, aRol eEvent (ASSI G\) event is posted to notify about a successful assignment.

The following figure illustrates the interaction between a tendering team and a suggested role
performer for processing a REKE action.

SubTeanProtocallREVOKE)

RoleContm K REVO E@E_y;1
| =

: fawait all tasks corapleted)

| SubTenn Potocall A TCERT)
RaleEve iR EM':]"‘-:CE_D_]

. RaleEvemiRERMOIYE]

Figure 6-2: Interactions for remang a role performer}}

Onthetenderingeamside,the REVOKE actionis initiatedvia aRol eCont r ol (REVOKE) event,
that asks for the remal of a role performer from ag@n RoleContaineiThis is a
synchronousequestandthe RoleControlhandlerdoesnot returncontrolto theinvoking task
directly after haing issued theubTeanPr ot ocol (REVOKE) message, Ui waits until the actor
team has processed and replied to it. Firstigaer, therol eType instance concerned is
marked aset ached, to block subsequent attempts to issue further team tasks to the role
performer

On the performer side, the infrastructure thexitsvuntil all tasks under the rolevesbeen
completedbeforereturninga SubTeanPr ot ocol (CONFI RV) messagéo therole tenderingeam.
As application lgel notificationsRol eEvent (REMOVE) andRol eEvent (REMOVED) events are
posted on the performer and tendering sides respscti

6.2 Role Handling Events and Messages

SubTeanPr ot ocol [sent and handledsent]

ThesubTeanPr ot ocol event is used for the role handling protocol between teams. This is
an infrastructure messageeat that imot used at applicationvel.

Teams Manual

Release 5.5

10-June-05 73
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

Team Formation

Rol eCont rol [handled gent]

TheRol eControl event is posted by the applicatiowéd for assigning or koking a sub-
team to be a role performérhe samewent type is used for both ASSIGN and RENE
actions, and it is defined with a range of posting methods.

event Rol eControl extends Event {
#posted as
assign(String role, String container, String actor)
/1 role is the role type
/1 container is the reference to the role container
/1 actor is the team nane (to be assigned)

#posted as

revoke(String role, String container, String actor)
/1 role is the role type

/1 container is the reference to the role container
/1 actor is the team nane (to be revoked)

}
Rol eCont r ol (ASSI GN)

The ASSIGN actionwent is constructed through thssi gn posting method. This is
handled by the infrastructure, resulting in the team interaction to establiskehe gi
actor as role fillerFor example:

i mport martian. Crew,

t eanpl an RescueMarti an extends TeanPl an {
#handl es event Rescue re;
#posts event Rol eControl rc;
f#fuses interface Team t eam

body()
{

/1 post a RoleControl event to add a sub-team

/! to the role obligation structure

i f(@ubtask(rc.assign("martian.Crew', "cr", re.nane)))
Systemout.println("rescued "+re. nane);

el se
Systemout.println("could not rescue "+re.nane);

}
}

Rol eCont r ol (REVOKE)

The REVOKE action gent is constructed through thevoke posting method. This is
handledby theinfrastructureresultingin theteaminteractionto revoke thegivenactor
as role filler

TeamsManual

Release5.5

74 10-June-05
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

Team Formation

Rol eEvent [posted gent]

The infrastructure posts Role&iwt ezents to connect with the applicationééfor
notifications and applicationJvel reasoning. Thevent is a polymorphicvent that is
posted in diferent modes for diérent purposes.

event Rol eEvent extends BDI Goal Event {
#set behavi or Recover never;

public String team
public String container;
public String role;

public int node;

public final static int QUERY = -1;

public final static int REJECT = O;

public final static int ASSIGN = 1;

public final static int REJECTED = 2;
public final static int ASSIGNED = 3;
public final static int REMOVE = 5;

public final static int REMOVED = 7,

}
Rol eEvent (QUERY)

The QUERY modeis sub-tasked by theinfrastructurewhile handlingarole performer
ASSIGN action, and the purpose is for the applicativel i decide whether or not
the proposed addition should be accepted. If tieatehandling succeeds, the addition
is accepted, and if iafls, the addition is rejected.

Rol eEvent (REJECT)

The REJECT mode posted by the infrastructure for the role performer as a
notification that the addition has been rejected.

Rol eEvent (ASSI GN)

The ASSIGN mode iposted by the infrastructure for the role performer as a
notification that the addition has been accepted.

Rol eEvent (ASSI GNED)

The ASSIGNED mode igosted by the infrastructure for the role tenderer as a
notification that the addition has been accepted.

Rol eEvent (REJECTED)

The REJECTED mode osted by the infrastructure for the role tenderer as a
notification that the addition has been rejected.

