
Teams Practicals

JACK™ Intelligent Agents
Teams Practicals

TeamsPracticals
Release5.0

2 10-June-05
Copyright © 2003-2012, Agent Oriented Software Pty. Ltd.

Copyright
Copyright © 2003-2012, Agent Oriented Software Pty. Ltd.

All rights reserved.

No part of this document may be reproduced, transferred, sold, or otherwise disposed of,
without the written permission of the owner.

US Government Restricted Rights
The JACK™ Modules and relevant Software Material have been developed entirely at private
expense and are accordingly provided with RESTRICTED RIGHTS. Use, duplication, or
disclosure by Government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of
DFARS 252.227-7013 or subparagraph (c)(1) and (2) of the Commercial Computer Software
Restricted Rights and 48 CFR 52.2270-19, as applicable.

Trademarks
All the trademarks mentioned in this document are the property of their respective owners.

Teams Practicals
Release 5.0
10-June-05 3
Copyright © 2003-2012, Agent Oriented Software Pty. Ltd.

Publisher Information

If you find any errors in this document or would like to suggest improvements, please let us
know.

Agent Oriented Software Pty. Ltd.

P.O. Box 639,

Carlton South, Victoria, 3053

AUSTRALIA

Phone: +61 3 9349 5055

Fax: +61 3 9349 5088

Web: http://www.agent-software.com

TeamsPracticals
Release5.0

4 10-June-05
Copyright © 2003-2012, Agent Oriented Software Pty. Ltd.

Teams Practicals
Release 5.0
10-June-05 5
Copyright © 2003-2012, Agent Oriented Software Pty. Ltd.

The JACK™ documentation set includes the following manuals and practicals:

Document Description

Agent Manual Describes the JACK programming language and
infrastructure.JACK canbeusedto developapplications
involving BDI agents.

Teams Manual Describes the JACK Teams programming language
extensions. JACK Teams can be used to develop
applications that involve coordinated activity among
teams of agents.

Development Environment

Manual

Describes how to use the JACK Development
Environment (JDE). The JDE is a graphical
development environment that can be used to develop
JACK agent and team-based applications.

JACOB Manual Describes how to use JACOB. JACOB is an object
modelling language that can be used for inter-process
transport and object initialisation.

WebBot Manual Describes how to use the JACK WebBot to develop
JACK enabled web applications.

Design Tool Manual Describes how to use the Design Tool to design and
build an application within the JACK Development
Environment.

Graphical Plan Editor Manual Describes how to use the Graphical Plan Editor to
develop graphical plans within the JACK Development
Environment.

JACK Sim Manual Describes how to use the JACK Sim framework for
building and running repeatable agent simulations.

Tracing and Logging Manual Describes the tracing and logging tools available with
JACK.

Agent Practicals A set of practicals designed to introduce the basic
concepts involved in JACK programming.

Teams Practicals A set of practicals designed to introduce the basic
concepts involved in Teams programming.

TeamsPracticals
Release5.0

6 10-June-05
Copyright © 2003-2012, Agent Oriented Software Pty. Ltd.

Teams Practicals
Release 5.0
10-June-05 7
Copyright © 2003-2012, Agent Oriented Software Pty. Ltd.

Table of Contents
JACK™ Teams Practicals . 9

Exercise 1. .10
Introduction. .10
Instructions .10

Exercise 2. .15
Instructions – Part 1 .15
Instructions – Part 2 .16

Exercise 3. .18
Introduction. .18
Instructions .18

Exercise 4. .21
Introduction. .21
Instructions .23

Exercise 5. .25
Introduction. .25
Instructions .26

Exercise 6. .29
Introduction. .29
Instructions .30

Teams Practicals Solutions . 33
Program Solutions .33
Answers to Questions .33

Exercise 3. .33
Exercise 4. .33

TeamsPracticals
Release5.0

8 10-June-05
Copyright © 2003-2012, Agent Oriented Software Pty. Ltd.

JACK™ Teams Practicals

Teams Practicals
Release 5.0
10-June-05 9
Copyright © 2003-2012, Agent Oriented Software Pty. Ltd.

JACK™ Teams Practicals
This set of exercises provides a basic introduction to JACK™ Teams (Teams). It is assumed
that the user is already familiar with JACK™ Intelligent Agents. Teams is an extension to
JACK™ Intelligent Agents (JACK) that provides a team-oriented framework. TheOverview
chapter in theTeams manual provides the user with an introduction to team-oriented
programming and the Teams extensions.

JACK™ Teams Practicals
Exercise 1

TeamsPracticals
Release5.0

10 10-June-05
Copyright © 2003-2012, Agent Oriented Software Pty. Ltd.

Exercise 1
Build a simple application consisting of a team with several sub-teams.

Intr oduction
Theintentof thisexerciseis to demonstratehow to build aTeamsapplicationwhereoneteam
requires several sub-teams to perform roles on its behalf. This example will consist of a
Spacecraft team which will contain 3Martian sub-teams capable of performing the roles of
Pilot, SpokesPerson andCrew.

If you have not already read theOverview chapter of theTeams manual, you should read it
before beginning this exercise. Note that the introductory example in theOverview is similar,
but not identical to the example developed in the following exercise.

Instructions
1. Create the subdirectoriesmartian andspacecraft. The application will be organised into
two packages (martian andspacecraft). The first package will contain the plans etc. for the
Martian team and the other will contain the plans etc. for theSpacecraft team.

