
WebBot Manual

JACK Intelligent Agents®
WebBot Manual

WebBotManual
Release5.3

2 10-Jun-05
Copyright © 2001-2012, Agent Oriented Software Pty. Ltd.

Copyright
Copyright © 2001-2012, Agent Oriented Software Pty. Ltd.

All rights reserved.

No part of this document may be reproduced, transferred, sold, or otherwise disposed of,
without the written permission of the owner.

US Government Restricted Rights
The JACK™ Modules and relevant Software Material have been developed entirely at private
expense and are accordingly provided with RESTRICTED RIGHTS. Use, duplication, or
disclosure by Government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of
DFARS 252.227-7013 or subparagraph (c)(1) and (2) of the Commercial Computer Software
Restricted Rights and 48 CFR 52.2270-19, as applicable.

Trademarks
All the trademarks mentioned in this document are the property of their respective owners.

WebBot Manual
Release 5.3
10-Jun-05 3
Copyright © 2001-2012, Agent Oriented Software Pty. Ltd.

Publisher Information

If you find any errors in this document or would like to suggest improvements, please let us
know.

If you find any errors in this document or would like to suggest improvements, please let us
know.

Agent Oriented Software Pty. Ltd.

P.O. Box 639,

Carlton South, Victoria, 3053

AUSTRALIA

Phone: +61 3 9349 5055

Fax: +61 3 9349 5088

Web: http://www.agent-software.com

WebBotManual
Release5.3

4 10-Jun-05
Copyright © 2001-2012, Agent Oriented Software Pty. Ltd.

The JACK™ documentation set includes the following manuals and practicals:

Document Description

Agent Manual Describes the JACK programming language and
infrastructure.JACK canbeusedto developapplications
involving BDI agents.

Teams Manual Describes the JACK Teams programming language
extensions. JACK Teams can be used to develop
applications that involve coordinated activity among
teams of agents.

Development Environment

Manual

Describes how to use the JACK Development
Environment (JDE). The JDE is a graphical
development environment that can be used to develop
JACK agent and team-based applications.

JACOB Manual Describes how to use JACOB. JACOB is an object
modelling language that can be used for inter-process
transport and object initialisation.

WebBot Manual Describes how to use the JACK WebBot to develop
JACK enabled web applications.

Design Tool Manual Describes how to use the Design Tool to design and
build an application within the JACK Development
Environment.

Graphical Plan Editor Manual Describes how to use the Graphical Plan Editor to
develop graphical plans within the JACK Development
Environment.

JACK Sim Manual Describes how to use the JACK Sim framework for
building and running repeatable agent simulations.

Tracing and Logging Manual Describes the tracing and logging tools available with
JACK.

Agent Practicals A set of practicals designed to introduce the basic
concepts involved in JACK programming.

Teams Practicals A set of practicals designed to introduce the basic
concepts involved in Teams programming.

WebBot Manual
Release 5.3
10-Jun-05 5
Copyright © 2001-2012, Agent Oriented Software Pty. Ltd.

Table of Contents
1 Preface . 9
1.1 Intended audience .9
1.2 Overview of this manual .9
1.3 Typographical conventions .10
1.4 Related reference material .10
1.5 Further information. .10

2 The JACK WebBot architecture . 11
2.1 Purpose and functionality. .11
2.2 Prerequisite background information .11
2.2.1 JACK .11
2.2.2 Servlet API .12
2.2.3 JavaServer Pages (JSP) .12
2.2.4 Servlet Container .13
2.3 Overview of the JACK WebBot Architecture .15
2.3.1 The architecture of a JACK WebBot application. .15

Layer 1 – Servlet Container .15
Layer 2 – JACK WebBot .16
Layer 3 – the JACK application .16

2.3.2 The dynamic behaviour of JACK WebBot applications 18
Layer 1 – Servlet Container. .18
Layers 2 and 3 – WebBot and the JACK application.18

2.3.3 JACK WebBot servlet .19
Major JACK WebBot classes .19

2.3.4 Sessions. .20

3 Developing and running JACK WebBot applications 21
3.1 Installation instructions. .21
3.2 Typical Application Directory Structure. .22
3.3 Configuring the Servlet Container. .23
3.3.1 Setting up web.xml. 23

The servlet element .24
3.4 JSP and ancillary Servlet Container files .25
3.5 JACK definitions .25
3.5.1 Servlet and JACK WebBot classes to import .25
3.5.2 Agent, plan and event definitions .26

The root agent .26
Session agent. .28

3.6 Building and running a JACK WebBot application .28

4 Tutorial example: simple calculator . 31

WebBotManual
Release5.3

6 10-Jun-05
Copyright © 2001-2012, Agent Oriented Software Pty. Ltd.

