
Tracing and Logging

JACK Intelligent Agents®
Tracing and Logging Manual

Tracing and Logging
Release5.5

2 10-June-05
Copyright © 2012, Agent Oriented Software Pty Ltd

Copyright
Copyright © 2012, Agent Oriented Software Pty Ltd

All rights reserved.

No part of this document may be reproduced, transferred, sold, or otherwise disposed of,
without the written permission of the owner.

US Government Restricted Rights
The JACK™ Modules and relevant Software Material have been developed entirely at private
expense and are accordingly provided with RESTRICTED RIGHTS. Use, duplication, or
disclosure by Government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of
DFARS 252.227-7013 or subparagraph (c)(1) and (2) of the Commercial Computer Software
Restricted Rights and 48 CFR 52.2270-19, as applicable.

Trademarks
All the trademarks mentioned in this document are the property of their respective owners.

Tracing and Logging
Release 5.5
10-June-05 3
Copyright © 2012, Agent Oriented Software Pty Ltd

Publisher Information

If you find any errors in this document or would like to suggest improvements, please let us
know.

Agent Oriented Software Pty. Ltd.

P.O. Box 639,

Carlton South, Victoria, 3053

AUSTRALIA

Phone: +61 3 9349 5055

Fax: +61 3 9349 5088

Web: http://www.agent-software.com

Tracing and Logging
Release5.5

4 10-June-05
Copyright © 2012, Agent Oriented Software Pty Ltd

The JACK™ documentation set includes the following manuals and practicals:

Document Description

Agent Manual Describes the JACK programming language and
infrastructure.JACK canbeusedto developapplications
involving BDI agents.

Teams Manual Describes the JACK Teams programming language
extensions. JACK Teams can be used to develop
applications that involve coordinated activity among
teams of agents.

Development Environment

Manual

Describes how to use the JACK Development
Environment (JDE). The JDE is a graphical
development environment that can be used to develop
JACK agent and team-based applications.

JACOB Manual Describes how to use JACOB. JACOB is an object
modelling language that can be used for inter-process
transport and object initialisation.

WebBot Manual Describes how to use the JACK WebBot to develop
JACK enabled web applications.

Design Tool Manual Describes how to use the Design Tool to design and
build an application within the JACK Development
Environment.

Graphical Plan Editor Manual Describes how to use the Graphical Plan Editor to
develop graphical plans within the JACK Development
Environment.

JACK Sim Manual Describes how to use the JACK Sim framework for
building and running repeatable agent simulations.

Tracing and Logging Manual Describes the tracing and logging tools available with
JACK.

Agent Practicals A set of practicals designed to introduce the basic
concepts involved in JACK programming.

Teams Practicals A set of practicals designed to introduce the basic
concepts involved in Teams programming.

Tracing and Logging
Release 5.5
10-June-05 5
Copyright © 2012, Agent Oriented Software Pty Ltd

Table of Contents
1 Introduction . 9

2 Design tracing tool . 11
2.1 Introduction. .11
2.2 Overview .11
2.3 Initialisation. .12
2.3.1 Preliminaries. .12
2.3.2 Design tracing and graphical plan tracing .12
2.3.3 The Application. .12
2.3.4 Starting the DTT. .13

Tracing from the command line .13
Tracing from the JDE .14

2.3.5 The Trace menu .15
2.3.6 The Tracing window .17
2.4 Configuring design tracing .17
2.4.1 Adding a trace row .18
2.4.2 Removing a trace row. .18
2.4.3 Editing a trace row .18
2.4.4 Selecting a design .19
2.4.5 Tracing agent types .19
2.4.6 Tracing individual agents .20
2.4.7 Tracing all agents .20
2.4.8 Saving and loading tracing configurations .20

Saving a design tracing configuration. .20
Loading a design tracing configuration. .20
Design tracing configuration files .21

2.4.9 Applying tracing settings .21
Configuration errors .21

2.5 Controlling design tracing. .21
2.5.1 Turning tracing on and off. .22
2.5.2 Tracing in descriptive mode .22
2.5.3 Delaying tracing transitions .22
2.5.4 Controlling tracing .23

Starting tracing .23
Stopping tracing .23
Controlling tracing of individual traced design windows23
Stepping through tracing .23

2.5.5 Reconfiguring tracing during execution .24
2.6 Tracing visualisation .24
2.6.1 Traced design window control bar .26

Tracing and Logging
Release5.5

6 10-June-05
Copyright © 2012, Agent Oriented Software Pty Ltd

2.6.2 Traced design window tool bar .26
2.6.3 Viewing design documentation. .26
2.6.4 Viewing a design graph .26
2.6.5 Viewing relevant agents .26
2.6.6 Viewing relevant tasks .27
2.6.7 Transition visualisation .27
2.6.8 Resetting transition counts .27
2.6.9 Tracing visualisation errors .27

No traced design windows are shown .27
2.7 A design tracing example .27

3 Plan tracing tool . 37
3.1 Introduction. .37
3.2 An plan tracing example. .38
3.2.1 The multi-currency bank account example. .38
3.2.2 Walkthrough .40

The plan tracing tool windows .41
A sample run of the plan tracing tool .44
Finishing the sample run .52
Tracing more than one agent .52

3.2.3 Running without the JDE .52
3.3 Plan tracing tool configuration .53
3.3.1 Plan tracing configuration files .53

Default file generation. .54
Running with no tracing configuration file. .54

3.3.2 Runtime options .55

4 Agent Interaction Diagram . 59
4.1 Introduction. .59
4.2 Enabling an Interaction Diagram .59
4.3 Configuring an Interaction Diagram .62

5 Audit Logging . 69

6 Generic Debugging/Agent Debugging . 71
6.1 Using debugging .71
6.2 The AgentDebuggerCommand interface. .72
6.3 Debug objects .72
6.3.1 DumpState . 73

6.3.2 User defined debug objects .73
6.4 Running debugging .74

Appendix A: JACK Properties . 75
JACK Compiler Properties .76
JACK Runtime Environment Properties .76

Tracing and Logging
Release 5.5
10-June-05 7
Copyright © 2012, Agent Oriented Software Pty Ltd

JACK Debugging Properties .78
Design Tracing Tool Properties .78
Agent Interaction Diagram Properties .79
Plan Tracing Tool Properties .80

Index. 83

Tracing and Logging
Release5.5

8 10-June-05
Copyright © 2012, Agent Oriented Software Pty Ltd

Introduction

Tracing and Logging
Release 5.5
10-June-05 9
Copyright © 2012, Agent Oriented Software Pty Ltd

1 Introduction
JACK applications invariably involve multiple agents interacting asynchronously with each
other and with their environment. Thus although the specification of individual behaviours
may be straightforward, the system behaviour that is observed at execution time can be
extremely complex and difficult to interpret. The benefits of using graphical visualisation to
display distributed system behaviour has long been recognised and visualisation tools have
been provided with JACK since its first release. Visualisation is not only of benefit to the end
users of an application, but also to the developers and to Subject Matter Experts (SMEs).

From a developer's perspective, appropriate visualisation of system behaviour can greatly
assistin thedebuggingof anapplication.Theroleof theSME in thedevelopmentof anagent
application is to provide agents with domain-specific behaviours. The JDE provides tools for
graphical specification of agent behaviours which have proven to be well-suited for use by
SMEs who are non-programmers. However, verification of these behaviours can be difficult
for the reasons mentioned above. Visualisation of agent behaviours during system execution
has proven to be of great assistance in the verification process.

The people involved in an application development will require different visualisations of
behaviour depending on the nature of the application and their role in its development.
ConsequentlyJACK providesaselectionof visualisationtoolsthatfocusonparticularaspects
of system behaviour:

Table 1-1: Visualisation tools that focus on system behaviour

Tool Purpose Intended Users

Design Tracing
Tool

Graphically trace the project design
diagrams of executing JACK
applications

Application
designers, SMEs
and developers

Graphical Plan
Tracing Tool

Graphically trace the events and
graphical plans of executing JACK
applications

Application
designers, SMEs
and developers

Agent Interaction
Diagram

Graphically trace inter-agent
communication of executing JACK
applications

Application
developers and
users

Introduction

Tracing and Logging
Release5.5

10 10-June-05
Copyright © 2012, Agent Oriented Software Pty Ltd

While the tools listed previously are extremely useful in helping a developer to debug an
application, situations occasionally arise when a more detailed trace of system execution is
required. For these situations, JACK provides the following logging tools:

Table 1-2: Logging tools

The remainder of this manual discusses each of the behaviour visualisation and logging tools
in detail.

Tool Purpose Intended Users

Audit logging Trace messages and events in JACK
applications

Application
developers

Agent Debugger Extract and customise information about
agents in executing JACK applications

Application
developers

Design tracing tool

Tracing and Logging
Release 5.5
10-June-05 11
Copyright © 2012, Agent Oriented Software Pty Ltd

2 Design tracing tool
2.1 Introduction
The JACK Intelligent Agents®Design Tracing Tool (DTT) provides developers with the
ability to view the internal details of a JACK application during execution. Execution of
applications is shown by highlighting the links in design diagrams that correspond to
transitions between JACK elements. The DTT can be used to view different aspects of
executing applications by tracing a combination of all agents, selected agent types and
individual agents in project design diagrams.

The DTT runs within the JACK™ Development Environment (JDE) and requires connection
to a portal associated with the traced JACK application. Once tracing settings have been
configuredandtheapplicationto betracedis running,tracingvisualisationcanberun,stepped
or paused.

Designstracedin theDTT areshown in traced design windows (TDWs). TDWscanbeshown
in descriptive mode, and tracing can be viewed more slowly by delaying transitions between
design elements. During application execution, the DTT displays the number of previous
executionsof transitionsbetweendesignentities.Theagentsandtasksrelevantto aTDW can
also be viewed.

The DTT can be configured to trace a combination of all executing agents, agent types and
individual agents in team and non-team projects. Any design element in a design diagram
apart from aNote and aNamed Role is traceable.

The intended users of the DTT are application designers, subject matter experts (SMEs) and
agent system developers. Application designers can use the tool to verify system behaviour.
SMEs can use the DTT to demonstrate running JACK applications. In particular, the
descriptive mode of the DTT can be used to show a running description of application
execution. Application designers can use the DTT as an agent behaviour debugging tool.

This chapter assumes that the user is familiar with the JACK™ Development Environment
(JDE) and JACK™ agents. If further information is required on these topics, refer to the
Development Environment Manual and theAgent Manual.

2.2 Overview
This chapter introduces concepts and terms associated with the DTT. Setup of the DTT,
including configuration of design tracing, is described in detail. Design tracing control and
different options for tracing visualisation are also described. The chapter concludes with a
worked example of running and stepping through design tracing of an application.

Design tracing tool

Tracing and Logging
Release5.5

12 10-June-05
Copyright © 2012, Agent Oriented Software Pty Ltd

2.3 Initialisation

2.3.1 Preliminaries
TheDTT runswithin theJDE.An applicationthatis examinedwith thetool runsin aseparate
process.TheDTT usesJACK'sinterprocesscommunicationslayer(DCI) to passdatabetween
the application and the tool. Consequently, before the user can examine the application using
the DTT a DCI connection needs to be established. Also, since the tool connects to a running
application, the programmer must incorporate a pause mechanism into the application. This
ensures that execution of the application is halted at an appropriate point until the DTT has
connected to the application and is in control of execution.

2.3.2 Design tracing and graphical plan tracing
Designtracingandgraphicalplantracingaremutuallyexclusiveandmustbeusedseparately.
There are several differences in the requirements for setting up and running both types of
tracing. If both types of tracing are attempted at the same time, the behaviour of the JDE is
undefined.

For further information on tracing graphical plans see thePlan tracing tool chapter of this
manual.

2.3.3 The Application
To trace the agents in an application, it is necessary to connect the JDE to a portal created by
the application.