2. Create theMartian.team file in themartian subdirectory.

– As theMartian teamis to becapableof performingtheSpokesPerson, Pilot andCrew
roles, it must contain#performs role declarations for these roles. For example, the
declaration for the performsSpokesPerson role is:

#performs role SpokesPerson;

– Theteamwill haveplansto travel, speakagreetingand'beonwatch'.It musttherefore
contain#uses plan declarations for the plansSpeakGreeting, Travel and
WatchMonitor.

– It must also have the usual constructor.

3. Create theSpacecraft.team file in thespacecraft subdirectory.

– It must contain#requires role declarations for the rolesSpokesPerson, Pilot and
Crew. The spacecraft requires 3 sub-teams capable of filling each of these roles. These
declarations are of the form:

 #requires role RoleType ref(min,max);

– It must contain a#uses plan Visit declaration.

– It must have a#posts event PerformVisit ref declaration and apublic void
visit(String planet) method to post itself aPerformVisit event. This method
should use thepostWhenFormed method to post the event when the team has finished
building its initial role obligation structure.

JACK™ Teams Practicals
Exercise 1

Teams Practicals
Release 5.0
10-June-05 11
Copyright © 2003-2012, Agent Oriented Software Pty. Ltd.

– It must have a#handles event PerformVisit declaration.

– It must also have a constructor.

– As this is the containing team, it will automatically handle aTeamFormationEvent at
construction time. This will be handled by a default plan which will use an
initialisation file to build the role obligation structure. The initialisation file is
described later in the practical.

– As the roles are to be defined in themartian package, it must also include the
following import statements:

 import martian.CrewContainer;
 import martian.Crew;
 import martian.PilotContainer;
 import martian.Pilot;
 import martian.SpokesPersonContainer;
 import martian.SpokesPerson;

4. In the directory above themartian andspacecraft directories, create the main Java
program.ThisprogramshouldconstructthreeMartian teamswith appropriatenames.It must
then construct theSpacecraft team. The containing team should not be constructed before
any of its sub-teams.

A main program calledAlienProgram is given below:

 import martian.Martian;
 import spacecraft.Spacecraft;

 public class AlienProgram {

 public static void main(String [] args)
 {
 new Martian("Dennis");
 new Martian("Ralph");
 new Martian("Jacquie");
 Spacecraft spacecraft = new Spacecraft("Enterprise");
 spacecraft.visit("Earth");
 }
 }

JACK™ Teams Practicals
Exercise 1

TeamsPracticals
Release5.0

12 10-June-05
Copyright © 2003-2012, Agent Oriented Software Pty. Ltd.

5. In the same directory as the main program create the initialisation file to build the role
obligation structure. The namescenario.def is often used for this file. In this example, all 3
Martiansshouldbecapableof performingall 3 rolesin theroleobligationstructure.Thestart
of the initialisation file is given below:

 <Team :name "Enterprise"
 :roles (
 <Role :type "martian.SpokesPerson" :name "sp"
 :fillers (
 <Team :name "Dennis@%portal" >
 :
 :
)
 >
 :
 :
 etc.
)
 >

Note:

– the namesp must correspond to the reference for theSpokesPerson in the#requires
declaration in theSpacecraft team.

– you must take care to include the package when specifying the role types (e.g.
martian.SpokesPerson shown in the example above).

6. Create the 3 role definition files (Crew.role, Pilot.role andSpokesPerson.role) in the
martian package.

– TheCrew.role must be able to handle aDoWatch event.

– ThePilot.role must be able to handle aPilotCraft event.

– TheSpokesPerson.role must be able to handle aDoGreeting event.

In all three cases, the roles indicate the downward interface between a team that can perform
thatroleanda teamthatrequiresasub-teamto performtherole.This indicatestheeventsthat
will be posted from the containingSpacecraft team to theMartian sub-team capable of
performingtherole.ThismeansthattheMartian sub-teammusthaveat leastoneplancapable
of handling the specified event.

7. Create theMessageEvents required for the application in themartian package:

– DoGreeting.event with aString member for the planet and a posting method
speakGreeting(String p) wherep is the name of the planet.

– DoWatch.event with a posting methodwatch.

– PilotCraft.event with aString member for the planet and a posting method
startTrip(String p) wherep is the name of the planet.

JACK™ Teams Practicals
Exercise 1

Teams Practicals
Release 5.0
10-June-05 13
Copyright © 2003-2012, Agent Oriented Software Pty. Ltd.

8. Create theMessageEvents required for the application in the spacecraft package:

– PerformVisit.event with aString member for the planet and a posting method
visitPlanet(String p) wherep is the name of the planet.

9. Create the plans used by theMartian sub-teams in themartian package:

– WatchMonitor.plan handles theDoWatch event. Write the body of the plan. It should
print out a message that the team is on watch. The team name can be obtained by
including a#uses interface Martian self declaration at the beginning of the plan.
The name can then be obtained withself.name().

– SpeakGreeting.plan handlestheDoGreeting event.Thebodyof thisplanshouldprint
a suitable greeting which contains the name of the team and the name of the planet.

– Travel.plan handles thePilotCraft event. The body of this plan should print a
suitable message to indicate that the pilot sub-team has commenced the journey to the
given planet. It should then contain a short delay which can be achieved using
@waitFor(elapsed(10.0)). This should be followed by a message to indicate that the
team has arrived at the planet.