4.1 Introduction. .31
4.2 Installing the tutorial example. .32
4.2.1 WAR! What is it good for? .32
4.3 Setting up the build and run scripts .33
4.3.1 The build scripts, mkwebapp and mkjsp 33

The web application environment file, webapp.env 34

The Servlet Container environment file, servlet.env 34

Script file, mkwebapp. 35

Script file, mkjsp . 35

4.3.2 Web Archive creation script, mkwar 36

4.3.3 Install script, installit.sh . 36

4.3.4 Start script, start.sh . 37

4.3.5 Stop script, stop.sh . 37

4.4 Compiling and running the application .37
4.5 Configuring the Servlet Container .38
4.5.1 Overview of web.xml . 38

Parameters used by WebBot .38
4.6 Creating a JSP file .40
4.7 Defining DispatcherAgent agent. .44
4.7.1 Imported classes .45
4.7.2 The agent definition .46
4.7.3 Events handled. .47
4.7.4 BeliefSet .47
4.7.5 Plans .47

SelectSession Plan. .47
FormResponse plan .48
SimpleJSPResponse plan .51

4.8 Summary .51

5 Tutorial example: multiple sessions . 53
5.1 Introduction. .53
5.2 Overview of modifications for sessions .53
5.3 Location of the multi-session tutorial example .54
5.4 Setting up the build and run scripts .54
5.5 Configuring the Servlet Container .55
5.5.1 Changes to the web.xml file .55
5.6 Compiling and running the application .55
5.7 Creating a JSP file .56
5.8 DispatcherAgent agent. .57
5.8.1 DispatcherAgent's plans. .58

DefaultRequestHandler Plan .58
MonitorSession plan .59

WebBot Manual
Release 5.3
10-Jun-05 7
Copyright © 2001-2012, Agent Oriented Software Pty. Ltd.

SelectSession plan .60
5.8.2 DispatcherAgent's events .60

SessionAccess.event file .60
WebDispatch.event file .61

5.8.3 DispatcherAgent's BeliefSet (Sessions.bel) .61
5.9 SessionCalculator agent .62
5.9.1 SessionCalculator's plans .62

The plan FormResponse . 62

SimpleJSPResponse plan .62
5.9.2 SessionCalculator's BeliefSet .62

The BeliefSet History.bel. 62

5.10 Summary .63

Index. 65

WebBotManual
Release5.3

8 10-Jun-05
Copyright © 2001-2012, Agent Oriented Software Pty. Ltd.

Preface

WebBot Manual
Release 5.3
10-Jun-05 9
Copyright © 2001-2012, Agent Oriented Software Pty. Ltd.

1 Preface
The JACK Intelligent Agents® WebBot (WebBot) is a framework that enables the
implementation of web applications based around JACK™ agents. Through the medium of
WebBot, JACK agents can have a hand in the dynamic generation of web pages, thereby
providing intelligent responses to user input.

By providing a detailed tutorial example and an explanation of the technical foundation of
WebBot, this manual will help you to use WebBot effectively.

1.1 Intended audience
To useWebBoteffectively, youwill needasoundtechnicalbackground.At thevery least,you
will need to be familiar with your computer's operating system, and know how to create/edit
files, and compile/execute programs. You should also have a good grasp of HTML, the JACK
Agent Language, and the Java programming language. The sectionPrerequisite Background
Information provides some preliminary background information on the components that
underpin WebBot.

The standard WebBot distribution comes with a tutorial example, including scripts for
building andrunningtheexample.A goodstartingpointwouldbeto copy thesefilesandadapt
themfor yourown purposes.Of course,dependingonyour technicalskills, youmaypreferto
read through this manual, and then build and deploy your application using your preferred
program development / distribution method.

1.2 Overview of this manual
Chapter 1 introduces background concepts required to understand and use WebBot. The
backgroundmaterialcoversJACK, theServletAPI, ServletContainers,JavaServerPagesand
the WebBot architecture.

Chapter 2 describes how to develop and run a WebBot application. It begins with installation
instructionsandanoverview of thetypicaldirectorystructureof WebBotapplications.This is
followed by a description of how to set up Servlet Container configuration files. The next
section describes the JACK definitions required to make your application interact with the
WebBot layer. The chapter concludes by setting out the steps required to build and run a
WebBot application.

Chapter 3 presents a simple tutorial example which takes you through the steps required to
code, build and run a WebBot example. The tutorial example does not make use ofsessions.
Sessions are used to maintain separate user interaction threads.

Chapter 4 augments the Chapter 3 example so that it handles sessions.

Preface

WebBotManual
Release5.3

10 10-Jun-05
Copyright © 2001-2012, Agent Oriented Software Pty. Ltd.

1.3 Typographical con ventions
To facilitate your reading of this manual, we have adopted certain typographical conventions:

• In the narrative sections of this manual,italics are used to denote sections of text that
benefit from special emphasis (such as new terms, mandatory instructions, and critical
concepts). Also, italics are used in the code examples to highlight comments.

• In the code examples, particularly significant code fragments are given inbold text for
emphasis. These include WebBot-specific pieces of code, or fragments which are referred
to in the main text.