When running an application a portal with the name%portal is created by default, with the
hostlocalhost and the next available port. An application can also be created with a non-
default portal with the use of the DCI command line arguments or by setting the following
Java portal properties:

• jack.portal.name

• jack.portal.host

• jack.portal.port

Design tracing tool

Tracing and Logging
Release 5.5
10-June-05 13
Copyright © 2012, Agent Oriented Software Pty Ltd

From a programming viewpoint, the only modifications that may need to be made to an
existing JACK application for it to be used with the DTT:

• If DCI command line arguments are used, a call toaos.jack.Kernel.init(String[]
args) must be included in the application'smain() method in order to process the
arguments that will be provided when the application is started

• If DCI command line arguments are not used, the application is run with the Java portal
properties: jack.portal.name, jack.portal.host andjack.portal.port

• Code is to be provided to suspend execution while the JDE is connected to the portal
createdby theapplication.Codeto resumeexecutionwhentheuseris readyto takecontrol
of execution using the DTT must also be included. A simple way of achieving this is to
insertauserpromptin themain() methodaftertheagentsrequiredby theapplicationhave
been created. When the prompt is displayed, the user would then connect the JDE to the
application, pass control of the application to the tool and then respond to the prompt and
resume execution of the application.

2.3.4 Star ting the DTT
A traced application must be launched with the following Java argument:

 -Djack.tracing.enabled=true

A traced application can be started from the command line or from theCompiler Utility of the
JDE.

2.3.4.1 Tracing fr om the command line

If a tracedapplicationis launchedfrom acommandline, theportalusedby theJDEto connect
to it mustbespecifiedwith theJavaportalpropertiesspecifiedin theprevioussection.Design
tracingis displayedwithin theJDE.Onceanapplicationhasstarted,theJDEmustbelaunched
and connected to the portal created by the application (see theTrace menu section for further
details).

Thefollowing is anexampleof thecommandusedto starta tracedapplicationnamedProgram
from the command line:

java -Djack.tracing.enabled=true -Djack.portal.name=Server

-Djack.portal.host=localhost -Djack.portal.port=9999 Program

Design tracing tool

Tracing and Logging
Release5.5

14 10-June-05
Copyright © 2012, Agent Oriented Software Pty Ltd

2.3.4.2 Tracing from the JDE

When a traced application is started from within the JDE, it is launched from theRun tab of
theCompiler Utility. A portal can be created by the application either with Java portal
propertiesor DCI commandline arguments. Thefollowing figureshowsanapplicationnamed
Program run with DCI command line arguments.

Figure 2-1: Starting tracing from the JDE

For more information on DCI, refer to theAgent Manual. The application will now execute
until its suspension point is reached.

Design tracing tool

Tracing and Logging
Release 5.5
10-June-05 15
Copyright © 2012, Agent Oriented Software Pty Ltd

2.3.5 The Trace menu
Once the application has been started, the DTT can be launched from within the JDE.

The JDE provides access to DTT functionality via theTrace menu. This menu has 5 choices:

1. Connect To Nameserver...

Usethismenuoptionto connectto aDCI nameserver. For example,if theapplicationhad
been started using the DCI arguments described in the previous section, the user would
enterlocalhost:9999 or 9999 to connect to the application's nameserver. Nameserver
connection is optional; however, without a nameserver, the DTT user needs to know
explicit portal addresses in order to connect the DTT to each portal, rather than using
portal names.

Note that the nameserver address can also be entered using theConnect To Portal... menu
option.

Figure 2-2: Connect to Nameserver dialog

Design tracing tool

Tracing and Logging
Release5.5

16 10-June-05
Copyright © 2012, Agent Oriented Software Pty Ltd

2. Connect To Portal...

Use this menuoption to connect to a portal via the portal name or address. Once
connected, theTracing window will be displayed, showing all agents connected to that
portal.

If already connected to a nameserver, you would normally connect by specifying a portal
name. Otherwise, use an explicit address such aslocalhost:9999 or 9999.

Figure 2-3: Connect to Portal dialog

3. Configure Design Tracing...

Use this menuoption to configure settings for design tracing. Design tracing should be
configured whilst an application is stopped or paused. Refer to theConfiguring design
tracing section in this chapter for information on how to configure design tracing.

Once connected to a portal and design tracing is configured, an application can be resumed
from its suspension point and traced with the DTT.

4. Design Tracing Controller

Use this menuoption to control tracing of designs. Refer to theControlling Design
Tracing section in this chapter for information on how to control design tracing.

Design tracing tool

Tracing and Logging
Release 5.5
10-June-05 17
Copyright © 2012, Agent Oriented Software Pty Ltd

5. Ping Agent...

Use this menu option to check if an agent is still responding. The number of attempts and
the delay in seconds can be set between ping attempts. The agent name and portal name
need to be entered, e.g.robot23@Server.

Figure 2-4: Ping Agent dialog

2.3.6 The Tracing windo w
Once connected to a portal theTracing window opens. The tracing window displays the name
of the portal and all agents in a running application connected to the portal. Tracing of an
applicationmaybestoppedby right clicking onany agentin theTracing window andselecting
theQuit tracing on portal option, or by closing theTracing window.

2.4 Configuring design tracing
TheDesign Tracing Configuration window enables design tracing settings to be added,
removed and edited. The design tracing settings configured in the window can also be saved
and loaded. Design tracing settings are usually configured before starting an application.
These settings can also be configured while an application is paused.

TheDesign Tracing Configuration window is opened from theTrace menu of the JDE. The
window containsatablewith arow for eachdesigntracingsettingandacolumncorresponding
to each trace configuration field.

TheDesign Tracing Configuration window can contain any combination of rows. This allows
tracing of all agents, specific agent types and/or individual agents in a design diagram. Each
row is usually shown as a separate TDW during application execution. However if two rows
with the same name specify the same design diagram they are shown in one TDW.

Design tracing tool

Tracing and Logging
Release5.5

18 10-June-05
Copyright © 2012, Agent Oriented Software Pty Ltd

The following figure shows theDesign Tracing Configuration window configured with rows
for three TDWs. The first row traces all agents in thePaint_requesting_capability design.
The second row traces the agent namedrobot23 and the third row traces allPart type agents.

Figure 2-5: TheDesign Tracing Configuration window

2.4.1 Adding a trace row
A new trace row is added by clicking theAdd button of theDesign Tracing Configuration
window. Thenew tracerow canthenbeeditedto traceall agents,all agentsof aspecifiedtype
or an individual agent in a design diagram. The new trace row can also be edited to trace a
different aspect of an existing row. Note that it must be given the same name as the existing
row.

2.4.2 Removing a trace row
A trace row is removed by clicking and highlighting the trace row in theDesign Tracing
Configuration window and clicking theRemove button.

2.4.3 Editing a trace row
A trace row must specify a project and design diagram. TheAgent Type andAgent Name
fields are optional and are filled with asterisks (*) by default, which means all agents will be
traced. Trace rows can be edited as required (if a traced application is already running it
should be paused first).

Design tracing tool

Tracing and Logging
Release 5.5
10-June-05 19
Copyright © 2012, Agent Oriented Software Pty Ltd

2.4.4 Selecting a design
A design diagram is selected by typing the project path, file name and design name or by
choosing the project and design graphically.

To choose a design diagram manually, click theProject:Design Name column of theDesign
Tracing Configuration window and type the project name and design name in the following
format:

file_path/project_name.prj:design_name

To choose a design diagram graphically, click theChoose... button in theProject:Design
Name columnof theDesign Tracing Configuration window. A window namedSelect a project
file, then choose a design diagram will appear.

Click the required project file from the list of files. A list of design diagrams associated with
the project file will be displayed. Click on a design diagram name and then clickChoose.

Once a design has been selected, the path of the project file will be shown in the
Project:Design Name column of theDesign Tracing Configuration window. The width of the
Project:Design Name column can be increased to view the full path and name of the project
and design.

2.4.5 Tracing agent types
Agent types to be traced are configured in theAgent Type column of theDesign Tracing
Configuration window. Whenanew row is createdit containsanasterisk(*) in theAgent Type
column by default, meaning all agent types will be traced. Different agent types in a design
diagram are traced by adding a new row for each type.

An agent type is selected by typing the agent type or by selecting it graphically. To select an
agent type manually, click theAgent Type column of theDesign Tracing Configuration
window and type the agent type in the following format:

package_name.Agent_Type

To selectanagenttypegraphically, click theChoose... buttonin theAgent Type columnof the
Design Tracing Configuration window. A window labelledSelect a project file, then choose
an agent type will appear. Click ontherequiredprojectfile from thelist of files.A list of agent
types associated with the project file will be displayed. Click on an agent type and then click
Choose.

Onceanagenttypehasbeenselected,theagenttypewill beshown in theAgent Type column
of theDesign Tracing Configuration window.

Design tracing tool

Tracing and Logging
Release5.5

20 10-June-05
Copyright © 2012, Agent Oriented Software Pty Ltd

Note: Two or more agent types in a design diagram may be traced in the same TDW by
naming rows with the same name.

2.4.6 Tracing individual a gents
Individualagentsto betracedareconfiguredin theAgent Name columnof theDesign Tracing
Configuration window. When a new row is created it contains an asterisk (*) in theAgent
Name column by default, meaning all agents of the type specified in theAgent Type field of
the row will be traced (ifAgent Type is also * then all agents in the design diagram will be
traced). The execution of agents in a design diagram can be viewed in separate TDWs by
configuring rows with individual agents.

Individual agents are traced by typing the agent name and server name in theAgent Name
column. Agent names should by typed as they appear in the code of the application to be
traced.For example,anagentnamedrobot23 in anapplicationthatconnectsto aservernamed
Server is typed asrobot23@Server.

Two or moreindividualagentsin adesigndiagrammaybetracedin thesameTDW by naming
rows with the same name.

2.4.7 Tracing all a gents
To trace all agents in an application, select the required design and leave the agent type and
agent name columns as the default settings (asterisks).

2.4.8 Saving and loading tracing configurations
The design tracing configuration of an application in theDesign Tracing Configuration
window can be saved to adesign tracing configuration file and loaded for later use.

2.4.8.1 Saving a design tracing configuration

To savethecurrentconfigurationin theDesign Tracing Configuration window click theSave...
button. A Save Trace Configuration File dialogwindow will open,whereanew designtracing
configuration file can be named and saved.

2.4.8.2 Loading a design tracing configuration

To load a previously saved design configuration file, click theLoad... button in theDesign
Tracing Configuration window and select the required design tracing configuration file from
theLoad Trace Configuration File dialog window.

Notethatwhenadesigntracingconfigurationis loadedfrom afile, any previouslyconfigured
trace settings in theDesign Tracing Configuration window are replaced by the trace settings
from the file.

Design tracing tool

Tracing and Logging
Release 5.5
10-June-05 21
Copyright © 2012, Agent Oriented Software Pty Ltd

2.4.8.3 Design tracing configuration files

A designtracingconfigurationfile containsthedateandtimeof thefile creationanddetailsof
each trace setting. The design tracing details that are saved are:

• the path and name of the project file

• project name

• design name

• agent type

• agent name

• row name.

2.4.9 Appl ying tracing settings
The design tracing configuration of an application must be applied before commencing
tracing. Once all trace settings have been configured, click theApply button in theDesign
Tracing Configuration window. TheDesign Tracing Controller window will open.

2.4.9.1 Configuration err ors

If a design, agent type or agent name of a row is incorrectly specified, anError applying
configuration window will appear.

When an error occurs, check the trace settings in theDesign Tracing Configuration window.
Ensure that the following details are correct:

• project file names and file paths

• design diagram names

• agent type names

• individual agents' names.

An error may also occur due to:

• the type of individual agents not being specified

• empty rows being present.

2.5 Contr olling design tracing
Execution of an application traced with the DTT is controlled with theDesign Tracing
Controller. Thiswindow will appearafterconfiguringtracing,or canbemanuallychosenfrom
theTrace menu.

Design tracing tool

Tracing and Logging
Release5.5

22 10-June-05
Copyright © 2012, Agent Oriented Software Pty Ltd

The window is divided intoGlobal Trace Settings andDesign Trace Control. Global Trace
Settings allow tracing to be turned on or off, designs to be traced in descriptive mode and
configuration of delayed tracing visualisation.Design Trace Control allows tracing to be
stopped, run or stepped.

Figure 2-6: TheDesign Tracing Controller window

2.5.1 Turning tracing on and off
Tracing visualisation is turned on and off by selecting theTracing On checkbox in theDesign
Tracing Controller window. Unchecking the checkbox stops tracing at the next traced
transitionandtheexecutingapplicationcontinueswithout tracingvisualisation.Thisoptionis
selected by default.