10. In the spacecraft package, create theVisit plan to be used by theSpacecraft team.

This plan handles thePerformVisit event. It also coordinates the activities among the sub-
teamsto allow theteamto travel to theplanetandspeakagreeting.It will thereforerequirethe
following declarations to indicate that it requires sub-teams to perform the following roles to
carry out this task:

#requires role SpokesPerson sp as speaker;
#required role Pilot pi as pilot;
#requires role Crew cr as crew;

Note that thesp, pi andcr references must correspond to the references in theSpacecraft

team definition. By using the#requires declaration in the plan, we allow the plan to use the
defaultestablish method to select sub-teams to perform the roles within the plan.

The defaultestablish method will assign aRole instance tospeaker from the list ofRole
instancesin theSpokesPersonContainer. Similarly, it will assignRole instancesto pilot and
crew.

JACK™ Teams Practicals
Exercise 1

TeamsPracticals
Release5.0

14 10-June-05
Copyright © 2003-2012, Agent Oriented Software Pty. Ltd.

TheRole type has aString memberactor which can be used to obtain the name of the sub-
team associated with the role. In this exercise, the body of theVisit plan should print an
appropriate message to indicate thetask team that has been established for this plan. By
including a#uses interface Team team declaration at the beginning of the plan, the team
name can be obtained withteam.name(). For example:

 System.out.println("Team established for craft "+
 team.name());
 System.out.println("crew member = "+crew.actor);
 System.out.println("pilot = "+pilot.actor);
 System.out.println("spokesperson = "+speaker.actor);

This plan must also contain the following import statements:

 import martian.CrewContainer;
 import martian.Crew;
 import martian.PilotContainer;
 import martian.Pilot;
 import martian.SpokesPersonContainer;
 import martian.SpokesPerson;

11. Compile the program with the following command:

 java aos.main.JackBuild -r -map=team

Create amkit script which contains this command.

12. Assuming your program is calledAlienProgram and that the initialisation file is called
scenario.def, run the program with the following command:

 java -DTeam.Structure=scenario.def AlienProgram

The output will look like:

 Team established for craft: Enterprise@%portal
 crew = Ralph@%portal
 pilot = Ralph@%portal
 spokesperson = Ralph@%portal

You will notice that it is possible for the same sub-team to be assigned to more than one role
within the task team. In the next exercise anestablish method will be developed which
restricts each martian sub-team to performing only one role within theVisit plan's task team.

13. Create arunit script to run your program.

14. It is also useful to have acleanit script which contains the following command:

 java aos.main.JackBuild -r -c -map=team

JACK™ Teams Practicals
Exercise 2

Teams Practicals
Release 5.0
10-June-05 15
Copyright © 2003-2012, Agent Oriented Software Pty. Ltd.

Exercise 2
Complete the body of theVisit plan and write anestablish method to ensure that each
martian sub-team is only responsible for performing one role within theVisit plan.

Instructions – P art 1
1. Initially we will assume that it is possible for one sub-team to be responsible for all three
roles and complete the body of the plan. The first step is to have the sub-team tasked to
perform thePilot role and fly the craft to the planet. This is achieved by sending a
PilotCraft event to the sub-team responsible for thePilot role by using a@teamAchieve
statement as follows:

@teamAchieve(pilot, pilot.st.startTrip(eventref.planet));
 // where eventref is the event being handled by the plan

Note that the reference to the event factory is through the role (i.e.st is the reference used in
the declaration of thePilotCraft event in thePilot role definition.

2. At the same time, the sub-team responsible for performing theCrew role must maintain a
watch to ensure that no problems arise. This is also achieved by using the@teamAchieve
statement.This timeit is usedto sendaDoWatch eventto thesub-teamresponsiblefor theCrew
role.

As thetwo activitiesareto becarriedout in parallel,thetwo @teamAchieve statementsshould
be inside an@parallel statement. In this example the arguments used in the@parallel
statement are as follows:

@parallel(ParallelFSM.ALL,false,null)
 {
 // the branch statements
 };

– The first argument is the mode.ParallelFSM.ALL is used. This means the@parallel
statement will succeed after all the branches have succeeded, but fail immediately if
any branch fails. All ongoing sub-statements will be notified on failure.

– The second argument is the termination condition. In this example, there is no
termination condition, so this isfalse.

– Thethird argumentis usedfor auser-definedJavaexceptionobject.If it is notnull, the
exceptionis thrown to activebranchesthatareexecutingin parallelif they arerequired
to terminate. Usingnull (as in this instance) means that the sub-statements will be
completed without any notification.

3. Compile and run the program.

JACK™ Teams Practicals
Exercise 2

TeamsPracticals
Release5.0

16 10-June-05
Copyright © 2003-2012, Agent Oriented Software Pty. Ltd.

4.Whenthe@parallel statementhascompletedit shouldmeanthatthecrafthasarrivedat the
planet. Make the following additions to land the craft:

– Create aLand event in themartian package. This is to be sent to the pilot when it is
time to land the craft on the planet. It is to have aString member for the planet and a
posting methodlandcraft(String p) wherep is the name of the planet.

– CreateaLandCraft planto handletheLand event.Thisshouldprint amessageto state
that the pilot is in the process of landing, wait for a short period of time and then print
a message to indicate that the craft has landed on the planet.