• Samples of code and program output appear inthis typeface.

1.4 Related ref erence material
In addition to this manual, you may need to consult:

1. theJACK™ Intelligent Agents Agent Manual;

2. the Tomcat 4.0.4 documentation, and

3. servlet/JSP-related material.

1.5 Fur ther inf ormation
You may find useful information and updates at the Agent Oriented Software Pty.Ltd. web
site,http://www.agent-software.com.

The JACK WebBot architecture

WebBot Manual
Release 5.3
10-Jun-05 11
Copyright © 2001-2012, Agent Oriented Software Pty. Ltd.

2 The JACK WebBot architecture
2.1 Purpose and functionality
WebBot is a framework which supports the mapping of HTTP requests to JACK event
handlers,andthegenerationof responsesin theform of HTML pages.UsingWebBot,youcan
implement a web application which makes use of JACK agents to dynamically generate web
pages in response to user input.

2.2 Prerequisite background information
The current version of WebBot extends the Java Servlet API v2.3 to enable interfacing with
JACK. With WebBot, you can effectively embed a JACK application within a web server and
have it respond to HTTP requests: for example, from a browser.

Before using WebBot, it is helpful to have an understanding of the major components it uses.
Apart from theJACK AgentLanguageitself, themostimportantcomponentis theJavaServlet
API v2.3. For our purposes (i.e. HTTP requests), servlets are Java components which run
within a web server and generate responses to HTTP requests. WebBot extends the Java
Servlet API v2.3 to enable integration with JACK.

WebBot provides a mechanism for dynamically generating web pages based on the reasoning
of JACK agents. Although it is entirely possible to write Java code which dynamically
generates the HTML page to be returned to the client browser, there is a much more
straightforward way of achieving the same end. WebBot makes use of JavaServer Pages
(JSPs). JSPs enable the specification of the structure of the web page as a mix of HTML and
scriptlets. Scriptlets are Java code fragments that specify how to generate the dynamic
portions of the web page. A JSP compiler is used to compile the JSP page into Java code
which will generate the web page at runtime.

JACK, the Servlet API and JavaServer Pages are outlined in the sections below.

2.2.1 JACK
JACK Intelligent Agents® is a Java-basedagent-oriented programming environment. Agent-
oriented programming facilitates the implementation of autonomous computational entities,
or agents, whichexhibit rationaldecision-makingbehaviour. Theautonomousnatureof these
agents makes them ideally suited to solving problems of a distributed and real-time nature.
Web-based applications by their very nature are distributed, and should ideally provide real-
time response.

Throughthemediumof aweb server, webapplicationshavebeenusedsuccessfullyto service
client requests over the web. However, the programming languages used to implement such
web applications (e.g. PHP or ASP) provide little or no support for the implementation of

The JACK WebBot architecture

WebBotManual
Release5.3

12 10-Jun-05
Copyright © 2001-2012, Agent Oriented Software Pty. Ltd.

intelligent reasoning behaviour. The JACK Agent Language, on the other hand, has been
designedfrom thegroundupto supporttheencodingof intelligentreasoningprocessesinto its
agents.This,coupledwith theautonomousnatureof JACK agents,meansthatit is well-suited
to the task of providing an intelligent back-end to web-based applications.

Before designing and implementing a web-based application using the JACK Agent
Language, you will need to have a fairly thorough understanding of the JACK Agent
Language and its capabilities. This can be acquired by attending the training courses offered
by Agent Oriented Software Pty. Ltd., and by reading theAgent Manual. Note that an
understandingof JACK AgentLanguagethreads is integral to makingfull useof theflexibility
offered by WebBot.

2.2.2 Servlet API
A servlet is aJavacomponentwhichrunswithin aservletcontainer, suchasTomcat(usedin
thismanual).Servletsconformto theHTTPrequest/responsecommunicationmodel,in which
the client submits a request and then receives a response to that request. WebBot servlets
extend the HTTP-specific aspect of the Servlet API. Servlets are Java objects and have a
service method which has arequest and aresponse parameter. Therequest parameter
containsthedatasentby theclient.HTTP-specificservletscansupportHTTPmethodssuchas
GET andPOST, and hence can access information such as that provided in HTML forms.

Whentheusertypesin aURI (Uniform ResourceIdentifier)which is handledby aparticular
servlet, the Web server which hosts that URI will invoke the servlet in question. For example,
to invoke thecalculator servlethostedatwww.webbot.example.com, theuserwouldenterthe
following URI:

www.webbot.example.com/calculator

A web page containing an HTMLform which is to be processed by thecalculator servlet,
could contain the following form element:

<form method=get action="/calculator/appform">
 ...
</form>

whereappform is used by thecalculator servlet to determine how to process the form. This
will be illustrated in the chapter titledTutorial Examples.