2.5.2 Tracing in descriptive mode
Tracing designs in descriptive mode is turned on by selecting theTrace in Descriptive Mode
checkboxin theDesign Tracing Controller window. Thisoptiondisplayselementsof all traced
designs with their descriptions. Designs are not traced in descriptive mode by default.

Descriptive mode in an individual TDW can also be toggled on and off using theToggle
descriptive mode button on the tool bar of the window.

2.5.3 Delaying tracing transitions
A traced application runs in realtime by default, and the transition time between each traced
design element is 0. Application execution and tracing visualisation can be delayed by
increasingtheTransition Delay in Seconds to anumberlargerthan0. Thetransitiondelaycan
be edited before or during design tracing.

Design tracing tool

Tracing and Logging
Release 5.5
10-June-05 23
Copyright © 2012, Agent Oriented Software Pty Ltd

2.5.4 Contr olling tracing
Execution of a traced application is controlled with theStop, Run andStep buttons of the
Design Tracing Controller window.

2.5.4.1 Star ting tracing

When a traced application is resumed after connecting to a portal, the application begins
running and pauses at the first step of a TDW. TheStop button is selected and tracing can be
continued by selecting theRun or Step button.

2.5.4.2 Stopping tracing

Design tracing of an application is stopped by using theTracing On checkbox or theStop
button. Tracing of an application may be stopped completely by:

• Right clicking on any element in theTracing window and selectingQuit tracing on portal.
(this closes the portal)

• Closing theTracing window

• Closing theDesign Tracing Controller.

When tracing is stopped the application continues to run and nothing is highlighted in TDWs.

2.5.4.3 Contr olling tracing of individual traced design windo ws

Tracing of individual TDWs can be stopped and continued using theStop/Continue tracing
design button on the control bar of the window. Transitions will not be highlighted in the
TDW as the traced application continues executing.

2.5.4.4 Stepping thr ough tracing

TheStep button is used to trace a single step of execution of the traced application. For each
step, all transitions between design elements that occur at that step are shown. Tracing
visualisation is stopped once the step is completed.

If JACK elements of an application without corresponding elements TDWs are being
executed, there may be some delay before the next highlighted link is displayed.

Design tracing tool

Tracing and Logging
Release5.5

24 10-June-05
Copyright © 2012, Agent Oriented Software Pty Ltd

2.5.5 Reconfiguring tracing during e xecution
The following steps describe how to reconfigure design tracing of an application during
execution:

1. Click theStop button in theDesign Tracing Controller.

2. Open theDesign Tracing Configuration window.

3. Reconfigure tracing settings and click theApply button.

4. Resume tracing with theRun or theStep button in theDesign Tracing Controller.

2.6 Tracing visualisation
Design tracing is displayed in traced design windows (TDWs). Traced design windows
contain documentation, a design graph, a list of relevant agents and a list of relevant tasks.
TDWs also have a control bar and tool bar to view components of the traced design and to
control tracing visualisation. The design graph of a TDW is the only component displayed by
default.

A separateTDW is displayedfor eachrow. If two differentrowswith thesamenametracethe
same design only one TDW will be shown.

The DTT highlights transitions that correspond to direct execution transitions between JACK
elements. This means that although indirect links appear in a design diagram they will not be
highlighted during design tracing.

Design tracing tool

Tracing and Logging
Release 5.5
10-June-05 25
Copyright © 2012, Agent Oriented Software Pty Ltd

Figure 2-7: A design graph in a traced design window

Traced design windows can be resized, maximised, and moved within the JDE window to
view design tracing in more than one window.

Design tracing tool

Tracing and Logging
Release5.5

26 10-June-05
Copyright © 2012, Agent Oriented Software Pty Ltd

2.6.1 Traced design windo w contr ol bar
The control bar of a TDW has checkboxes for displaying:

• Documentation

• Design Graph

• Agents

• Tasks.

The control bar also has two buttons for controlling tracing visualisation:

• Reset the count on links

• Stop/Continue tracing design.

The first button resets the number of times traced links in the design have been followed to
zero. The second control bar button is used to stop and continue tracing of that particular
window.

2.6.2 Traced design windo w tool bar
The tool bar of a TDW has a zoom slider and aToggle descriptive mode button. The zoom
slider is used to shrink or enlarge the design graph. TheToggle descriptive mode button is
used to display elements in the design diagram with or without documentation.

2.6.3 Viewing design documentation
To view thedocumentationof thedesigngraphin aTDW, selecttheDocumentation checkbox
in the control bar of the window.

2.6.4 Viewing a design graph
The design graph of a TDW contains the project design diagram specified in the
corresponding design tracing configuration row. Design graphs are displayed for tracing
visualisation only and are not editable.

To view a design graph in a TDW, select theDesign Graph checkbox in the control bar of the
window (selected by default). A non-editable design graph will be displayed.

2.6.5 Viewing rele vant agents
To view a list of agents that are relevant to a TDW, select theAgents checkbox in the control
bar of the window. The names, types and portals of agents relevant to the TDW are displayed.

Design tracing tool

Tracing and Logging
Release 5.5
10-June-05 27
Copyright © 2012, Agent Oriented Software Pty Ltd

2.6.6 Viewing rele vant tasks
To view a list of tasksthatarerelevantto aTDW, selecttheTasks checkboxin thecontrolbar
of the window. The details of all executed tasks relevant to the TDW are displayed. These
detailsincludethetasknumber, theJACK elementsinvolvedandthename,typeandportalof
the agent executing the task. When a relevant task is selected, the design graph of the TDW
appears grey to indicate that the selected task and associated transition has occurred.

2.6.7 Transition visualisation
Links between design elements are highlighted when a transition between corresponding
JACK elements occurs. The number of times a link has been followed is shown in brackets
next to thelink label.For example,a link betweenaplanandapostedeventfollowedtwice is
shown asposts (2).

The traced design window containing the most recently traced transition always appears in
front of other traced design windows. Transitions that occur simultaneously between design
elements in the same TDW are shown as links highlighted at the same time. To view both
transitions, ensure that both windows are visible (e.g. side by side in the JDE).

If JACK elements without corresponding design elements in a TDW are executed, tracing
visualisation does not change. The last followed link in the current TDW remains highlighted
until a link on another TDW is followed.

2.6.8 Resetting transition counts
The number of times links in a TDW have been followed can be reset to 0 by clicking the
Reset the count on links button on the TDW control bar.

2.6.9 Tracing visualisation err ors

2.6.9.1 No traced design windo ws are sho wn

If no TDWs are displayed when a traced application is executed:

• check that all other previous executing applications have finished

• if the application is being re-executed, ensure that a new portal instance is created, you
have connected to that portal and a new tracing configuration is applied.

2.7 A design tracing e xample
Thissectionbriefly describesthepaint_robot exampleandexplainsthestepsnecessaryto set
upandruntheapplicationwith theDTT. Thepaint_robot exampleis basedonanexamplein
theJACK™ Agentpracticalexercises.Theexampleis accessedby selectingthepaint_robot
example from theCreate Project From Example option in theJDE Help menu.

Design tracing tool

Tracing and Logging
Release5.5

28 10-June-05
Copyright © 2012, Agent Oriented Software Pty Ltd

Figure 2-8: Create Project from Example options

The paint_robot example contains a Robot agent and several Part agents. The Part agents are
responsible for being painted and to achieve this, they send appropriate requests to the Robot
agent. The current status of the part (painted/not painted) is held by each part agent in its own
beliefset.

Two design diagrams are contained in the example, Painting_capability and
Paint_requesting_capability. The Painting_capability design contains design elements
which correspond to JACK elements that are used by the Painting capability of the Robot

agent type. The Paint_requesting_capability design contains design elements which
correspond to JACK elements that are used by the PaintRequesting capability of the Part

agent type.

Design tracing tool

Tracing and Logging
Release 5.5
10-June-05 29
Copyright © 2012, Agent Oriented Software Pty Ltd

Step 1: Develop the application

Thespecificationis thesameasin Practical1 of theAgent Practicals exceptthatthepartagent
now maintains a beliefset that stores its current status. The implementation can be examined
using the JDE; here we only consider the application'smain() method:

import part.*;
import robot.*;
import java.io.*;
import javax.swing.JOptionPane;
import javax.swing.JFrame;

public class Program {

 public static void main(String args[])
 {
 Robot robot1 = new Robot("robot23");
 Part part1 = new Part("part1");
 Part part2 = new Part("part2");
 Part part3 = new Part("part3");
 Part part4 = new Part("part4");

 JOptionPane.showMessageDialog(null,
 "If you intend to trace the designs in this project,"
 + "first connect\n"
 + "to the correct portal, then set up"
 + "the designs for tracing\n"
 + "before clicking OK to start the example.",
 "Start example",
 JOptionPane.INFORMATION_MESSAGE);

 System.out.println("test with red");
 part1.submitPaintRequest("robot23","red");
 System.out.println("test with no specified colour (null)");
 part2.submitPaintRequest("robot23",null);
 System.out.println("test with white");
 part3.submitPaintRequest("robot23","white");
 System.out.println("test with white again");
 part4.submitPaintRequest("robot23","white");

 JOptionPane.showMessageDialog(null,
 "The example has finished executing. Click OK to finish.",
 "Example finished",
 JOptionPane.INFORMATION_MESSAGE);
 System.exit(0);
 }
}

In order to trace designs in thepaint_robot example, a new line has been added to the
Program.java file:

• JOptionPane.showMessageDialog(null, "Connect to the correct portal\nand click

OK to start example", "Start example", JOptionPane.INFORMATION_MESSAGE);

This line is used to stop execution of the application until the user has connected the DTT
to the application and passed control of execution to the DTT. Note that it occurs after the
agents have been created, but before any events are posted.

Design tracing tool

Tracing and Logging
Release5.5

30 10-June-05
Copyright © 2012, Agent Oriented Software Pty Ltd

Step 2: Starting the application

To compile the application, select theCompiler Utility window'sCompile Application tab and
click theCompile button.

Once compiled, select theCompiler Utility window'sRun Application tab. To enable the DTT,
select theProgram.class file and in theJava Args field enter:

-Djack.tracing.enabled=true -Djack.portal.name=Server
-Djack.portal.host=localhost -Djack.portal.port=9999

This creates a DCI nameserver and portal namedServer onlocalhost at port 9999.

Figure 2-9: JACK Compiler Utility Run Application tab

Design tracing tool

Tracing and Logging
Release 5.5
10-June-05 31
Copyright © 2012, Agent Oriented Software Pty Ltd

Click Run. This starts the application, which will create the agents and then bring up the
following dialog.

Figure 2-10: Start example dialog

Before clicking OK in the above dialog, the DTT needs to be connected to the application (step
3).

Step 3: Connect the DTT to application

Select the Connect to Portal option from the Trace menu. Enter Server as the portal name and
9999 as the Address.

Figure 2-11: Connect to Portal dialog

The DTT Tracing window will now appear in the JDE. Details of the portal and existing
agents will be displayed in this Tracing window.

Design tracing tool

Tracing and Logging
Release5.5

32 10-June-05
Copyright © 2012, Agent Oriented Software Pty Ltd

Figure 2-12:Tracing window

Step 4: Configure design tracing

This step describes how to configure tracing of all agents in the
Paint_requesting_capability design and tracing of therobot23 agent in the
Painting_capability design.

1. Begin by selecting theConfigure Design Tracing... option from theTrace menu, which
opens theDesign Tracing Configuration window.

2. To add a new row for tracing all agents in the Paint_requesting_capability design, first
click theAdd button.

3. Click theChoose... buttonin theProject:Design Name columnof thenew row. A window
will open namedSelect a project file, then choose a design diagram. Select the project
name,paint_robot.prj, and then the design,Paint_requesting_capability and click
Choose.

4. Leave theAgent Type andAgent Name fields as asterisks. To identify the row during
tracing, it can be given a descriptive name such as "all agents" in theTrace Group
column.

Design tracing tool

Tracing and Logging
Release 5.5
10-June-05 33
Copyright © 2012, Agent Oriented Software Pty Ltd

5. To add and configure a row that traces therobot23 agent in thePainting_capability
design diagram follow steps 2 and 3 above (choose thePainting_capability design in
step 3).

6. In theAgent Name field of the row, type the name of the agent,robot23. To identify the
row duringtracing,it canbegivenadescriptivenamesuchasrobot23@Server in theTrace
Group column.