– Add a#handles event Land la declaration to thePilot role.

– Add a#uses plan LandCraft declaration to theMartian team definition.

– Add another@teamAchieve statement after the@parallel statement in theVisit plan
to send aLand event to the pilot.

5. Thisshouldbefollowedby another@teamAchieve statementto getthespeaker to speakthe
greeting. Remember that the@teamAchieve is synchronous, so this will not be executed until
the craft has landed.

6. Compile and run this version of the program.

Instructions – P art 2
7. Create anestablish method which restricts each sub-team to performing only one role
within thetask team. Thiscanbeachievedby iteratingthroughtherole instancesinsideeach
role container and selecting one that is associated with a sub-team that is not already being
usedfor arole.Whenarole instanceis selectedtheteamnamecanbestoredin a 'busy'vector,
so that this team does not get selected to perform another role.

JACK™ Teams Practicals
Exercise 2

Teams Practicals
Release 5.0
10-June-05 17
Copyright © 2003-2012, Agent Oriented Software Pty. Ltd.

The RoleContainer base class has a method tags() which returns its current role object tags
as a java.util.Enumeration. These role object tags relate to the role instances and can be
used as the argument to the role containers find method to obtain the corresponding role
instance. In this way we can iterate through the role instances in a role container. The
establish method described (and an associated helper method) are given below:

#reasoning method
establish()

 {
 Vector busy = new Vector();
 crew = (Crew) pickRole(busy, cr);
 crew != null;
 pilot = (Pilot) pickRole(busy, pi);
 pilot != null;
 speaker = (SpokesPerson) pickRole(busy, sp);
 speaker != null;
 }

 Role pickRole(Vector busy,RoleContainer rc)
 {
 for (Enumeration e = rc.tags(); e.hasMoreElements();) {
 Role r = rc.find((String) e.nextElement());
 if (!busy.contains(r.actor)) {
 busy.add(r.actor);
 return r;
 }
 }
 return null;
 }

8. The #requires declarations in the Visit plan should now be changed to #uses declarations
as the default establish method is no longer being used to establish the task team.

9. Add the following import statements to Visit.plan:

 import java.util.Enumeration;
 import java.util.Vector;

10. Compile and run the new version of the program.

JACK™ Teams Practicals
Exercise 3

TeamsPracticals
Release5.0

18 10-June-05
Copyright © 2003-2012, Agent Oriented Software Pty. Ltd.

Exercise 3

Intr oduction
In the current version of the program, the sub-team performing the watch only does this for a
shortperiodof time.It shouldactuallycontinuethis taskuntil notifiedto stop(or at leastuntil
the craft has arrived). In this exercise, theWatchMonitor plan will continue until it is notified
that it is no longer required to perform the watch.

Instructions
1. Modify the body of theWatchMonitor plan so that after the print statement it enters a
forever loop which contains a@waitFor(elapsed(10.0)) statement.

2. Add pass andfail reasoningmethodswith appropriateprint statements.Theseareusedfor
tracing purposes in this exercise. They will enable us to tell whether or not the plan has
succeeded or failed.

3. Compile and run this version of the program. What happens? Why?

4. Modify the mode in the@parallel statement in theVisit plan toParallelFSM.FIRST.

5. Compileandrun thisversionof theprogram.Noticethatalthoughthe@parallel statement
ends now, there is no message to indicate that theWatchMonitor plan has terminated.

6. In this version of the example, we send an event to the crew member to start the watch and
then send an event to stop the watch at the appropriate time. In exercise 4 we will explore an
alternative mechanism for interrupting theWatchMonitor plan. 'Clean' the application (i.e.
remove class files etc.) using the following command (or yourcleanit script):

 java aos.main.JackBuild -r -c -map=team

and copy the current version of the program into another directory to be used as the starting
point for exercise 4.

7.Modify theDoWatch eventsothatit containsaboolean membertodo to indicatewhetherthe
watch command is being started or stopped. Introduce two new posting methods
startWatch() andstopWatch() which settodo to true andfalse respectively.

8. Introduce a new beliefset to themartian package calledCommandsStatus. It contains one
key field of typeString and is used as a store of all the active commands.

9. Add a#private data CommandsStatus commands() declaration to theMartian team
definition.

JACK™ Teams Practicals
Exercise 3

Teams Practicals
Release 5.0
10-June-05 19
Copyright © 2003-2012, Agent Oriented Software Pty. Ltd.

10. Modify theWatchMonitor plan as follows:

– Add a#uses data CommandsStatus commands declaration.

– Add areasoningmethodperformWatch whichprintsoutamessageto indicatethatthe
team is on watch and then performs the watch as follows:

 while(commands.get("PerformWatch"))
 {
 // An actual task could be wrapped in @maintain.
 // Here we use @waitFor (with a sentinel) to
 // represent doing the task

@waitFor(elapsed(10.0),!commands.get("PerformWatch"));
 }

– Add arelevant method to the plan. This plan is to be relevant if thetodo member of
theDoWatch event istrue.

– Modify thebody of theWatchMonitor plan. It tests whether or not thecommands
beliefset already contains aPerformWatch command. If it does, we assume the crew
memberis alreadyactively performingthewatch.If it doesnot,addthePerformWatch
command to thecommands beliefset and begin performing the watch.