2.2.3 JavaServer Pages (JSP)
JavaServerPages(JSPs) useXML-lik e tagsandJavascriptletsto specifyhow to generatethe
content of a web page. JSPs are compiled into Java; the Java code is used to generate the web
page at runtime. Although it is possible to generate the complete response page within a
servlet without using a JSP file, JSPs provide a means of separating the page's logic from its
presentation to the user. This simplifies the design and implementation of dynamically-

The JACK WebBot architecture

WebBot Manual
Release 5.3
10-Jun-05 13
Copyright © 2001-2012, Agent Oriented Software Pty. Ltd.

generated web pages, because the static portions can be hard-coded as HTML in the JSP file
and the dynamic portions included as Java scriptlets.

When a request object is received from the client, the servlet sets various parameters that are
passed back in the response object. These parameters can be referenced from within the JSP
file (within scriptlets).Eachscriptlet(apieceof Javacodebetween"<%" and"%>") is executed,
and if it is an expression beginning with an "=" sign followed by a parameter name (e.g.
=parameterName), the parameter value is inserted in place in the JSP file. These parameter
valuesareinterleavedwith thestaticportionsof HTML to form apagewhichis passedbackto
the client.

Typically, beforetheapplicationis deployed,eachJSPfile is convertedinto a.java file which
is then compiled into a.class file for inclusion in the servlet.

Theexamplebelow illustratesaverysimpleJSPfile whichdisplaysanemailaddressobtained
from the servlet. The scriptlets arebolded and explained in the comments (demarcated by
"<!--" and "-->").

<!-- Static HTML code -->
<html>
<head>
<meta http-equiv="Content-Type" content="text/html;
 charset=iso-8859-1">
</head>
<body bgcolor=#FFFFFF marginwidth=0 marginheight=0 topmargin=0
leftmargin=0>

<!-- The variable, address, is assigned the value of the parameter,
emailAddress, from the response from the servlet. -->

<% String address = (String)request.getSession().getValue("emailAddress");
%>

<!-- The value of the variable, address, is inserted in place. -->
<p>The email address is: <%=address%></p>

<!-- Static HTML code -->
</body>
</html>

In theaboveexample,if theemailaddresswereinfo@gadget-software.com, theoutputwould
be:

The email address is: info@gadget-software.com

2.2.4 Servlet Container
WebBot should work with any Servlet Container implementing the Java Servlet API v2.3.
Tomcat 4.0.4 is one such implementation and the one with which WebBot has been most
extensively tested.

The JACK WebBot architecture

WebBotManual
Release5.3

14 10-Jun-05
Copyright © 2001-2012, Agent Oriented Software Pty. Ltd.

Tomcat is the Servlet Container that is used as the reference implementation for Java Servlets
and JavaServer Pages (the latter is called "JASPER" in Tomcat 4.0.4). It has been developed as
part of the Jakarta Project (http://jakarta.apache.org/).

The JACK WebBot architecture

WebBot Manual
Release 5.3
10-Jun-05 15
Copyright © 2001-2012, Agent Oriented Software Pty. Ltd.

2.3 Overview of the J ACK WebBot Ar chitecture
This section outlines the general architecture of the WebBot framework in terms of the major
components that constitute a deployed WebBot application. The processing steps and
information flow that characterise a running WebBot application will then be described,
followed by an overview of the major classes which make up WebBot.

2.3.1 The architecture of a J ACK WebBot application
Thefigurebelow showsahigh level view of thearchitectureof ageneralWebBotapplication.
It is a three tiered architecture, with the Servlet Container at its base. The Servlet Container
interacts with the client application, accepting HTTP requests and passing them on to the
appropriate servlet in the WebBot layer. The WebBot layer performs some data marshalling,
then passes on the request as a JACK event to the appropriate agent in the JACK Application
layer. Theagent'sresponseis passedbackthroughthethreelayersandis routedto theclientas
a new web page. The role of each layer is described in more detail below.

Figure 2-1: JACK WebBot Architecture

2.3.1.1 Layer 1 – Servlet Container

The Servlet Container implements the Servlet API and a JSP compiler. When the Servlet
Container receives an HTTP request, it determines which servlet, if any, should handle it and

The JACK WebBot architecture

WebBotManual
Release5.3

16 10-Jun-05
Copyright © 2001-2012, Agent Oriented Software Pty. Ltd.

invokestheservletin question,passingit theHTTPrequest.If theURL patternof therequest
doesnotmapto any servlet,theServletContainerwill respondto theclientwith a"404" error,
indicating that the requested URL does not exist (this response page can be tuned for a
particularapplication).Assumingthataservletwasfoundfor theURL in question,theServlet
Container will generate an HTML page to return to the client; this page will be created by
instantiating the JSP file returned by the servlet. Typically the JSP file will contain scriptlet-
based references to various parameters assigned by the JACK Application layer.

2.3.1.2 Layer 2 – JACK WebBot

TheWebBotlayerextendsHttpServlet, providing aframework for accessingtheServletAPI
from the JACK Agent Language. To this end, it provides the following functionality:

• If one does not exist already, the WebBot layer creates an agent of the appropriate type to
handle the incoming request (the agent is specified by thetype parameter in the
configuration fileweb.xml).