Figure 2-13: Trace settings in theDesign Tracing Configuration window

7. To apply the design tracing configuration settings and open theDesign Tracing Controller,
click theApply button. TheDesign Tracing Controller will open automatically.

Step 5: Start design tracing

This step describes how to start tracing and how to step through tracing visualisation.

1. Ensure that the JDE andDesign Tracing Controller are both visible so that tracing can
easily be viewed and controlled at the same time.

2. Resume the application by clickingOK in theStart example dialog. The first step of
visualisation will be shown.

Design tracing tool

Tracing and Logging
Release5.5

34 10-June-05
Copyright © 2012, Agent Oriented Software Pty Ltd

Figure 2-14: Start example dialog

3. Click the Run button in the Design Tracing Controller. Transitions between design
elements will be shown in both TDWs as execution passes to corresponding JACK
elements.

Design tracing tool

Tracing and Logging
Release 5.5
10-June-05 35
Copyright © 2012, Agent Oriented Software Pty Ltd

Figure 2-15: Tracing thepaint_robot example

4. Oncethefirst few stepsof executionhavebeenshown,stepthroughtracingby clicking the
Step button in theDesign Tracing Controller.

5. View the relevant tasks in therobot23 TDW by selecting theTasks checkbox on the
control bar of the window.

Design tracing tool

Tracing and Logging
Release5.5

36 10-June-05
Copyright © 2012, Agent Oriented Software Pty Ltd

Figure 2-16: Relevant tasks of therobot23 traced design window

6. Continue running or stepping through tracing until the application has completed. Once
the application has finished, disconnect from theServer portal by closing theTracing
window.

Thisexampledemonstratestheuseof theDTT with asimpledesigntracingconfiguration.Use
of different DTT features will vary according to the application being traced and the intended
viewers of the design tracing visualisation.

Plan tracing tool

Tracing and Logging
Release 5.5
10-June-05 37
Copyright © 2012, Agent Oriented Software Pty Ltd

3 Plan tracing tool
3.1 Introduction
The JACK Intelligent Agents®Plan Tracing Tool (Plan Tracing Tool) provides the ability to
display and trace the execution of Graphical Plans and the events that handle them in JACK
Intelligent Agents® (JACK) applications.

The Plan Tracing Tool is a graphical tool that displays agent behaviour by tracing executing
tasks in a graphical environment. Tasks consist of events and the plan instances that handle
them. Each event that is traced within a task can be shown graphically, with nodes that are
highlightedaccordingto actionswithin thetask.Eachplanthatis tracedwithin a taskcanalso
be shown graphically, with individual nodes of reasoning methods highlighted to reflect the
current actions and decision making processes expressed in the plan.

At each stage of execution, the execution history of a task – including events and applicable
plan instances – may be examined by the user. The Plan Tracing Tool displays the
documentation, graph, variables and exceptions of traced events and plans. The context
conditionsof plansmayalsobeviewed.Otherdetailsof tracedeventsdisplayedby thetool are
plan instances that are applicable to the event and plans that have failed to handle the event.
The events handled by plans in the task, including applicable and failed plan instances, can
also be examined.

The user can control execution of individual agents with the ability to start, stop and step
tracing of those agents. This provides a powerful, visual way to interact with an executing
agent system.

Graphical plans in an application may be traced after creating them in the JACK™ Graphical
Plan Editor, generating JACK files with theGenerate traceable plans option and compiling
the application. The Plan Tracing Tool will trace events in JACK applications with or without
graphical plans.

Only plansthatarecreatedin theGraphicalPlanEditorcanbegraphicallytracedwith thePlan
Tracing Tool. Textual plans created in the JACK Development Environment can also be
traced, but without the detailed step-by-step interaction possible with graphical plans.

JACK Teams™ projects may be traced with the Plan Tracing Tool. However, the reasoning
methods of team plans will be shown in code form.

This chapter assumes that the user is familiar with the JACK™ Development Environment
(JDE), the JACK™ Graphical Plan Editor (GPE) and JACK agents. If further information is
required on these topics, refer to theDevelopment Environment Manual, theGraphical Plan
Editor Manual and theAgent Manual.

Plan tracing tool

Tracing and Logging
Release5.5

38 10-June-05
Copyright © 2012, Agent Oriented Software Pty Ltd

3.2 An plan tracing example
In thisdocument,weuseasimplemulti-currency BankAccountsystemasanexampleandas
a source of figures. It is available in theexamples/accounts directory of the JACK
installation. The example is also accessible from theCreate Project from Example option of
the JDEHelp menu.

This section briefly describes the example application and then works through the mechanics
of using the Plan Tracing Tool to investigate its operation.

To follow the example, open the project fileaccounts.prj in the JDE.

3.2.1 The multi-currency bank account example
The example application is a (small) part of a Banking application which maintains bank
accounts in nominated currencies, and performs currency conversions to allow transactions
against the accounts to occur in any currency.

The example consists of aBankAccount agent which maintains a table of bank accounts and
performs transactions on those accounts, aCurrencyExchange agent which maintains a table
of currency exchangeratesandusesit to convertamountsfrom onecurrency to another, anda
Communicator agent which acts as an interface.

The BankAccount agent

TheBankAccount agent maintains a table of bank accounts in an instance ofAccount as
described in the following table:

Table 3-1: Details stored about each bank account

Accounts can be held in any currency, and apart from an integer account number and the
owner's name, the only other attribute stored is the current balance.

TheBankAccount agent receives messages creating accounts, enquiring about account
attributes and transactions.

Field Type Description

accountNumber int Number identifying the account.

name String Name of the account owner.

currency String Three letter code for the currency of the account.

balance double Current balance of the account.

Plan tracing tool

Tracing and Logging
Release 5.5
10-June-05 39
Copyright © 2012, Agent Oriented Software Pty Ltd

Accounts are created withCreateAccountRequest and are credited or debited with
CreditAccountRequest andDebitAccountRequest messages. Information requests are made
with AccountInfoRequest messages.

Transactionscanbein any currency, andtheBankAccount agentmakesuseof theservicesof a
CurrencyExchange agent to convert amounts from one currency to another.

Accounts must maintain a non-negative balance, so withdrawals that exceed the current
balance are not permitted.

A transaction is performed in the currency of the account. If theCurrencyExchange agent
cannot convert the transaction's currency to that of the account, the transaction is not
permitted.

The agent uses theSendAndWaitPlan plan to send messages to theCurrencyExchange agent,
and wait for and collect the replies.

When a transaction cannot be performed, theBankAccount agent replies with aRequestError
message.

The CurrencyExchange agent

TheCurrencyExchange agent maintains a table of currency exchange rates in an instance of
ExchangeRate, as described in the following table:

Table 3-2: Details stored about the currency exchange rates

TheCurrencyExchange agent receives messages setting exchange rates and asking for
amounts in one currency to be converted to another.

Exchange rates are set withSetExchangeRate messages. These are handled by
SetExchangeRatePlan.

Currency conversions are performed in response toExchangeRequest messages. These are
handled byExchangePlan, which posts aComputeRate event to determine the appropriate
exchange rate to use.

Field Type Description

currency1 String First currency.

currency2 String Second currency.

rate double Amount of the second currency that 1 unit of
the first currency will buy.

Plan tracing tool

Tracing and Logging
Release5.5

40 10-June-05
Copyright © 2012, Agent Oriented Software Pty Ltd

TheCurrencyExchange agent has several plans to handle theComputeRate event. They are
listed below.

Table 3-3: Plans used to handle theComputeRate event

The Communicator agent

TheCommunicator agent is used to interface between Java code and theBankAccount and
CurrencyExchange agents.It usesSendAndWaitPlan to sendmessagesto theotheragents,and
wait for and collect the replies.

The Accounts class

TheAccounts class has a main method that creates the three agent instances. The class then
uses theCommunicator agent to send requests to the other two agents. This is sufficient to
explore the Plan Tracing Tool's functions.

3.2.2 Walkthrough
The Plan Tracing Tool works only with JACK projects created with the JACK Development
Environment (JDE). It is designed to be most useful with applications containing plans
created graphically with the Graphical Plan Editor, but can also display, though not trace, the
internal steps of textual reasoning methods created with text editors within the JDE. The tool
graphicallydisplaystheexecutionof tracedeventsthatarehandledby bothgraphicalandnon-
graphical plans, along with graphical plans.

A user therefore begins by developing the plans in an application with the Graphical Plan
Editor tool within theJDE.JACK codeis thengeneratedwith tracingsupportenabledandthe
application is compiled.

When the program is compiled and ready to run, it can be run under the control of the Plan
Tracing Tool from theCompiler Utility'sRun Application tab, or directly from a command
prompt.

Plan Description

IdentityRatePlan Used for conversion from a currency to itself.

ComputeRatePlan Used for conversion from one currency to another for
which a direct rate is available in theExchangeRate
table.

TwoStepRatePlan Usedfor conversionfrom onecurrency to anothervia a
third. Used when no direct rate is available in the
ExchangeRate table.

Plan tracing tool

Tracing and Logging
Release 5.5
10-June-05 41
Copyright © 2012, Agent Oriented Software Pty Ltd

3.2.2.1 The plan tracing tool windows

The Plan Tracing Tool is a graphical tool that controls the execution of a JACK application and
enables the user to view the execution steps taken and the values of variables computed within
plans and events.

Plan tracing is controlled by an Agent Tracing Controller window.

Figure 3-1: The Agent Tracing Controller

With this window the user controls the execution of the agents in the traced JACK application.

Each agent within an application runs several tasks at any one time. Traced instances of plans
and the events they handle are shown in task windows corresponding to the task they are
associated with.

Plan tracing tool

Tracing and Logging
Release5.5

42 10-June-05
Copyright © 2012, Agent Oriented Software Pty Ltd

Figure 3-2: A taskwindow showing aninstanceof theCreditAccountExchangePlan.convert
reasoning method

Thepreviousfigureillustratestheconvert reasoningmethodof CreditAccountExchangePlan.
Execution is paused on the decision node, which is highlighted in blue to represent this.
Previously executed nodes, and the links traversed to reach them, are shown in grey.

The values of the reasoning method's parameters and variables, as well as variables of the
CreditAccountExchangePlan plan(markedwith a"+"), canbeseenin theVariables sectionof
the task window. Their values are updated in theVariables section as the plan is executed.

The plan's documentation and conditions are also available intask windows.

Plan tracing tool

Tracing and Logging
Release 5.5
10-June-05 43
Copyright © 2012, Agent Oriented Software Pty Ltd

The following figure illustrates theCreateAccountRequest event. Execution is paused on the
Invoke Plan node, which is highlighted in blue to represent this. Nodes that have previously
executed are shown in grey.

Figure 3-3: A task window showing the graph and plans of aCreditAccountRequest event
instance

Thegraphof eventexecutionis shown by default.Eventdocumentationandvariablesarealso
shown in the task window.

Plan tracing tool

Tracing and Logging
Release5.5

44 10-June-05
Copyright © 2012, Agent Oriented Software Pty Ltd

A list of applicable plan instances that are currently being considered for processing of an
event is available in the task window. The list includes details of the plan type and plan
variables.If oneof theseplaninstanceshasbeenselectedto handletheeventandis executing
in the task, it is highlighted. A list of applicable plans can be completely recomputed during
event processing.

The task window also contains a list of failed plans. These are plan instances that have been
chosento handletheevent,but havefailedto processtheeventsuccessfully. Someeventtypes
do not have a list of failed plans, in which case the list in the task window remains empty.

A new task window is created for each new task the agent begins as soon as the task enters a
reasoning method or posts an event that is being traced.

The Plan Tracing Tool determines which reasoning methods and events to trace either by
tracing all of them (the default) or by reading aPlan Tracing configuration file at startup.

3.2.2.2 A sample run of the plan tracing tool

In this section we work through an example of compiling and running an application with
tracing, to provide some immediate familiarity with using the Plan Tracing Tool.

Start plan and event tracing with the following steps:

1. Using the JACK Development Environment, open the Accounts project with theCreate
Project from Example option of theHelp menu.

2. Open thePreferences window for the JDE. In thePreferences window, select the
Graphical Plans tab.

3. Ensure that theGenerate traceable plans box is selected, save preferences, and close the
window.

4. Select theGenerate All JACK Files option from theFile menu. This is necessary after
settingGenerate traceable plans to ensure that all the plans in the application are
compiled with tracing support.