Rol eEvent (REMOVE)

The REMO/E mode isposted by the infrastructure for the role performer as a
notification that the team has been regetwas performer of a role.

Teams Manual

Release 5.5

10-June-05 75
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

Team Formation

Rol eEvent (REMOVED)

The REMOQ/ED mode isposted by the infrastructure for the role tenderer as a
notification that a team has been reeuas performer of a role.

76

TeamsManual
Release5.5

10-June-05
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

Index

Symbols
#applicable for role 49
#applicable_from role 49
#connection method 57, 58, 60
#container member 40
#container method 40
#container method() 50
#handles event 39
#inherits teamdata 29, 40, 67
#performsrole 17, 18, 28
#posts event 39
#propagates changes 55
#reasoning method establish 50
#requiresrole 12, 17, 28, 47, 50
#synthesis method 57, 60
#synthesizes teamdata 29, 39, 61
#usesrole 24, 48, 50
@paralel 11, 25, 45, 50
@teamAchieve 11, 25, 39, 45, 50, 51
exception propagation 53
returning values 53

A

Active 73

active 42

actor 41

assign posting method 32
attach method 65

B

BDI 9

behaviour 14

belief 9

belief connection dynamics 55, 59
belief exchange 10

belief propagation 10

C

canPerformRole() 34
compile example 26
contained team 11

containing team 11
create sub-team 18

D

-D flag 26
defaultEstablish() 50
desire9

Detached 73

dynamic team formation 32

E
establish 14

establish reasoning method 11, 14, 24, 45,

50
establish() 50
EventRecipient 65

F

fail reasoning method 14
find() 43
findContainer() 34
findPerformedRole() 34
findRequiredRole() 34

G

getRoles() 34

goal exchange 10
group behaviour 14

H
handler 65
hierarchy 10

I

inheriting team belief connection 66

inherits teamdata 68

initialisation file 13, 18, 19, 26
example 13

intention 9

Teams Manual

Release 5.5

10-June-05

Copyright © 2002-2012, Agent Oriented Software Pty Ltd

77

J
JACK Intelligent Agents 9
JACOB 9, 13

M

max 43

min 43

mirror 41

moddb() 63

multi-level hierarchy 10

N

name 42
nextFiller 50
nextFiller() 43
nextTag() 43
noTasks 42

P

peer 41

plan body 25

plan failure 14

postWhenFormed() 34

propagate sub-team belief 15

propagate team belief 15

propagated belief types 56
in capabilities 56

propagates changes 59

propagation 10

PropagationEvent 56

PropagationM essage 59

R
revoke posting method 32
Role 37
role 10, 11, 20, 37, 42
declaration 11
declarations 38
#container member 40
#container method 40
#handles event 39
#inherits teamdata 40
#posts event 39

#synthesizes teamdata 39

definition 12, 37
Role Base Class 40
actor 41
mirror 41
noTasks() 42
peer 41
setState() 42
state 41
tag 41
tasks 42
role container 10, 12
rolefiller 11
role object 25

role obligation structure 13, 14, 18, 30, 71

role performer 11, 13
role relationship 10
role tenderer 11
Role ACTIVE 24
RoleContainer 24
RoleContainer Base Class 42

active 42

find() 43

max 43

min 43

name 42

nextFiller() 43

nextTag() 43

role 42

roleslnitialized() 43

size() 43

tags() 43

team 42
RoleControl 74
RoleControl event 32, 71

assign posting method 32

revoke posting method 32
RoleControl (ASSIGN) 72
RoleControl(REVOKE) 73
RoleEvent 75
RoleEvent(ASSIGN) 72
RoleEvent(ASSIGNED) 72
RoleEvent(QUERY) 72
RoleEvent(REJECTED) 72

78

TeamsManual
Release5.5
10-June-05

Copyright © 2002-2012, Agent Oriented Software Pty Ltd

RoleEvent(REMOVE) 73 findPerformedRole() 34

RoleEvent(REMOVED) 73 findRequiredRole() 34

rolesinitialized() 34, 43 getRoles() 34

RoleTypeContainer 40 postWhenFormed() 34

run example 26 roleslnitialized() 34
Team() 35

S team belief connections 55

setState() 42 team extension 10

size() 43 team formation 10, 13, 71

StartTeamEvent 33, 71 team formation constraints 12

state 41 team goal handling 50

sub-team 10, 11, 18 team hierarchy 10

SubTeamProtocol 73 team structure 10, 26

SubTeamProtocol (CONFIRM) 73 team type definition 11

SunTeamProtocol (ACCEPT) 72, 73 Team() 35

SunTeamProtocol (ASSIGN) 72 Team.Structure property 26, 31

SunTeamProtocol (REJECT) 72 TeamAbort 53

SunTeamProtocol (REVOKE) 73 TeamCap 71

synthesi zes teamdata 62 teamdata 10, 57

declarations 57

synthesizing team belief connection 60 X
#connection method 57

T #synthesis method 57
definition 57
41
Egs() 43 TeamError 53
task team 14, 25 TeamException 53