• Converts the incoming HTTP request into aWebRequest event.

• Provides supporting classes to enable the JACK Application to post the event (using
postEventAndWait).

• Provides support for managingsessions. Sessions allow the application to maintain
separate interaction threads with one or more clients. For example, imagine a situation in
which the user is using two windows to browse a beliefset managed by your WebBot
application. Both beliefset browsing pages have a "Next" button which displays the next
beliefsetelementmatchingtheuser'ssearchkey. Clearly, whentheuserclickson"Next" in
eitherwindow, yourWebBotapplicationneedsto ensurethatit respondswith thebeliefset
element which pertains to the correct browser window, i.e. thesession in question.
Sessions are also used to manage requests from separate clients on the internet.

• Provides methods for accessing and setting parameters in the HTTP request object.

• Invokes the servlet class (typically compiled from a JSP definition) to issue the HTTP
response. This response page can also be a page that indicates that the agent failed while
handlingtherequest(thefilenameis specifiedby thenoservice parameterin web.xml), or
that the application does not have an agent to handle the request (specified by the
nohandler parameter inweb.xml). Servlet Containers can be configured to dynamically
compileJSPpagesinto javaclasses.Thesejavaclassesarethenloadedandrun to produce
the final output page. However, as WebBot does not have its own internal JSP compiler
(unlike most Servlet Containers), JSP pages used by WebBot must be precompiled.

This layer is described further in the sectionJACK WebBot Servlet.

2.3.1.3 Layer 3 – the J ACK application

This is the layer in which you will place all of your JACK code. This layer defines how your
application will respond to incoming events. Generically speaking, the application will set a

The JACK WebBot architecture

WebBot Manual
Release 5.3
10-Jun-05 17
Copyright © 2001-2012, Agent Oriented Software Pty. Ltd.

number of response parameters and it will return a JSP file to be instantiated by the Servlet
Container.

The JACK WebBot architecture

WebBotManual
Release5.3

18 10-Jun-05
Copyright © 2001-2012, Agent Oriented Software Pty. Ltd.

2.3.2 The dynamic behaviour of JACK WebBot applications
In the previous section, the functionality of each architectural layer was outlined, and the
runtime behaviour of each layer was explained. This section will look at the processing steps
followedby WebBotapplications,andrelatethosestepsto thethreelayersandtheinteractions
between those layers.

In a typical interaction between a client and a WebBot application, the Servlet Container
receives an HTTP request from the client, selects a servlet based on the URL pattern of the
HTTP request and passes the request to the appropriate WebBot servlet. WebBot converts the
requestinto aWebRequest event.Thiseventis postedandwill triggeroneof theJACK agent's
session-selectionplans.Thissetsoff acomputationalsequenceculminatingin theassignment
of values to variables referenced in the JSP response file, i.e. the JSP file to be used by the
ServletContainerto generatearesponsepagefor theclient.A referenceto thatJSPfile is then
returned to the Servlet Container, which executes the scriptlets in the JSP file and sends the
new page to the client.

These steps are described in more detail below. Because the JACK Application layer extends
theWebBotlayerandinvokesmethodswithin thatlayer, thecombinedbehaviour is described
in the one section.

2.3.2.1 Layer 1 – Servlet Container .

The interaction begins when the Servlet Container receives a HTTP request from the client.
The complexity of this request depends on your application; for example, it might have been
generated by an HTMLform and could contain a sequence of attribute / value pairs. The
configuration fileweb.xml defines the mapping between a given URL pattern and the servlet
which handles HTTP requests matching that URL pattern. The Servlet Container uses this
mapping to pass the request to the appropriate WebBot servlet.

2.3.2.2 Layers 2 and 3 – WebBot and the J ACK application.

The WebBot class,WebPortal , implements thejavax.servlet.Servlet interface by
extending the classjavax.servlet.http.HttpServlet. When an incoming HTTP request is
receivedfrom theserver, theWebPortal checksto seewhetherthereis anagentto handleit. If
thereis notanagent,thenoneis created.Thisrequest-handlingagent(termedthe"root" agent)
has special status: it is responsible for dispatching an appropriateWebSessionRequest event,
based on the make-up of theWebRequest event.

All WebBot applications are structured as shown in the figure below. TheWebPortal servlet
takes the incoming HTTP request and uses it to generate aWebRequest event. This event
should trigger the session-selection plan in the root agent. The session-selection plan
determines which "session" agent should handle the request. It then uses that agent's
createSessionRequest method to create aWebSessionRequest event. This event will then
triggeroneof thesessionagent'splanswhich,all beingwell, will setvariousparametersin the

The JACK WebBot architecture

WebBot Manual
Release 5.3
10-Jun-05 19
Copyright © 2001-2012, Agent Oriented Software Pty. Ltd.

response object and will determine which JSP file the Servlet Container should use to
generate the response page.