5. Open theCompiler Utility.

6. Using theCompile Application tab, compile the application.

7. Using theRun Application tab, select the fileAccounts.class and select theTrace
Graphical Plans checkbox. Use theSelect or Create... button to find thetrace1.cfg file
in theexamples/accounts directory and set it as the Plan Tracing configuration file.

8. Run the application.

Plan tracing tool

Tracing and Logging
Release 5.5
10-June-05 45
Copyright © 2012, Agent Oriented Software Pty Ltd

TheAgent Tracing Controller window will appear, followed by a task window similar to that
displayed in the the following figure.

Figure 3-4: A task window showing the conditions and graph of aCreditAccountRequest
event instance

TheTracing selection box at the top of the task window shows the traced reasoning methods
and events active in the task. There is only one event at this stage. The row of checkboxes
below it can be used to select different information to be shown in the window.

Plan tracing tool

Tracing and Logging
Release5.5

46 10-June-05
Copyright © 2012, Agent Oriented Software Pty Ltd

The task window currently displays the graph of event execution and theConditions section.
To view theApplicable andFailed sections instead of theConditions section, click on the
Conditions checkbox to unselect it and select theApplicable andFailed checkboxes. A task
window then appears that is similar to the following figure.

Figure 3-5: A task window showing theCreditAccountRequest event withApplicable and
Failed plans

TheApplicable andFailed sectionswill currentlybeempty, astheplansapplicableto theevent
have not yet been examined.

Plan tracing tool

Tracing and Logging
Release 5.5
10-June-05 47
Copyright © 2012, Agent Oriented Software Pty Ltd

Click on theStep button to go to the next step of execution. TheInvoke Plan node of the
graph will be highlighted in blue, and an applicable plan will be highlighted in theApplicable
section, as shown in the following figure.

Figure 3-6: A task window showing theCreditAccountRequest event

Plan tracing tool

Tracing and Logging
Release5.5

48 10-June-05
Copyright © 2012, Agent Oriented Software Pty Ltd

Click on theStep button to continue plan and event tracing until the fourth task window
appears. The window will be similar to the following figure.

Note: You may need to turn theConditions checkbox back on and turn theApplicable and
Failed checkboxes off.

Figure 3-7: A task window showing an instance of theCreditAccountPlan.body reasoning
method

In theGraph display, the node that will be executed next is shown in blue. In the previous
figure, this is theStart node of the reasoning method.

Plan tracing tool

Tracing and Logging
Release 5.5
10-June-05 49
Copyright © 2012, Agent Oriented Software Pty Ltd

Push theStep button on theAgent Tracing Controller to view the following figure.

Figure 3-8: A task window showing an instance of theCreditAccountPlan.body reasoning
method after a step has been taken under the control of theAgent Tracing Controller

This fourth task traced by the example is handled completely by the single plan. Click the
Step buttonuntil it is completed.Thetaskwindow remains,but maynow behiddenby anew
task window displaying the body method ofCreditAccountExchangePlan. If so, move this
new window aside to find the previous one and close it. Task windows remain on the screen
after their tasks have completed until they are closed by the user.

Plan tracing tool

Tracing and Logging
Release5.5

50 10-June-05
Copyright © 2012, Agent Oriented Software Pty Ltd

The new task window is displayed in the following figure.

Figure 3-9: A task window showing an instance of theCreditAccountExchangePlan.body
reasoning method

Plan tracing tool

Tracing and Logging
Release 5.5
10-June-05 51
Copyright © 2012, Agent Oriented Software Pty Ltd

Stepthisnew window threetimeswith theAgent Tracing Controller to producethenext figure.

Figure 3-10: A task window showing an instance of the
CreditAccountExchangePlan.convert reasoning method

Using theTracing selection box at the top of the window, examine thebody method and the
convert method. Both are running in the same task, with one executing in response to the
subgraph node of the other.

Plan tracing tool

Tracing and Logging
Release5.5

52 10-June-05
Copyright © 2012, Agent Oriented Software Pty Ltd

3.2.2.3 Finishing the sample run

There are several other controls on theAgent Tracing Controller.

PressingRun will causetheagentsto runfreely, throughall tracesteps.Taskwindowsarestill
created and updated as appropriate. The agents can be slowed down in this mode by setting a
Transition Delay (in seconds) in theAgent Tracing Controller. Each affected agent running
freelywill thenwait for thisperiodateachplacewhereit couldhavestoppedif beingstepped.

Theagentsto becontrolledduringtracingcanbechosenin theselectionboxabove therow of
Stop, Run, andStep buttons. In thestatereachedin thefigureof thebody reasoningmethodof
theCreditAccountExchangePlan plan,theonly choiceswill beAll Agents, or theBankAccount
agent "anne". If other agents are being traced, they can be selected in this box too.

To complete running the example, clickRun. After all task windows have appeared and
stepped through the nodes in the reasoning methods and events shown, the system will stop.
You should have sixteen (16) task windows on the screen at this stage, five (5) for each of the
creditAccount callsin Accounts.main. Theremainingeleven(11)correspondto thehandling
of traced events, less the one you closed earlier.

To finish the tracing run, close theAgent Tracing Controller. The dialogue in the following
figure will appear. ChooseExit to finish the run.

Figure 3-11: TheExit Application dialogue

3.2.2.4 Tracing more than one agent

Plans from more than one agent can be specified in the Plan Tracing configuration file. For
example, use thetrace2.cfg file in the example to trace theCurrencyExchange agent plans
and events responsible for converting currencies.

3.2.3 Running without the JDE
It is notnecessaryto usetheJDEto runatracedprogram.ProvidedthattheJACK application
has been compiled with tracing enabled as described in the previous sections, you can run the
program under the control of the tracer with a command such as:

 java -Djack.plan.tracing.enabled=true
 -Djack.plan.tracing.config=trace1.cfg Accounts

Plan tracing tool

Tracing and Logging
Release 5.5
10-June-05 53
Copyright © 2012, Agent Oriented Software Pty Ltd

Ensure that the JavaCLASSPATH is set appropriately to allow Java to findjack.jar and the
classes in the example.

In the remainder of this chapter, we will cover the construction of Plan Tracing configuration
files, and the options that adjust the runtime behaviour of the Plan Tracing Tool.

3.3 Plan tracing tool configuration
Configuring the Plan Tracing Tool is a two-part process. First, a Plan Tracing configuration
file is created, either using theRun Application tab of theCompiler Utility in the JDE, or by
handwith atext editor. ThedesiredruntimeoptionsarethensetwhentheJACK applicationis
run.

3.3.1 Plan tracing configuration files
A PlanTracingconfigurationfile is composedof linesidentifyingJACK agents,andtheplans
and events within them that are to be traced.

Each line has three tokens separated by white space. They are listed in order below:

Table 3-4: Contents of a line in the Plan Tracing configuration file

Note: Each of these can be a wildcard "*" to match any agent, plan or event that matches the
other columns.

Field Value

Plan/Event Type The fully qualified class name of the plan or event type.

Agent Type The fully qualified class name of the agent type.

Agent Name The name of the agent instance.

Plan tracing tool

Tracing and Logging
Release5.5

54 10-June-05
Copyright © 2012, Agent Oriented Software Pty Ltd

For example, thetrace1.cfg file from the walkthrough earlier contains:

ex.accounts.CreditAccountPlan ex.accounts.BankAccount *
ex.accounts.CreditAccountExchangePlan ex.accounts.BankAccount *
ex.accounts.CreditAccountErrorPlan ex.accounts.BankAccount *
ex.accounts.CreditAccountRequest ex.accounts.BankAccount *
ex.accounts.AccountInfoRequest ex.accounts.BankAccount *
ex.accounts.CreateAccountRequest ex.accounts.BankAccount *
ex.accounts.CreditAccountRequest ex.accounts.BankAccount *
ex.accounts.DebitAccountRequest ex.accounts.BankAccount *
ex.accounts.TransportRequest ex.accounts.BankAccount *

Figure 3-12: Example Plan Tracing configuration file

Thisarrangesfor thetracingof theplansandeventsusedby ex.accounts.BankAccount agent
types to process requests to deposit money into an account.

Note: Lines in Plan Tracing configuration files that begin with "#" or "//" are comments.

3.3.1.1 Default file g eneration

WhentheSelect or Create... buttonon theRun Application tabof theJDE'sCompiler Utility is
pressed and the file selected does not already exist, the JDE will offer to create it.

Plan Tracing configuration files created by the JDE enable tracing for all the plans and events
within agents of the current project. This is a useful way to generate an initial configuration
file that can be edited to enable tracing on only some plans, events or agents.

Note: If the Plan Tracing Tool cannot find a specified Plan Tracing configuration file it
behaves as if no file has been specified.

3.3.1.2 Running with no tracing configuration file

If the Plan Tracing Tool is run without a Plan Tracing configuration file, then all plans in all
agents are traced.

Note: If the application was not compiled with theGenerate Traceable Plans preference
enabled, only partial information about plans will be available to the Plan Tracing Tool. The
tool will display normal tracing of event processing.

Plan tracing tool

Tracing and Logging
Release 5.5
10-June-05 55
Copyright © 2012, Agent Oriented Software Pty Ltd

3.3.2 Runtime options
The behaviour of the Plan Tracing Tool can be further modified at runtime by a number of
JACK options. We've seen two earlier, when we ran the Plan Tracing Tool from the Unix or
Windows command line:

 java -Djack.plan.tracing.enabled=true
 -Djack.plan.tracing.config=trace1.cfg Accounts

These options can also be set asJava Args in theRun Application tab of the JDE'sCompiler
Utility.

In this section, we describe the runtime options.

jack.plan.tracing.enabled

If setto true, thisoptionturnsonthePlanTracingTool at runtime.Thisoptionmust besetin
order to run plan tracing.

It is set automatically if theTrace Graphical Plans box in theRun Application tab of the
Compiler Utility is ticked, but can also be set manually to run an application with the Plan
Tracing Tool from the command line.

jack.plan.tracing.config

Thisoptionis usedto selectaPlanTracingconfigurationfile to determinewhichagents,plans
and events are traced by the Plan Tracing Tool.

jack.plan.tracing.alwaysraise

If setto true, thecurrenttaskwindow is alwaysbroughtto thefront of all windowswhenever
any node in a graph it shows is traced.

This option isfalse by default.

jack.plan.tracing.alwaysrestore

If set totrue, and a task window is minimised, this option will always restore the window
when any node in a graph it shows is traced.

This option istrue by default.

Plan tracing tool

Tracing and Logging
Release5.5

56 10-June-05
Copyright © 2012, Agent Oriented Software Pty Ltd

jack.plan.tracing.runmode

If setto true, wheneveranew agentis created,thePlanTracingTool is put in to Run modeas
soon as tracing begins.

If set tofalse, agents are stopped when traced untilStepped or Run from theAgent Tracing
Controller.

TheNew Agents Trace in 'Run' Mode on Creation checkbox on theAgent Tracing Controller
can be used to set this property totrue for new agents.

This option isfalse by default.

jack.plan.tracing.zoomcombo.show

If set totrue, shows the zoom combo box in task windows.

Thiscontroloffersfixedpercentagescalingvaluesfor thecurrentlytracedgraph,with similar
effect to the zoom slider below.

This option isfalse by default.

jack.plan.tracing.zoomslider.show

If set totrue, shows the zoom slider in task windows.

The slider can be adjusted to enlarge or shrink the currently traced graph.

Figure 3-13: The zoom slider of a task window

This option istrue by default.

jack.plan.tracing.zoomslider.showtickmarks

If set totrue, shows tick marks on the zoom slider in task windows.

This option istrue by default.

jack.plan.tracing.tracetextual

If set tofalse, ignores reasoning methods that are non graphical.

This option istrue by default.

Plan tracing tool

Tracing and Logging
Release 5.5
10-June-05 57
Copyright © 2012, Agent Oriented Software Pty Ltd

jack.plan.tracing.listallfacts

If set to true this option, lists all the facts in BeliefSets displayed in the Variables section of
the task window.

If set to false, it lists only the number of facts in BeliefSets displayed in the Variables
section of the task window.

This option is false by default.

jack.plan.tracing.descriptivemode

If set to false, the Plan Tracing Tool displays reasoning method nodes in their Code form.