11. Write a new plan calledStopWatch. This plan is to be relevant if thetodo member of the
DoWatch event isfalse. The body of this plan is to remove thePerformWatch command from
thecommands beliefset. Make sure you declare that theMartian team uses the new StopWatch

plan.

12. Modify theVisit plan so that the@parallel statement contains the following two
branches:

– abranchthatuses@teamAchieve to sendaneventto thecrew memberto startthewatch

– abranchthatcontainstwo statements.Thetwo statementsmustbeenclosedin { and}
brackets. The first statement is an@teamAchieve to send an event to the pilot to start
travelling to theplanet.Whenthis is finished,thesecondstatementuses@teamAchieve
to send an event to the crew member to stop the watch. Note that theWatchMonitor
plan will be considered to have failed if it is terminated by the sentinel in the
@waitFor(). This means the mode used must beParallelFSM.ANY and not
ParallelFSM.ALL or the@parallel statement will fail and the plan will fail.

JACK™ Teams Practicals
Exercise 3

TeamsPracticals
Release5.0

20 10-June-05
Copyright © 2003-2012, Agent Oriented Software Pty. Ltd.

13. Compile and run the program. The output should look similar to the following:

 Team established for craft: Enterprise@%portal
 crew = Ralph@%portal
 pilot = Dennis@%portal
 spokesperson = Jacquie@%portal
 Ralph@%portal on watch
 Dennis@%portal flying craft to Earth
 Dennis@%portal arriving at Earth
 WatchMonitor plan terminating (fail)
 Dennis@%portal landing craft at Earth
 Dennis@%portal has landed craft at Earth
 Hello Earth. I am Jacquie@%portal.

JACK™ Teams Practicals
Exercise 4

Teams Practicals
Release 5.0
10-June-05 21
Copyright © 2003-2012, Agent Oriented Software Pty. Ltd.

Exercise 4
Use theaos.extension.parallel.ParallelMonitor to throw an exception to interrupt the
WatchMonitor plan.

Intr oduction
The arguments to the@parallel statement specify the success condition, termination
conditionandhow terminationis notified.In addition,anoptionalfourthargumentis allowed,
which is then an object through which the execution of the parallel statement can be
monitored.

The optional monitor attribute must, if given, be an instance of the classParallelMonitor.
TheParallelMonitor class implements the following interface:

public int addTask(FSM)
//
// A method that can be used to add branches to an @parallel
// statement dynamically. The FSM argument is an event or
// reasoning method in the plan. Branches in a @parallel statement
// can be referred to by index, where 0 is the first branch.
// Dynamically added branches are numbered contiguously after the
// definite branches. The addTask method returns the index of the
// branch added.
//

public Cursor finished()
//
// A triggered Cursor for checking that the
// @parallel statement has finished.
//

public Cursor changed()
//
// A triggered Cursor for reacting to state changes in the
// execution of the @parallel statement, i.e. when branches finish.
//

public boolean hasFinished()
//
// Tests whether the @parallel statement has finished or not.
//

public int getStatus()
//
// Returns the current execution status of the @parallel statement.
//

public int nTasks()
//
// Returns the number of parallel branches.
//

public int getStatus(String n)
//
// Returns the execution status of a labelled branch.

JACK™ Teams Practicals
Exercise 4

TeamsPracticals
Release5.0

22 10-June-05
Copyright © 2003-2012, Agent Oriented Software Pty. Ltd.

// return values can be:
// -1 (active)
// 1 (finished successfully)
// 2 (failed)
// 7 (terminated with an exception)
//

public int getStatus(int n)
//
// Returns the execution status of a branch by index.
// Values can be:
// -1 (active),
// 1 (finished successfully)
// 2 (failed)
// 7 (terminated with an exception)
//

public Throwable getException(String n)
//
// Returns the exception, if any, thrown to a labelled branch.
//

public Throwable getException(int n)
//
// Returns the exception, if any, thrown to a branch by index.
//

public int findTaskIndex(String name)
//
// Returns the index for a labelled branch.
//

public void throwTo(String name, Throwable t)
//
// Throws an exception to a labelled branch.
//

public void throwTo(int n, Throwable t)
//
// Throws an exception to a branch by index.
//

JACK™ Teams Practicals
Exercise 4

Teams Practicals
Release 5.0
10-June-05 23
Copyright © 2003-2012, Agent Oriented Software Pty. Ltd.

The ParallelMonitor object allows the team plan to inspect the processing of parallel
branches and (as in the code segment below) throw exceptions to branches selected by label or
index. If the branch contains an @teamAchieve, the plan activated by the @teamAchieve will
receive a TeamAbort exception. The plan can catch this and take appropriate action. Note that
if an exception is thrown to a branch, the branch is terminated and the branch is considered to
have failed. If the plan that was activated by the @teamAchieve does not catch the TeamAbort

exception, you will not get any indication that the plan has been terminated. Neither the pass

nor the fail reasoning method will be executed in this situation.

ParallelMonitor p = new ParallelMonitor();
@parallel(...., p) {

 ;
 label:;
 {

@waitFor(elapsed(100));
 p.throwTo("label", new Exception("CheckPoint"));
 };
 };

Instructions
1. Change directory to the version saved before the previous exercise (i.e. before the version to
interrupt the WatchMonitor plan using a beliefset.