Figure 2-2: WebBot Execution Structure

2.3.3 JACK WebBot servlet

2.3.3.1 Major JACK WebBot classes

public class WebPortal extends HttpServlet

TheWebPortal class is aHttpServlet that handles HTTP requests. The servlet is configured
with theparameterstype andname in thefile web.xml. Theseparametersspecifytheclassand
instancenameof theagentthathandlesincomingrequests.WhenthelookupHandler method
is invoked,if thereis noagentof thespecifiedname, theWebPortal createsoneof thespecified
type with the specifiedname (specified inweb.xml). When thedoGet or doPost method is
invoked, theWebPortal creates aWebRequest event and posts it to the agent using
postEventAndWait.

public interface WebRequestHandler

Theapplication'srequest-handlingagentmustimplementthis interface.Theinterfacehasone
method,public boolean handle.

public class WebSessionAgent extends Agent implements HttpSession

TheWebSessionAgent class implementsHttpSession and provides methods for handling
WebSessionRequests, and other session-related activities such as adding a "jsessionid" to a
URL (sessionURL(String url)) and storing values to be used in the returned JSP page
(putValue(String key, Object obj)).

The JACK WebBot architecture

WebBotManual
Release5.3

20 10-Jun-05
Copyright © 2001-2012, Agent Oriented Software Pty. Ltd.

2.3.4 Sessions
Sessions form part of the Servlet API. Typically, they are used to manage separate client
interactions with the server. WebBot provides support for the implementation of sessions
through the provision of theWebSessionAgent andWebSessionRequest classes. The Servlet
API provides support for tracking sessions through the use of "cookies". However, this
method of tracking sessions is fairly limited. For example, if the client session occurs on a
machinewhich is sharedby others(e.g.in aninternetcafeenvironment),thenit is feasiblefor
anew userto pick upon theprevioususer'ssession.Anotherdrawbackof cookiesis thatthey
are restricted to one session per user (i.e. browser).

A safer method of tracking sessions is to use URL rewriting. A session identifier is stored in
ahiddenattributeonthewebpage.This is thenwritteninto theURL beforesendingtheHTTP
request back to the server. This is the preferred method when using WebBot. If you store the
session id in the attribute "jsessionid", and include that in the URL, then theWebPortal
setup methodwill extractit andstoreit in theparameter"id". WebPortal will alsopick upthe
"referrerid" and store it in the parameter "refid". This can be used to determine if the web
page has a referrer, and so can be used in most cases to prevent someone from dropping in on
a session (unless, of course the person has written their own browser).

Developing and running JACK WebBot
applications

WebBot Manual
Release 5.3
10-Jun-05 21
Copyright © 2001-2012, Agent Oriented Software Pty. Ltd.

3 Developing and running JACK
WebBot applications

This chapter describes how to develop and run a WebBot application, beginning with the
installation instructions for WebBot. Subsequent sections in this chapter cover the steps
required to develop an application. The final section describes how to run the application.

To develop and deploy a WebBot application, you will need to define the Java Servlet API
v2.3specifiedin theweb.xml configurationfile. This is coveredin thesectionConfiguringThe
ServletContainer. TheServletContainerneedsto besuppliedwith thesetof JSP, HTML and
ancillaryfiles requiredby yourapplication,describedin thesectionJSPandAncillary Servlet
Container Files. Your JACK application will make use of some WebBot classes and will
follow certain conventions which are explained in the sectionJACK Definitions. Finally, you
will learn how to build and run your WebBot application in the sectionBuilding and Running
a JACK WebBot Application.

3.1 Installation instructions
If you have problems installing WebBot, please AOS technical support.

The installation process for WebBot is simple and straightforward:

1. Install JACK in the directory of your choice.

2. Include all of your Servlet Container's.jar files in yourCLASSPATH

Note that the examples in this manual can be found inaos/jack/examples/webbot

Developing and running JACK WebBot applications

WebBotManual
Release5.3

22 10-Jun-05
Copyright © 2001-2012, Agent Oriented Software Pty. Ltd.

3.2 Typical Application Directory Structure

Figure 3-1: Standard WAR layout

Thefigureaboveshows thedirectorystructurefor a typicalWebApplicationArchive (WAR).
The Web Application Archive file is used to package up the web application so that it can be
deployed on multiple platforms. The WAR format is shown in the above figure. The root
directory contains the files that are served up to the client browser (e.g. HTML, JSP, CSS, JS
and GIF files). If required, these files can be partitioned into a subdirectory structure. The
WEB-INF directorycontainstheapplication'sWebApplicationDeploymentDescriptor, thefile
web.xml. WEB-INF also contains theclasses andlib directories. Theclasses directory
contains the application's Java class files. Thelib directory contains JAR files that house
library files used by your application.