If set to true, the Plan Tracing Tool displays reasoning method nodes in Descriptive Mode.

This option is false by default.

Plan tracing tool

Tracing and Logging
Release5.5

58 10-June-05
Copyright © 2012, Agent Oriented Software Pty Ltd

Agent Interaction Diagram

Tracing and Logging
Release 5.5
10-June-05 59
Copyright © 2012, Agent Oriented Software Pty Ltd

4 Agent Interaction Diagram
4.1 Introduction
Inter-agent communication is a difficult aspect of programming to test and debug. When
monitoringasystem,it is oftennotsufficient to tracetheinternalbehaviour of eachagent— in
order to determine exactly what is going on, it may become necessary to monitor
communication between each agent and the timing of their respective messages. The Agent
Interaction Diagram is provided to facilitate these activities.

Enabling the Agent Interaction Diagram in an application allows messages sent and received
by each agent in the application (and those in other applications that register with the
Interaction Diagram) to be viewed. The Agent Interaction Diagram is a useful tool both for
analysing and debugging communication between agents. It has also proven to be invaluable
when analysing and developing agent systems with a high volume of inter-agent messaging,
especially when a relationship exists between message order and agent behaviour.

Having enabled the Agent Interaction Diagram, one can optionally configure the Diagram.

4.2 Enabling an Interaction Diagram
To enable an interaction diagram, we specify which processes are contributing to the
interaction diagram, the type of interaction diagram associated with each process and
optionally a JACOB file for performing interaction diagram configuration. In a multi-process
application, processes can be declared to share a single diagram.

Enabling of an interaction diagram is achieved through properties which can be specified on
the command line or in a properties file (one per process).

Agent Interaction Diagram

Tracing and Logging
Release5.5

60 10-June-05
Copyright © 2012, Agent Oriented Software Pty Ltd

Table 4-1: Properties for enabling an interaction diagram

To maketheAgentInteractionDiagrameasierto understandamessage memberis availablein
theMessageEvent andBDIMessageEvent classes. It takes the form;

 public String message;

Themessage member is accessible with thegetMessage method. The base implementation of
thismethodreturnsamemberor anemptyString if thememberis null. Themethodtakesthe
form:

 public String getMessage()

Whenwriting postingmethodsfor messageevents,adescriptivestatementshouldbeassigned
to this member. This text will then appear in the Agent Interaction Diagram, allowing easy
identification of the message that has been sent.

Property Description

jack.tracing.idisplay.name The name of the interaction diagram. This is
eitherof theform name or name@portal. name is
used in single process configurations or for the
process in a multi-process configuration which
hosts the interaction diagram.name@portal is
used for those processes in a multi-process
configuration that do not host the interaction
diagram.

jack.tracing.idisplay.type The type of the interaction diagram. This is
eitheridproxy, id or stdout. idproxy is used
for those processes in a multi-process
configuration that do not host the interaction
diagram.id or stdout are used for single
process configurations or for the process in a
multi-process configuration which hosts the
interaction diagram.id specifies that the
content of the diagram is displayed on the
interaction diagram GUI (which is deleted
when the application exits). stdout specifies
that the content of the diagram is displayed in
text form on the standard output. This content
can be made available for offline analysis by
redirecting the standard output to a file.

jack.tracing.idisplay.control Thelocationof aconfigurationfile specifiedin
JACOB format.

Agent Interaction Diagram

Tracing and Logging
Release 5.5
10-June-05 61
Copyright © 2012, Agent Oriented Software Pty Ltd

Below we summarise the steps involved in the creation of an interaction diagram called
blue_poles for both single process and multiple process applications.

1. Single Process Applications

– In the application, useMessageEvents orBDIMessageEvents for communication
between agents and assign meaningful text to themessage member of each message
event.

– In the directory from which the application is launched, create a file calledpfile

which contains the following property assignments:

jack.tracing.idisplay.type=id

jack.tracing.idisplay.name=blue_poles

– Invoke the application with the following additional command line argument:

-Djack.property.file=pfile

The Agent Interaction Diagram will appear when the application is launched.

2. Multiple Process Applications

– Refer to theInter-agent Communications chapter of theAgent Manual for an
explanation of how to configure multi-process applications.

– In the application, useMessageEvents orBDIMessageEvents for communication
between agents and assign meaningful text to themessage member of each message
event.

– Choose one of the processes to host the interaction diagram and choose a portal name
for it. We will useportal0 for this example.

– Choose names for the property files for each process.

– Createthefile pfile0 in thedirectoryin whichthehostingprocessis launchedandadd
the following property assignments:

jack.tracing.idisplay.type=id

jack.tracing.idisplay.name=blue_poles

– In each of the directories in which the remaining processes are launched, create the
appropriately named properties file, all with the following contents:

jack.tracing.idisplay.type=idproxy

jack.tracing.idisplay.name=blue_poles@portal0

– Invoke each process with the following additional command line argument:

-Djack.property.file=property_file

The Agent Interaction Diagram will appear when the application is launched.

Agent Interaction Diagram

Tracing and Logging
Release5.5

62 10-June-05
Copyright © 2012, Agent Oriented Software Pty Ltd

4.3 Configuring an Interaction Dia gram
Configuration is concerned with the look and content of the actual interaction diagram. This
(optional) configuration can be achieved using either a properties file (typically the file used
for enabling the interaction diagram for the process hosting the interaction diagram) or a
JACOBconfigurationfile (specifiedby thejack.tracing.idisplay.control propertyfor the
process hosting the interaction diagram). If configuration details are provided for a process
using both methods, the configuration details in the properties file are ignored.

1. Configuration Using Properties

The following properties can be used to configure the look and content of an interaction
diagram:

Agent Interaction Diagram

Tracing and Logging
Release 5.5
10-June-05 63
Copyright © 2012, Agent Oriented Software Pty Ltd

Table 4-2: Properties to configure the appearance of an interaction diagram

Note: The JACK kernel also has the boolean propertyjack.tracing.idisplay.details

which tellswhetheror not to traceall events,or just thetop level ones.Thisonly hasaneffect
on the display whenjack.tracing.idisplay.goals is set to true. However, it will affect the
performance even if thejack.tracing.idisplay.goals flag is set to false.

Property Description

jack.tracing.idisplay.x,

jack.tracing.idisplay.y,

jack.tracing.idisplay.height,

jack.tracing.idisplay.width

Control the shape of the interaction
diagram frame.

jack.tracing.idisplay.font Sets the font for all text in the
display.

jack.tracing.idisplay.autoscroll Boolean value — it controls whether
or not the display scrolls
automatically to show the last event.
The default istrue.

jack.tracing.idisplay.temporal Boolean value — it controls whether
or not to present the temporal order
of events, as seen by the displayer.
The default isfalse.

jack.tracing.idisplay.showagents Boolean value — it controls whether
or not to include sender and receiver
with the message text. The default is
false.

jack.tracing.idisplay.goals Boolean value — it controls whether
or not to display goal trace events.
The default isfalse.

jack.tracing.idisplay.agentwidth The pixel width for each agent
column.

jack.tracing.idisplay.messageheight The pixel height for trace events.

jack.tracing.idisplay.headheight The pixel height for the source side
indicator.

Agent Interaction Diagram

Tracing and Logging
Release5.5

64 10-June-05
Copyright © 2012, Agent Oriented Software Pty Ltd

2. Configuration using JACOB

If the propertyjack.tracing.idisplay.control specifies a JACOB file which uses objects
from thedictionaryaos/jack/gui/idnew/control.api, thisfile is usedfor interactiondisplay
configuration.Thisdictionarydefinesthreetypesof objects,eachof whichcontrolsadifferent
aspect of the interaction diagram.

a. TheInteractionDisplayTuning Object

The configuration file should contain a single instance of this type. Notice that most of the
fields have the same names as system properties in the table above, since they perform the
same functions.

Agent Interaction Diagram

Tracing and Logging
Release 5.5
10-June-05 65
Copyright © 2012, Agent Oriented Software Pty Ltd

The fields of theInteractionDisplayTuning object are detailed below.

Table 4-3: The fields of theInteractionDisplayTuning object

Note: The JACK kernel has the boolean propertyjack.tracing.idisplay.details which
tellswhetheror not to traceall events,or just thetop level ones.Thisonly hasaneffecton the
display when thegoals field is set to true. However, it will affect the performance even if the
goals field is set to false.

Field Type Description Default Value

x int Horizontal location of left
edge of window.

y int Vertical location of top
edge of window.

width int Width of window in pixels. 400

height int Heightof window in pixels. 400

font String Default font for all text. Courier-12

agentWidth int Default width for agent
columns.

50

messageHeight int Default height for
messages.

20

headHeight int Default height for the
message head symbol.

20

autoScroll boolean Whether to scroll
automatically with new
messages.

true

temporal boolean Show the 'true' temporal
order of send/receive
events.

false

showAgents boolean Include agent names in
messages.

false

goals boolean Show all agent goals. false

agents aggregation Aggregation of
AgentDisplay objects (see
below).

messages aggregation Aggregation of
MessageDisplay objects
(see below).

Agent Interaction Diagram

Tracing and Logging
Release5.5

66 10-June-05
Copyright © 2012, Agent Oriented Software Pty Ltd

b. TheAgentDisplay Object

This object stores configuration information that applies to a single agent's display in the
interaction diagram. As many of these objects as required can be included in theagents field
of theInteractionDisplayTuning object. The fields are detailed below.

Table 4-4: The fields of theAgentDisplay object

Field Type Description Default
Value

name String The name of the agent
concerned.

hide boolean Turnsoff displayof thisagentif
set totrue.

false

showAtStart boolean Causes this agent to be
displayed when the interaction
diagram starts up, even if the
agent doesn't exist at that point.

false

width int Defines the column width for
this agent.

displayedName String Thenamethatshouldbeusedto
identify this agent in the
interaction diagram (if null or
omitted,theagent'sactualname
is used).

nameBackgroundColour String The colour used for the box
behind the agent's name.

nameTextColour String The colour used for the agent's
name (at the top of the
interaction diagram).

lineColour String The colour used for the vertical
line representing this agent.

font String Thefont usedfor thedisplayof
this agent's name at the top of
the diagram.

Agent Interaction Diagram

Tracing and Logging
Release 5.5
10-June-05 67
Copyright © 2012, Agent Oriented Software Pty Ltd

The three fields that specify colours (nameBackgroundColour, nameTextColour and
lineColour) can take either comma-separated RGB values (with a range of 0-255 for each
element) or the names of constant colours defined in thejava.awt.Color class, specifically:

– black

– blue

– cyan

– darkgray (or darkgrey)

– gray (or grey)

– green

– lightgray (or lightgrey)

– magenta

– orange

– pink

– red

– white

– yellow

c. TheMessageDisplay Object

Thisobjectstoresconfigurationinformationthatappliesto thedisplayof individualmessages
in theinteractiondiagram.As many of theseobjectsasrequiredcanbeincludedin theagents
field of theInteractionDisplayTuning object. The fields are detailed below.

Table 4-5: The fields of theMessageDisplay object

Field Type Description Default Value

pattern String Pattern expression for
which this tuning applies.
Asterisks ('*') can be used
as wildcard characters; this
tuningwill thenbeusedfor
any messagesmatchingthe
pattern.

hide boolean Turns off display of these
messages if set totrue.

false

height int Defines the pixel height to
use for these messages.

Agent Interaction Diagram

Tracing and Logging
Release5.5

68 10-June-05
Copyright © 2012, Agent Oriented Software Pty Ltd

To create and edit a configuration file using the JACOB graphical editor, follow these steps:

1. Create an empty configuration file (cfile.cfg) with. for example, Notepad (Windows) or
the touch command (UNIX).

2. Invoke the JACOB graphical editor with the following command:

java aos.main.Jacob cfile.cfg -t aos/jack/gui/idnew/control.api

An icon for the file (cfile.cfg) appears in the left pane of the window.

3. To add objects to the file, first display the icon's contextual menu (right-click/control-
click).

4. Thenfrom themenu,choose'Add TopLevel Object'andselectthekind of objectthatyou
want to create.

5. When editing of the configuration file is completed, choose 'Save' from the 'File' menu to
save the file.

Note: For more information about using the JACOB graphical editor, refer to theJACOB
Manual.