TeamFormationEvent 13, 30, 32, 71

task team establishment 49 team-oriented 9

task team formation 11, 45

Teamplan 9
task t 14
tasksiazms teamplan 11, 14, 45
team 10, 27, 42 @-statements 51
ruc @teamAchieve 51

construction 30
declarations 28
#inherits teamdata 29
#performsrole 28
#requiresrole 28

declarations 47
#applicable for role 49
#applicable_from role 49
#requiresrole 47

#synthesizes teamdata 29 der_#_l:_ses 205| e48
definition 12, 17, 27 memlb(l.;.?sn 50
formation 31 methods 50

initialisation file 13, 31
management 30
manager 30

team-role declaration 12
team-role structure 11

Team Base Class 34 Teams9
canPerformRole() 34 Teams framework 13
findContainer() 34 teams reasoning 9

Teams Manual

Release 5.5

10-June-05

Copyright © 2002-2012, Agent Oriented Software Pty Ltd

TeamStartEvent 30
termination condition 25

80

TeamsManual
Release5.5

10-June-05
Copyright © 2002-2012, Agent Oriented Software Pty Ltd

	1 Overview
	1.1 Background
	1.2 Team-Oriented Programming
	1.3 Team-Oriented Concepts
	1.3.1 Team
	1.3.2 Role
	1.3.3 Teamdata
	1.3.4 Teamplan

	1.4 The Team Framework
	1.4.1 Structure
	1.4.1.1 Teams and Roles
	1.4.1.2 Role Definition
	1.4.1.3 Team Formation
	1.4.1.4 Task Teams

	1.4.2 Behaviour
	@teamAchieve

	1.4.3 Belief Propagation

	1.5 Example: Martian Visitors

	2 Teams
	2.1 Team Definition
	2.2 Team Declarations
	#requires role RoleType reference(min,max)
	#performs role RoleType
	#synthesizes teamdata DataType ref (r1.s1, r2.s2, ...)
	#inherits teamdata DataType ref (r1.s1, r2.s2, ...)

	2.3 Team Management
	2.3.1 Team Construction
	2.3.2 The Team Manager
	2.3.3 Initial Team Formation
	2.3.4 Dynamic Team Formation
	2.3.5 Initialising Teams

	2.4 The Team Base Class

	3 Roles
	3.1 Role Definition
	3.2 Role Declarations
	#handles event EventType reference
	#posts event EventType reference
	#synthesizes teamdata DataType reference
	#inherits teamdata DataType reference
	#container method
	#container member

	3.3 The Role Base Class
	3.4 The RoleContainer Base Class
	3.5 The Generated RoleType Class
	3.6 The Generated RoleTypeContainer Class

	4 TeamPlans
	4.1 TeamPlan Definition
	4.2 TeamPlan Declarations
	#requires role RoleType rolecontainer_ref as role_ref
	#requires role RoleType rolecontainer_ref as role_ref (size)
	#uses role RoleType rolecontainer_ref as role_ref
	#uses role RoleType rolecontainer_ref as role_ref (size)
	#uses role RoleType rolecontainer_ref
	#applicable_for role RoleType roleinstance_ref
	#applicable_from role RoleType roleinstance_ref

	4.3 Task Team Establishment
	4.4 TeamPlan Members and Methods
	4.5 Team Goal Handling
	4.6 TeamPlan @-statements
	4.6.1 The @teamAchieve Statement
	4.6.1.1 Getting Return Values Through @teamAchieve
	4.6.1.2 Exception Propagation for @teamAchieve

	5 Team Belief Connections
	5.1 Source Data Definition
	5.2 Target Data Definition
	5.3 Belief Connection Dynamics
	5.4 Synthesizing Belief Connection Definition
	5.4.1 Role Declarations
	5.4.2 Source Declarations
	5.4.3 Target Declarations
	5.4.4 An Example

	5.5 Inheriting Belief Connection Definition
	5.5.1 Role Declarations
	5.5.2 Source Declarations
	5.5.3 Target Declarations
	5.5.4 An Example

	6 Team Formation
	6.1 RoleType Instance State Management
	6.2 Role Handling Events and Messages

	Index