Your WebBot application should be organised as shown under the root directory in the figure
below. Theweb sub-directorycorrespondsto therootof theWAR structureshown in thefigure
above.Thescriptsareheldin therootdirectoryandthesourcefilesarelocatedin thesrc sub-
directory.

Developing and running JACK WebBot
applications

WebBot Manual
Release 5.3
10-Jun-05 23
Copyright © 2001-2012, Agent Oriented Software Pty. Ltd.

Figure 3-2: Typical JACK WebBot Application Directory Structure

3.3 Configuring the Ser vlet Container .
ConfiguringtheServletContainerto serveupaparticularWebBotservletrequiresthatthefile
web.xml be configured. This section only covers the main parameters required for WebBot.
You should probably use theweb.xml file that came with your installation and edit the
parameters specified below. The information provided below will suffice for most cases,
however, for more detailed information, please consult your Servlet Container's
documentation.

3.3.1 Setting up web.xml
Typically, most of the parameters inweb.xml, can be left unchanged. Hence, the most
straightforwardapproachto developinganew WebBotapplicationis to takeacopy of web.xml
from yourinstallation,andedit theparametersdescribedin thissection.Shouldyourparticular
application require that you alter parameters not covered in this section, then refer to the
documentation of your particular Servlet Container implementation.

Theweb.xml configurationfile definestheservlets thatconstituteyourapplication.It contains
two major defining elements:

• The<servlet> definition is by far the largest, and contains the servlet's initialisation
parameters.

• Theservlet-mapping defines the mapping between the URL patterns and servlets, i.e.
which servlet to run, given a particular URL.

Developing and running JACK WebBot applications

WebBotManual
Release5.3

24 10-Jun-05
Copyright © 2001-2012, Agent Oriented Software Pty. Ltd.

The structure and function of the<servlet> andservlet-mapping elements are outlined
below. Note that all of the elements prefixed by<param-name> are WebBot-specific. They
occurin adefiningelementof thefollowing form (N.B. boldedvalueswouldbereplacedwith
the actual parameter name and value that pertains to your application):

<init-param>
 <param-name>xxx</param-name>
 <param-value>yyy</param-value>
</init-param>

3.3.1.1 The servlet element

Eachservletdefinitionis delimitedby "<servlet>" and"</servlet>". Thekey parametersof
the servlet definition are as follows:

• <servlet-name> - the unique identifier for this servlet.

• <servlet-class> - the class that implements the WebBot servlet (e.g.
aos.web.webbot.portal.WebPortal). The class is located injack.jar.

• <param-name>type - the class name of the request-handling JACK agent. WebBot will
create a "root" agent of this type to handle the incoming requests.

• <param-name>name - the instance name of the request handling agent. WebBot will bind
this to the instance of the "root" agent that it creates.

• <param-name>nohandler - the class name of the class to invoke when theWebPortal
cannotcreateanagentto handletherequest.Typically, thisclassis definedasasideeffect
of the compilation of a JSP file created for this purpose.

• <param-name>noservice - the class name of the class to invoke when the agent handling
the request fails (in the JACK Agent Language sense of the term "fail") to complete its
processing of the event. Typically, this class is defined as a side effect of compilation of a
JSP file created for this purpose.

• servlet-mapping - each servlet mapping definition is delimited by<servlet-mapping>

and</servlet-mapping>. The<servlet-mapping> maps eachservlet-name to the
url-pattern that invokes it. Thisurl-pattern is used to trigger the appropriate JACK
plan for dealing with the request. In the example below, thefroboz servlet handles URLs
of the form/froboz/*.

<servlet-mapping>
 <servlet-name>froboz</servlet-name>
 <url-pattern>/froboz/*</url-pattern>
</servlet-mapping>

• port - this is theIP portusedfor JACK communication.Youwill only needto includethis
if your application has multiple agent processes communicating over the JACK
communicationsnetwork (dci).Thisparameteris passedin asthecommand-lineargument
"-dci.new".

Developing and running JACK WebBot
applications

WebBot Manual
Release 5.3
10-Jun-05 25
Copyright © 2001-2012, Agent Oriented Software Pty. Ltd.

• ns - thenameandportof theJACK nameserver to use.As with port, this is adci-specific
parameter; it is passed in as if by the command-line argument "-dci:ns".

<init-param>
 <param-name>ns</param-name>
 <param-value>nowhere:9000</param-value>
</init-param>

3.4 JSP and ancillar y Servlet Container files
In orderfor aJACK agentto returnaresponseto theclient'sbrowser, theremustbesomeway
of generating an HTML page for it. You are free to use any means at your disposal, for
example,youcouldwrite JavacodethatdynamicallygeneratesHTML pagesto bereturnedto
the client browser. WebBot does not mandate how this should be done, but the most
straightforward way is to use JavaServer Pages to generate the response pages. These allow
you to specify the structure of the web page as a mix of HTML and scriptlets. Scriptlets are
Java code fragments that specify how to generate the dynamic portions of the web page.