AuditLogging

Tracing and Logging
Release 5.5
10-June-05 69
Copyright © 2012, Agent Oriented Software Pty Ltd

5 Audit Logging
The programmer can trace the activity of JACK entities by setting the
jack.run.debug.options property on the command line. For example:

 java -Djack.run.debug.options=messages:events Test

activates both tracing of messages and events. As this example illustrates, more than one mode
of tracing can be activated by supplying a list separated by colons (":"). A list of the more
commonly used trace modes is given below:

Table 5-1: JACK trace modes

Mode Traces

applicable Applicable sets for handling events.

applsets Creation of applicable plan sets.

beliefs JACK beliefset activity.

bindings Variable bindings and backtracking.

doit Processing of the agents todo list.

eventfailure Event failure.

eventpass Event success.

events Event posting and processing.

excep Exception posting and handling within tasks.

exec Processing of JACK executor (usually agents).

messages Message sending and receiving.

observers Activity of Watchable entities.

planfailure Plan failure.

planpass Plan success.

plans Plan activity.

relevance Relevance sets for handling events.

scheduler transitions in the JACK scheduler.

tasks Task creation and completion.

Audit Logging

Tracing and Logging
Release5.5

70 10-June-05
Copyright © 2012, Agent Oriented Software Pty Ltd

Use of the debugging flags results in the details of the execution being logged to the standard
error. The debugging flags are often used together with redirector properties. For example,

– Ddebug.setError=outputFile1

– Ddebug.setOutput=outputFile2

– Ddebug.setInput=inputFile

would redirect (the messages produced from thejack.run.debug.options property from)
standarderrorto file outputFile1, from outputto file outputFile2 andredirectstandardinput
to file inputFile.

Generic Debugging/Agent Debugging

Tracing and Logging
Release 5.5
10-June-05 71
Copyright © 2012, Agent Oriented Software Pty Ltd

6 Generic Debugging/Ag ent Debugging
Generic debugging of a JACK™ (JACK) application (also known as Agent Debugging) is
performed using JACOB™ (JACOB) objects that implement theAgentDebuggerCommand
interface. This generic debugging tool is a simple and extensible remote agent debugger. It
accepts connections on thejack.debugger.port and then creates a thread that reads JACOB
debug objects from it and casts them to theAgentDebuggerCommand type. The debugger then
calls theprocess method in the debug object.

Debugging capabilities are specified with debug objects, which are defined with JACOB
dictionary files. The default debugging capability is defined with theDumpState object which
is currentlytheonly supporteddebugobject.SeetheDebug objects sectionof thischapterfor
information on theDumpState object. The debugging capabilities of the tool are extended by
defining new debug objects. This process is described in theUser defined debug objects
section of this manual.

TheAgentDebuggerCommand interface is controlled with two Java properties:

• jack.debugger.port .The TCP port on which the generic debugging tool will accept
objects.

• jack.debugger.command

A list of the dictionary files to be loaded, separated by colons (":").

This chapter assumes that the user is familiar with JACK agents and JACOB. If further
information is required on these topics, refer to theAgent Manual and theJACOB Manual .

6.1 Using deb ugging
To use generic debugging the JACK kernelmust listen for a connection on a portal. The user
then connects to the portal using telnet and can enter commands (debug object class names)
whichwill resultin thekernellogginginformationabouttheagents.Commandsareenteredon
the telnet command line.

To start generic debugging the user sets the following properties on the command line:

 java -Djack.debugger.port=nnnn
 -Djack.debugger.commands=<JACOB_definition_file>

Generic Debugging/Agent Debugging

Tracing and Logging
Release5.5

72 10-June-05
Copyright © 2012, Agent Oriented Software Pty Ltd

It is possible to extend generic debugging capabilities with additional commands entered by
the user. Additional commands are entered with:

 java -Djack.debugger.port=nnnn
 -Djack.debugger.commands=
 <command1.api>:<command2.api>:<command3.api>

This establishes a thread that accepts connections from the specified port. Once a connection
is establishedathreadreadsJACOBobjectsoff thesocket andinvokestheprocess methodof
theAgentDebuggerCommand interface. The user can then telnet to the nominated port and type
debugging commands to dump the state of agents in the application.

The initial debugging command available isDumpState and it can be used at the telnet
command line as follows:

 <DumpState [:agent "myAgent"] [:stderr :true]>

This command will print a JACOB object that describes the agentmyAgent to the standard
errorof theprocess.If thecode:agent myAgent is omitted,it will dumpthestateof all agents.
If the code:stderr :true is omitted, any output will go to the socket instead of the standard
error.

6.2 The AgentDebuggerCommand interface
TheAgentDebuggerCommand interface has one method,process.

 public interface aos.jack.jak.agent.AgentDebuggerCommand
 {
 public void process(java.net.Socket, aos.apib.inStream,
 aos.apib.OutStream);
 }

Theprocess method is called on debug objects that are read by the thread established by the
debugger. The method passes in the streamsjava.net.Socket, aos.apib.inStream, and
aos.apib.OutStream to allow the client object to perform further communications with the
client.

6.3 Debug objects
Debugobjectsaredefinedwith JACOB.They implementtheAgentDebuggerCommand interface
and override theprocess method. The objects allow the debugging tool to be extended to
examine different attributes of an executing JACK process.

Generic Debugging/Agent Debugging

Tracing and Logging
Release 5.5
10-June-05 73
Copyright © 2012, Agent Oriented Software Pty Ltd

6.3.1 DumpState

This debug message is included in all JACK applications. It is used to dump the state of a
running JACK process. TheDumpState object has two fields:

• agent

The name of an agent. If it is null or "" then all agents are dumped.

• stderr

A boolean flag that determines if the dump output is sent tostderr or returned as a
message down the socket. If stderr is true the dump information is output on the JACK
processes stderr. This is useful if you are capturing output from the executing JACK
process. Ifstderr is null or false, the dump information output is sent to the socket.

6.3.2 User defined deb ug objects
The user can define debug objects by using JACOB to implementing theprocess method of
theAgentDebuggerCommand interface. For example, if you wanted to define a message to
determine how much memory a JACK process was using you could do so by creating a
dictionary file, in this case namedMyDebugMessages.api with the following contents:

<Code :lang "java" :code "package mydebug">

<Class :name "GetMemUsage"
 :implements (<APIString :val "aos.jack.jak.agent.AgentDebuggerCommand">
)
 :Directive (
 <Code :lang "java" :code `
public void process(Socket s, InStream in, OutStream out)
{
 Runtime r = Runtime.getRuntime();

 PrintWriter pw = new PrintWriter(new OutputStreamWriter(out));
 pw.println("Memory Report: Free="+r.freeMemory()+" Max="+r.maxMemory()
 +" Tot="+r.totalMemory());
 pw.flush()
}
 `>
)
>

Generic Debugging/Agent Debugging

Tracing and Logging
Release5.5

74 10-June-05
Copyright © 2012, Agent Oriented Software Pty Ltd

6.4 Running debugging
To run a JACK application withdebugging:

1. Create a dictionary file that defines debug objects. This example uses the
MyDebugMessages.api file.

2. Use JACOB to generate classes from the dictionary file. See the JACOB Manual for
further information on using JACOB.

3. Compile the classes generated by JACOB.

4. Add the generated classes to the classpath.

5. Run the application. The following is an example of debugging an application named
DebugApplication:

java -Xmx90m aos.main.Jack -Djack.debugger.port=19999
 -Djack.debugger.command=mydebug.Init__MyDebugMessages

DebugApplication

Alternatively, use the above Java properties when running the application from the JACK
Development Environment.

6. Use telnet to connect to port 19999:

telnet localhost 19999

7. At the telnet command line type:

<GetMemUsage>

A message similar to the following will be displayed:

Memory Report Free=102920 Max=129873 Tot=627181

Appendix A: JACK Properties

Tracing and Logging
Release 5.5
10-June-05 75
Copyright © 2012, Agent Oriented Software Pty Ltd

Appendix A: JACK Properties
A numberof propertiesareprovidedfor customisationof theruntimebehaviour of JACK tools
and applications. Developers are of course free to provide their own application specific
properties if required.

This appendix lists the effect of usage, possible values and default setting of each publicly
available JACK property. The properties are listed under the tools that they customise.

Several JACK properties are accessible from the JDEPreferences window. Refer to the
Development Environment Manual for instructions on how to set these properties. JACK
propertiescanalsobeusedwhenrunningaJACK application.In thiscase,thepropertyname
must be preceded by a-D and entered either on the command line or in theJava Args field in
theRun Application tab of the of the JDECompiler Utility.

The following is an example of modifying the behaviour of the Plan Tracing Tool with the
JACK propertyjack.plan.tracing.descriptivemode. When this option is set totrue plan
tracing is shown in descriptive mode when a traced application starts. To run an application
with this property activated from the command line use:

 java -Djack.plan.tracing.enabled=true
 -Djack.plan.tracing.descriptivemode=true Application

Appendix A: JACK Properties
JACK Compiler Properties

Tracing and Logging
Release5.5

76 10-June-05
Copyright © 2012, Agent Oriented Software Pty Ltd

JACK Compiler Properties

Table A-1: JACK Compiler Properties

JACK Runtime Environment Properties

Property Description Type Default

jack.compiler.emit.imports Generates full package paths to
class names in Java code
instead of import statements.

boolean false

jack.compiler.errors Specifiesthemaximumnumber
of errors to be displayed by
JackBuild.

int 10

Property Description Type Default

jack.args Enables the specified value to
beusedasif it waspassedfrom
the command line to the
application.

String null

jack.portal.name Specifiesthenameof theportal
for the application.

String "%portal"

jack.portal.host Specifies the host of the portal
for the application.

String "local
host"

jack.portal.port Specifiestheportnumberof the
portal for the application.

int Next
available
port
number.

Appendix A: JACK Properties
JACK Runtime Environment Properties

Tracing and Logging
Release 5.5
10-June-05 77
Copyright © 2012, Agent Oriented Software Pty Ltd

Table A-2: JACK Runtime Environment Properties

jack.property.file Specifies the name of a file that
contains JACK property
settings.

String null

jack.run.nthreads Specifies the number of JACK
threads to be made available to
the scheduler. Note that having
more JACK threads than CPUs
on a machine does not benefit
performance.

int 1

jack.run.timeslice Specifies how many
millisecondsareto beallocated
to an agent on a JACK thread
before the scheduler should
intervene.

int 100

jack.run.repeatable Equivalent to setting
jack.run.timeslice to 1 hour.
This will stop agent tasks from
being suspended and restarted
at arbitrary points.

boolean false

Property Description Type Default

Appendix A: JACK Properties
JACK Debugging Properties

Tracing and Logging
Release5.5

78 10-June-05
Copyright © 2012, Agent Oriented Software Pty Ltd

JACK Debugging Properties

Table A-3: Debugging Properties

Design Tracing Tool Properties

Table A-4: Design Tracing Tool Properties

Property Description Type Default

jack.debugger.port Specifies the TCP port on
whichAgentDebugger

commands will be accepted.

int Next
available
port

jack.debugger.commands Specifies a colon-separated list
of dictionary files that define
debuggingobjectsthatareto be
used with the application.

String null

jack.run.debug.agents Specifies the prefix for the
filenames that agent log
messages will be redirected to
instead ofstdout. The
filenames will be of the form
<prefix>-<agentname>.log.

String null

jack.run.debug.options Specifies a colon-separated list
of tracing modes that are to be
applied to the application.

String null

jack.run.debug.show.count Numbers each debug message. boolean false

debug.setError Redirects standard error output
to the specified file.

String null

debug.setOutput Redirectsstandardoutputto the
specified file.

String null

debug.setInput Redirects standard input from
the specified file.

String null

Property Description Type Default

jack.tracing.enabled Enables tracing of project
design diagrams.

boolean false

Appendix A: JACK Properties
Agent Interaction Diagram Properties

Tracing and Logging
Release 5.5
10-June-05 79
Copyright © 2012, Agent Oriented Software Pty Ltd

Agent Interaction Diagram Properties

Table A-5: Interaction Diagram Properties

Property Description Type Default

jack.tracing.idisplay.name Specifies the name of the
interaction diagram.

String "IDTRACER"

jack.tracing.idisplay.type Specifies the type of the
interaction diagram. This is
either "idproxy", "id" or
"stdout".

String null

jack.tracing.idisplay.control The location of a configuration
file specified in JACOB format.