2. In this version, we will interrupt the WatchMonitor plan by using a ParallelMonitor object
to throw an exception.

3. In Visit.plan, import aos.extension.parallel.ParallelMonitor.

4. In Visit.plan, create a ParallelMonitor object p before the @parallel statement. Modify
the @parallel statement to be:

@parallel(ParallelFSM.ANY, false, null, p)
 {
 watch: @teamAchieve(crew, crew.wm.watch()); // wm is
 // the reference
 // in Crew.role
 flying: fly(p);
 };

Note that ParallelFSM.ANY is used. Why?

5. fly is a reasoning method in which @teamAchieve is used to send an event to the pilot to
start travelling to the planet. When this is complete, the fly reasoning method must use the
ParallelMonitor object to test the status of the watch branch (using getStatus("watch")). If
it is still active (which it should be in this example), the ParallelMonitor object must throw
an exception to the watch branch (using the throwTo(...) method). Create this fly reasoning
method in the Visit plan.

JACK™ Teams Practicals
Exercise 4

TeamsPracticals
Release5.0

24 10-June-05
Copyright © 2003-2012, Agent Oriented Software Pty. Ltd.

6. Compile and run the program. Note that although the pass and fail reasoning methods are
not executed, the WatchMonitor plan has been terminated by a TeamAbort exception.

7. In the WatchMonitor plan, wrap the performWatch activity in a try/catch statement that
catches a TeamAbort exception. Print a trace statement if you catch a TeamAbort in this plan.

8. Add the import aos.team.TeamAbort statement to the WatchMonitor plan.

9. Compile and run the program. Your output should be similar to the following:

 Team established for craft: Enterprise@%portal
 crew = Ralph@%portal
 pilot = Dennis@%portal
 spokesperson = Jacquie@%portal
 Ralph@%portal on watch
 Dennis@%portal flying craft to Earth
 Dennis@%portal arriving at Earth
 throwing exception to watch
 crew received a TeamAbort exception to stop watch
 WatchMonitor plan terminated normally (pass)
 Dennis@%portal landing craft at Earth
 Dennis@%portal has landed craft at Earth
 Hello Earth. I am Jacquie@%portal

10. Try changing the mode in the Visit plan @parallel statement to ParallelFSM.ALL.
Compile and run the program. What happens? Why?

11. Change the mode back to ParallelFSM.ANY.

JACK™ Teams Practicals
Exercise 5

Teams Practicals
Release 5.0
10-June-05 25
Copyright © 2003-2012, Agent Oriented Software Pty. Ltd.

Exercise 5
In this exercise we illustrate the upwards propagation of team beliefs.

Intr oduction
Belief propagation focuses on how the beliefsets of teams and sub-teams may be connected
through role relationships. Belief connections are either directed upwards, synthesizing the
beliefs of sub-teams, or downwards, allowing sub-teams to inherit beliefs from the team.

In this exercise, the pilot will maintain a flight status beliefset which, for simplicity, will
consist of two non key String fields:

– status (e.g. takeoff, transit, holding, landing, landed)

– destination (i.e. the destination planet)

This information is to be propagated up to the spacecraft team. In some applications, data
could be propagated from several sub-teams and then merged in some way. For example, sub-
teamscouldpropagatetheir locationandtheteamcouldcombinetheselocationsinto asingle
aggregated location. This is not illustrated in this exercise.

To achieve upward propagation of beliefs, the following components need to be provided:-

1. A data source definition

A generic capability for propagating changes is provided as part of the beliefset
infrastructure.For abeliefsetto beusedasasourcefor beliefpropagation,it mustinclude
a#propagates changes declaration.

Note that the#propagates changes declaration may include an optional EventType. The
useof thissecondform of the#propagates changes declarationis describedin theTeams
manual. It is not illustrated in this practical.

2. Source team declarations

A sub-team becomes a source in a synthesizing belief connection by filling a role that
contains a#synthesizes teamdata declaration. Thus the sub-team must include an
appropriate#performs role declaration and fill the role in the containing team's role
obligation structure. Also, a data item with the type and the reference specified within the
role must be defined within the sub-team definition, or indirectly through the sub-team's
capability structure.

JACK™ Teams Practicals
Exercise 5

TeamsPracticals
Release5.0

26 10-June-05
Copyright © 2003-2012, Agent Oriented Software Pty. Ltd.

3. Role declarations

To associate a synthesizing belief connection with a role, the following statement form is
used:

#synthesizes teamdata stype sref;

where stype andsref identify asource beliefset that will be involved in a synthesizing
belief connection – the target for the connection is not specified.

Recall that a role defines a team/sub-team interface and as such thissynthesizes
teamdata declarationdoesnotgenerateany code.Rather, it declaresthatany sub-teamthat
performsthis rolemustprovideadataitemnamedsref of typestype. Likewiseany team
that requires this role must have a target data declaration that involves this particular item.

4. A target data definition

Theteamdata construct is provided to encapsulate the behaviour and data associated with
the target end of a team belief connection. A template for a teamdata type definition is
given in the instructions for this exercise.

5. Target team declarations

A team becomes a target in a synthesizing belief connection by requiring a role that
containsa#synthesizes teamdata declaration.Thustheteammustincludeanappropriate
#requires role declaration and a#synthesizes teamdata declaration that binds the data
item specified in the role with the role container that contains the sub-teams that fill the
role. Thesythesizes teamdata declaration within a team results in the creation of a
teamdata instance that is private to that team.

Instructions
1. Create the data source type definition.