String null

jack.tracing.idisplay.x,

jack.tracing.idisplay.y,

jack.tracing.idisplay.height,

jack.tracing.idisplay.width

Controls the shape of the
interaction diagram frame.

int

int

int

int

-1

-1

400

400

jack.tracing.idisplay.font Specifies the font for all text in
the display.

String "Courier-12"

jack.tracing.idisplay.autoscroll Scrolls the display
automatically to show the last
event.

boolean true

jack.tracing.idisplay.temporal Displays the temporal order of
events, as seen by the displayer.

boolean false

jack.tracing.idisplay.showagents Includesthesenderandreceiver
with the message text.

boolean false

jack.tracing.idisplay.goals Displays goal trace events. boolean false

jack.tracing.idisplay.agentwidth Specifies the pixel width for
each agent column.

int 50

jack.tracing.idisplay.

messageheight

Specifies the pixel height for
trace events.

int 20

jack.tracing.idisplay.headheight Specifiesthepixelheightfor the
source side indicator.

int 20

jack.tracing.idisplay.details Traces all events, not just the
top level ones.

boolean

Appendix A: JACK Properties
Plan Tracing Tool Properties

Tracing and Logging
Release5.5

80 10-June-05
Copyright © 2012, Agent Oriented Software Pty Ltd

Plan Tracing Tool Properties
The following properties can be used to alter the default behaviour of the Plan Tracing Tool.
To usetheseproperties,thePlanTracingTool mustfirst beenabledin theJDEor by settingthe
jack.plan.tracing.enabled property totrue.

Property Description Type Default

jack.plan.tracing.alwaysraise Always bring the current task
window of the Plan Tracing
Tool to thefront of all windows
wheneverany nodein agraphit
shows is traced.

boolean false

jack.plan.tracing.alwaysrestore Always restore a minimised
Plan Tracing Tool task window
when any node in a graph it
shows is traced.

boolean true

jack.plan.tracing.config Specifies the configuration file
to be used by the Plan Tracing
Tool.

String null

jack.plan.tracing.descriptivemode Starts the Plan Tracing Tool in
Descriptive Mode.

boolean false

jack.plan.tracing.enabled Enables the Plan Tracing Tool. boolean false

jack.plan.tracing.listallfacts Displays all the facts that are
contained in the beliefsets that
appear in theVariables section
of a Plan Tracing Tool task
window. If thispropertyis setto
false, only thenumberof facts
is displayed.

boolean false

jack.plan.tracing.runmode Puts the Plan Tracing Tool into
Run mode whenever a new
agent is created.

boolean false

Appendix A: JACK Properties
Plan Tracing Tool Properties

Tracing and Logging
Release 5.5
10-June-05 81
Copyright © 2012, Agent Oriented Software Pty Ltd

Table A-6: Plan Tracing Tool Properties

jack.plan.tracing.tracetextual Traces textual reasoning
methods as well as graphical
reasoning methods.

boolean true

jack.plan.tracing.zoomcombo.show Shows the zoom combo box in
task windows of the Plan
Tracing Tool.

boolean false

jack.plan.tracing.zoomslider.show Shows the zoom slider in task
windows of the Plan Tracing
Tool.

boolean true

jack.plan.tracing.zoomslider.

showtickmarks

Shows tick marks on the zoom
slider.

boolean true

Property Description Type Default

Appendix A: JACK Properties
Plan Tracing Tool Properties

Tracing and Logging
Release5.5

82 10-June-05
Copyright © 2012, Agent Oriented Software Pty Ltd

Tracing and Logging
Release 5.5
10-June-05 83
Copyright © 2012, Agent Oriented Software Pty Ltd

Index

A
agent behaviour debugging 11, 71
agent debugging

running 74
Agent Interaction Diagram 59
Agent Manual 11, 37, 71
agent tracing controller 52
agent tracing controller window 41
AgentDebuggerCommand interface 71, 72
applicable plans 37, 44
apply design tracing configuration 21

B
buttons

add design trace row 18
add trace row 20
apply 21
compile 30
load design tracing configuration 20
remove trace row 18
reset links count 26, 27
run tracing 23
save design tracing configuration 20
select agent type 19
select design diagram 19
step tracing 23
stop tracing 23
stop/continue design tracing 23, 26

C
close portal 23
command line arguments

DCI 13, 14
compile application tab 30
compile button 30
compiler utility 30
configure design tracing 17
configure design tracing option 16
configuring an interaction diagram 62
connect to nameserver option 15
connect to portal 12
connect to portal option 16, 31

control design tracing 21
control design tracing option 16

D
DCI 12
DCI command line arguments 13, 14
debug object 73

user defined 73
debug.setError 78
debug.setInput 78
debug.setOutput 78
debugging

agent 71
generic 71
running 74

delete trace row 18
design and plan tracing 12
design graph 26
design trace control 22
design tracing

add trace row 18
agent types 19
all agents 20
close portal 23
configuration error 21
configure 17, 32
control 21, 22, 23, 33
delay transitions 22
descriptive mode 22, 26
edit trace row 18
example 27
global trace settings 22
individual agents 20
load configuration 20
no windows shown 27
reconfigure 24
relevant agents 26
relevant tasks 27, 35
remove trace row 18
reset links count 26, 27
run 23
save configuration 20

Tracing and Logging
Release5.5

84 10-June-05
Copyright © 2012, Agent Oriented Software Pty Ltd

select agent type 19
select design diagram 19
step 23
stop 23
stop/continue 26
TDW control bar 26
TDW tool bar 26
transitions 27
turn on 22
visualisation 22
visualisation error 27
zoom in/out 26

design tracing configuration window 17
design tracing controller 16, 21
design tracing java argument 13
design tracing tool 11
Development Environment 11
development environment 12
Development Environment Manual 11, 37
DTT 11
DumpState 72, 73

E
enabling the agent interaction diagram 59
event tracing 37, 40

F
failed plans 37, 44
fields

Java Args 30

G
generic debugging 71

running 74
global trace settings 22
Graphical Plan Editor 37
Graphical Plan Editor Manual 37

I
interaction diagram

configuring 62
enabling 59

J
JACK kernel 71
jack.args 76
jack.compiler.emit.imports 76
jack.compiler.errors 76
jack.debugger.command 71
jack.debugger.commands 78
jack.debugger.port 71, 78
jack.plan.tracing.alwaysraise 80
jack.plan.tracing.alwaysrestore 80
jack.plan.tracing.config 80
jack.plan.tracing.descriptivemode 80
jack.plan.tracing.enabled 80
jack.plan.tracing.listallfacts 80
jack.plan.tracing.runmode 80
jack.plan.tracing.tracetextual 81
jack.plan.tracing.zoomcombo.show 81
jack.plan.tracing.zoomslider.show 81
jack.plan.tracing.zoomslider.showtick-

marks 81
jack.portal.host 76
jack.portal.name 76
jack.portal.port 76
jack.property.file 77
jack.run.debug.agents 78
jack.run.debug.options 78
jack.run.debug.show.count 78
jack.run.nthreads 77
jack.run.repeatable 77
jack.run.timeslice 77
jack.tracing.enabled 78
JACOB dictionary file 71, 73
JACOB Manual 71, 74
Java Args field 30
Java arguments

design tracing tool 13
plan tracing tool 55

Java portal properties 12, 13, 30
JDE 11, 12, 15, 37

L
load design tracing configuration 20

Tracing and Logging
Release 5.5
10-June-05 85
Copyright © 2012, Agent Oriented Software Pty Ltd

M
menus

trace 15, 17, 31
message 60
method

process 71, 72

O
options

configure design tracing 16
connect to nameserver 15
connect to portal 16, 31
control design tracing 16
create project from example 38, 44
ping agent 17
quit tracing on portal 17

P
ping agent option 17
plan and event tracing

configuration file 53
plan and event tracing configuration file 44

default 54
plan tracing

applicable plans 37, 44
configuration file 44, 52

default 54
events 37, 40
failed plans 37, 44
variables 42

plan tracing configuration file 52, 53
plan tracing tool 12, 37

runtime options 55
process method 71, 72

R
reconfigure design tracing 24
relevant agents 26
relevant tasks 27
run application tab 30
runtime options 55

S
save design tracing configuration 20

T
tabs

compile application 30
run application 30

task window 42
TDW 11, 24
trace designs 11
trace menu 15, 17, 31
traced design window 11, 24
tracing designs and plans 12
tracing events 40
tracing portal window 17, 31
transition delay 52

V
viewing documentation 26

W
windows

compile 30
design tracing configuration 17
error applying configuration 21
tracing 17, 31

	1 Introduction
	2 Design tracing tool
	2.1 Introduction
	2.2 Overview
	2.3 Initialisation
	2.3.1 Preliminaries
	2.3.2 Design tracing and graphical plan tracing
	2.3.3 The Application
	2.3.4 Starting the DTT
	2.3.4.1 Tracing from the command line
	2.3.4.2 Tracing from the JDE

	2.3.5 The Trace menu
	2.3.6 The Tracing window

	2.4 Configuring design tracing
	2.4.1 Adding a trace row
	2.4.2 Removing a trace row
	2.4.3 Editing a trace row
	2.4.4 Selecting a design
	2.4.5 Tracing agent types
	2.4.6 Tracing individual agents
	2.4.7 Tracing all agents
	2.4.8 Saving and loading tracing configurations
	2.4.8.1 Saving a design tracing configuration
	2.4.8.2 Loading a design tracing configuration
	2.4.8.3 Design tracing configuration files

	2.4.9 Applying tracing settings
	2.4.9.1 Configuration errors

	2.5 Controlling design tracing
	2.5.1 Turning tracing on and off
	2.5.2 Tracing in descriptive mode
	2.5.3 Delaying tracing transitions
	2.5.4 Controlling tracing
	2.5.4.1 Starting tracing
	2.5.4.2 Stopping tracing
	2.5.4.3 Controlling tracing of individual traced design windows
	2.5.4.4 Stepping through tracing

	2.5.5 Reconfiguring tracing during execution

	2.6 Tracing visualisation
	2.6.1 Traced design window control bar
	2.6.2 Traced design window tool bar
	2.6.3 Viewing design documentation
	2.6.4 Viewing a design graph
	2.6.5 Viewing relevant agents
	2.6.6 Viewing relevant tasks
	2.6.7 Transition visualisation
	2.6.8 Resetting transition counts
	2.6.9 Tracing visualisation errors
	2.6.9.1 No traced design windows are shown

	2.7 A design tracing example

	3 Plan tracing tool
	3.1 Introduction
	3.2 An plan tracing example
	3.2.1 The multi-currency bank account example
	The BankAccount agent
	The CurrencyExchange agent
	The Communicator agent
	The Accounts class

	3.2.2 Walkthrough
	3.2.2.1 The plan tracing tool windows
	3.2.2.2 A sample run of the plan tracing tool
	3.2.2.3 Finishing the sample run
	3.2.2.4 Tracing more than one agent

	3.2.3 Running without the JDE

	3.3 Plan tracing tool configuration
	3.3.1 Plan tracing configuration files
	3.3.1.1 Default file generation
	3.3.1.2 Running with no tracing configuration file

	3.3.2 Runtime options
	jack.plan.tracing.enabled
	jack.plan.tracing.config
	jack.plan.tracing.alwaysraise
	jack.plan.tracing.alwaysrestore
	jack.plan.tracing.runmode
	jack.plan.tracing.zoomcombo.show
	jack.plan.tracing.zoomslider.show
	jack.plan.tracing.zoomslider.showtickmarks
	jack.plan.tracing.tracetextual
	jack.plan.tracing.listallfacts
	jack.plan.tracing.descriptivemode

	4 Agent Interaction Diagram
	4.1 Introduction
	4.2 Enabling an Interaction Diagram
	4.3 Configuring an Interaction Diagram

	5 Audit Logging
	6 Generic Debugging/Agent Debugging
	6.1 Using debugging
	6.2 The AgentDebuggerCommand interface
	6.3 Debug objects
	6.3.1 DumpState
	6.3.2 User defined debug objects

	6.4 Running debugging

	Appendix A: JACK Properties
	JACK Compiler Properties
	JACK Runtime Environment Properties
	JACK Debugging Properties
	Design Tracing Tool Properties
	Agent Interaction Diagram Properties
	Plan Tracing Tool Properties

	Index