In themartian directory, create thePilotFlightStatus beliefset in the normal way. The
beliefset is to have two non key String fields,status anddestination as described in the
introductionto thisexercise.In additionto thenormaldeclarationsfor thevaluefieldsandthe
queries, add the following declaration for belief propagation:

 #propagates changes;

2. Add the data source to the sub-team type definition.

Add a#private data PilotFlightStatus flightStatus(); declarationto theMartian team
definition.

3. Add the declaration to associate a synthesizing belief with thePilot role.

JACK™ Teams Practicals
Exercise 5

Teams Practicals
Release 5.0
10-June-05 27
Copyright © 2003-2012, Agent Oriented Software Pty. Ltd.

Add a#synthesizes teamdata PilotFlightStatus flightStatus; declarationto thePilot
role definition.

4. Create the target data definition (synthesized teamdata) for the spacecraft.

This is to be calledCraftStatus. CraftStatus should be defined in a file called
CraftStatus.td. A template for a synthesized teamdata is shown below (DataType__Tuple is
a placeholder for the type of the incoming tuple):

teamdata TeamDataType extends DataType {

#connection method(boolean added, String team)
 {
 // could have code which captures when
 // sub-teams are added to or removed from the synthesis
 // connection
 }

#synthesis method(String team,
 boolean asserted,
 BeliefState tv,
 DataType__Tuple is,
 DataType__Tuple was,
 DataType__Tuple lost)
 {
 // A simple case where new data added is
 // illustrated here.
 // This method could involve more complicated merging
 if(asserted && (is!=null))
 add(.. is.data fields ...);
 }
 }

In this exercise the synthesis method simply adds a copy of any new status details propagated
up from the pilot's beliefset. Note that

– CraftStatus is to extendPilotFlightStatus. The teamdata is not required to extend
the source beliefset. However, it makes sense for it to do so in this example.

– The tuple type in the arguments to the synthesis reasoning method should be
PilotFlightStatus__Tuple

– You must import

martian.PilotFlightStatus

and

martian.PilotFlightStatus__Tuple

into CraftStatus.td

– the body of theconnection method is empty because we are not dynamically
modifying the role obligation structure.

5. Add the declaration for the target data to theSpacecraft team.

JACK™ Teams Practicals
Exercise 5

TeamsPracticals
Release5.0

28 10-June-05
Copyright © 2003-2012, Agent Oriented Software Pty. Ltd.

Add a#synthesizes teamdata CraftStatus status(pi.flightStatus) declaration to the
Spacecraft teamdefinition.pi mustcorrespondto thereferencein the#requires Pilot role
declaration in theSpacecraft team definition. This statement has the effect of creating an
instance of theCraftStatus teamdata type calledstatus that is private to theSpacecraft
team. In this exercise,status receives beliefs propagated from a sub-team performing the
pilot role and stores the propagated beliefs in aPilotFlightStatus tuple. (CraftStatus
extendsPilotFlightStatus.) The storage is performed within the#synthesis method of
status.

The necessary#requires/#performs declarations andscenario.def file required to build the
role obligation structure for the spacecraft and martian teams have been established in
previous exercises.

The components are now in place for belief propagation to take place. The remainder of this
exerciseusesbeliefpropagationto propagatebeliefchangesfrom the from thesub-teamin the
pilot role to the spacecraft.

6. Add a#uses data CraftStatus status declaration to theVisit plan.

7. Modify Visit.plan so that after the@parallel statement is executed, it checks that the
status teamdata contains the tuple("holding",eventref.planet) (whereeventref is the
event being handled by the plan). If it does, then print a message and carry out the remaining
@teamAchieve statements to land the craft and speak the greeting. If it does not, print an error
message and make the plan fail.

8.Modify the martianTravel.plan andLandCraft.plan sothatthey assertstatusinformation
in thePilotFlightStatus beliefset at each stage of the journey. These plans will require
#uses data PilotFlightStatus flightStatus declarations.

9. Compile and run the program

JACK™ Teams Practicals
Exercise 6

Teams Practicals
Release 5.0
10-June-05 29
Copyright © 2003-2012, Agent Oriented Software Pty. Ltd.

Exercise 6
In this exercise we illustrate the downwards propagation of team beliefs.

Intr oduction
In thisexercisewewill propagatethecraft statusinformationdown from thespacecraftto the
sub-teams in theCrewContainer andSpokesPersonContainer.

To achieve downward propagation of beliefs, the following components need to be provided:-

1. A data source definition

A generic capability for propagating changes is provided as part of the beliefset
infrastructure.For abeliefsetto beusedasasourcefor beliefpropagation,it mustinclude
a#propagates changes declaration.

2. Source team declarations

A team becomes a source in an inheriting belief connection by requiring a role that
contains a#inherits teamdata declaration. Thus the team must include an appropriate
#requires role declaration. Also, a data item with the type and the reference specified
within therolemustbedefinedwithin theteamdefinition,or indirectly throughtheteam's
capability structure.

3. Role declarations

To associate an inheriting belief connection with a role, the following statement form is
used:

#inherits teamdata stype sref;

where stype andsref identify asource beliefset that will be involved in an inheriting
belief connection – the target for the connection is not specified.

Recall that a role defines a team/sub-team interface and as such thisinherits teamdata
declaration does not generate any code. Rather, it declares that any team that requires this
rolemustprovideadataitemnamedsref of typestype. Likewiseany teamthatperforms
this role must have a target data declaration that involves this particular item.

4. A target data definition

Theteamdata construct is provided to encapsulate the behaviour and data associated with
the target end of a team belief connection. A template for a teamdata type definition is
given in the instructions in the previous exercise.

5. Target team declarations

JACK™ Teams Practicals
Exercise 6

TeamsPracticals
Release5.0

30 10-June-05
Copyright © 2003-2012, Agent Oriented Software Pty. Ltd.

A sub-team becomes a target in an inheriting belief connection by filling a role that
contains a#inherits teamdata declaration. Thus the sub-team must include an
appropriate#performs role declaration and fill the role in the containing team's role
obligation structure. The sub-team must also include a#inherits teamdata declaration
that binds the data item specified in the role with the role type.

Instructions
1. Add a trace statement to the teamdata definition.

In this exercise the same teamdata type is used as both the source and target data type. The
Martian team will have a private instance ofCraftStatus teamdata that is to contain beliefs
inheritedfrom thespacecraft'sCraftStatus teamdata.Thiswill enabletheMartian sub-teams
to track the craft status and their current 'position'.

When data is added to the spacecraft'sstatus beliefs, the beliefs will be propagated down to
the sub-teams involved in the inheritance connection. Note that there is no need to have a
#propagates changes declaration in the teamdata definition as it extends the
PilotCraftStatus beliefset which already has a#propagates changes declaration.

TheCraftStatus type was defined in exercise 5 and is in thespacecraft package.

To help follow the belief propagation, add a trace statement to theCraftStatus synthesis
method to print any new data as it is added.

2. Add a#inherits declaration to the Role definition.

Add a#inherits teamdata CraftStatus status; declaration to theCrew role definition.

CraftStatus is defined in thespacecraft package, so it is necessary to add an import
statement forspacecraft.CraftStatus to theCrew role definition.

3. Add the#inherits declaration to the target team.

Add a#inherits teamdata CraftStatus craftstatus(Crew.status) declaration to the
Martian team definition. Each instance of aMartian team will now have its own private
instance of aCraftStatus teamdata to enable it to track the craft status. The information is
only propagated to the sub-teams that fill in theCrew role. When the propagated beliefs are
inherited by a sub-team, they are again dealt with by the#synthesis method in the
CraftStatus teamdata and the data is stored in aPilotFlightStatus tuple.

CraftStatus is defined in thespacecraft package, so it is necessary to add an import
statement forspacecraft.CraftStatus to theMartian team definition.

JACK™ Teams Practicals
Exercise 6

Teams Practicals
Release 5.0
10-June-05 31
Copyright © 2003-2012, Agent Oriented Software Pty. Ltd.

Thenecessary#requires/#performs declarationsandscenario.def file requiredto build the
role obligation structure have been established in previous exercises.

The components are now in place for downward propagation to take place.

4. Compile and run the program.

5. You should have noticed thatall sub-teams in theCrew role container receive the new data
from theSpacecraft team.If therewereany martiansin theSpokesPerson rolecontainerthat
were not in theCrew role container, they would be unaware of the craft status. To overcome
this deficiency:

– add the appropriate declaration and import statement to theSpokesPerson role
definition

– modify the#inherits in theMartian team as follows:

#inherits teamdata CraftStatus craftstatus(Crew.status,
 SpokesPerson.status);

6. Compile and run the program. Note that the information should only have been propagated
to each sub-team once, not once/role that the sub-team is involved in.

JACK™ Teams Practicals
Exercise 6

TeamsPracticals
Release5.0

32 10-June-05
Copyright © 2003-2012, Agent Oriented Software Pty. Ltd.

Teams Practicals Solutions

Teams Practicals
Release 5.0
10-June-05 33
Copyright © 2003-2012, Agent Oriented Software Pty. Ltd.

Teams Practicals Solutions
Program Solutions
Thesolutionsto theprogrammingexercisescanbefoundin thepracticals/teams/solutions
subdirectory. There is a separate directory for each of the exercises.

Answers to Questions

Exercise 3
Instruction3: Thespacecraftdoesnotarrive.This is becausethe@parallel statementdoesnot
terminate now that thewatch branch does not terminate.

Exercise 4
Instruction4: ParallelFSM.ANY is usedsothatthe@parallel statementsucceedsif theflying
branch terminates successfully.

Instruction 10: The statements after the@parallel statement are not executed. Thewatch
branch is considered to fail – it is terminated when thefly reasoning method throws it an
exception. When the@parallel statement has a mode ofParallelFSM.ALL and one of the
branches fails the@parallel statement fails.

NotethattheactualWatchMonitor planis interruptedin thisexercise.Theplanpassesbecause
theTeamAbort exception is caught in thetry/catch statement. Without thetry/catch
statement, the plan would be interrupted and terminate immediately – it would not even
execute thefail reasoning method to indicate that it had terminated.

	JACK™ Teams Practicals
	Exercise 1
	Introduction
	Instructions

	Exercise 2
	Instructions – Part 1
	Instructions – Part 2

	Exercise 3
	Introduction
	Instructions

	Exercise 4
	Introduction
	Instructions

	Exercise 5
	Introduction
	Instructions

	Exercise 6
	Introduction
	Instructions

	Teams Practicals Solutions
	Program Solutions
	Answers to Questions
	Exercise 3
	Exercise 4