The particular mix of JSP, HTML and other files (e.g..gif files) depends very much on your
application requirements. Nevertheless, you will usually need to reference data items
computedby theJACK agentthathandledtheclient request.To dothis,yourJSPfile contains
scriptletsthataccessthevaluesof therelevantJACK variables.Theexamplebelow illustrates
this. It accesses the value of the variablecost and assigns it to theString totalCost. The
variabletotalCost can then be referenced throughout the JSP file within scriptlets.

<% String totalCost = (String)request.getSession().getValue("cost"); %>

3.5 JACK definitions
As outlined in the sectionThe Dynamic Behaviour of Jack WEBBOT Applications, the
WebPortal servletconvertsanincomingHTTPrequestinto aWebRequest event;thiseventwill
trigger the root agent's session-selection plan, which will then select the "session" agent that
should handle the event. The session agent'screateSessionRequest method then creates a
WebSessionRequest event that triggers one of the session agent's plans, culminating in the
setting of various variables in the response object.

3.5.1 Servlet and J ACK WebBot c lasses to impor t
There are a number of prerequisite classes that your WebBot must import:

1. the HTTP-specific request and response functionality of the Servlet API,

2. the JACK Agent Language, and

3. theWebPortal, WebRequest, WebRequestHandler, WebSessionAgent and
WebSessionRequest classes.

Developing and running JACK WebBot applications

WebBotManual
Release5.3

26 10-Jun-05
Copyright © 2001-2012, Agent Oriented Software Pty. Ltd.

To import the classes listed above, include the set ofimport statements shown below.

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

import aos.web.webbot.portal.WebPortal;
import aos.web.webbot.portal.WebRequest;
import aos.web.webbot.portal.WebRequestHandler;
import aos.web.webbot.session.WebSessionAgent;
import aos.web.webbot.session.WebSessionRequest;

3.5.2 Agent, plan and e vent definitions
This section outlines the JACK definitions that you will need to include in order for your
application to interact with the WebBot layer. At the very least you will need to define:

1. an agent thatimplements WebRequestHandler, and

2. an agent thatextends WebSessionAgent.

The former requirement ensures that you have aroot agent that can route incoming
WebRequests to the appropriatesession agent; the latter requirement ensures that your
application can instantiatesession agents. The two requirements can be satisfied by the one
agentdefinition,i.e.by defininganagenttypethatextends WebSessionAgent andimplements
WebRequestHandler. Notethatyouwouldonly adoptthisapproachif yourapplicationdid not
make use of sessions; this being the case, it would only need a singleroot agent and a single
session agent, and so they may as well be one and the same agent. The first tutorial example
adopts this approach (seeThe Simple Calculator Example).

Thefollowing two sectionsdescribethedefinitionalcomponentsandfeaturesthattheroot and
session agents need to incorporate.

3.5.2.1 The root a gent

Theroot agentis responsiblefor routingtheincomingrequestto theappropriatesessionagent.
This is done by invoking the appropriate session agent'screateSessionRequest method. The
WebSessionRequest so created will then trigger one of the session agent's plans.

The root agent should have the following components:

• An event definition thatextends WebRequest. When posted, this event must invoke the
WebRequest setup method; this method sets up theWebRequest so that it holds the
important fields passed through in theHttpServletRequest. A fairly generic example of
suchaneventdefinitionis shown below. TheWebSessionAgent a andEvent e areusedto
store the session agent and theWebSessionRequest.

Developing and running JACK WebBot
applications

WebBot Manual
Release 5.3
10-Jun-05 27
Copyright © 2001-2012, Agent Oriented Software Pty. Ltd.

 public event WebDispatch extends WebRequest {

 public WebSessionAgent a;
 public Event e;

 #posted as
 select(WebPortal p, HttpServletRequest q,
 HttpServletResponse r) {
 setup(p, q, r);
 }
 }

• A handle methodthatdoesapostEventAndWait of theWebRequest eventthatyoudefined
(e.g.WebDispatch in theaboveexample).Theexamplebelow is fairly generic.It relatesto
theWebDispatch event defined above; the only non-generic parts are those shown in bold
(they relate to the identifiers chosen for theevent definition above).

 public boolean handle(WebPortal p,
 HttpServletRequest q,
 HttpServletResponse r) {
 WebDispatch wd = dispatch.select(p, q, r);
 if (!postEventAndWait(wd))
 return false;
 if (wd.a == null || wd.e == null)
 return false;
 return wd.a.postEventAndWait(wd.e);
 }

• At least one session-selection plan. This planhandles your application's specialisation of
theWebRequest event (e.g.WebDispatch in the example above). It should store the
session-handlingagentinstancein theevent'sWebSessionAgent datamember(e.g.wd.a in
the above example). It should also invokecreateSessionRequest and store the returned
value in theevent'sEvent data member (e.g.wd.e in the above example). If the root
agent's name isDispatcherAgent, then the following plan would minimally satisfy the
requirements of session selection. It assumes that the root and session agents are one and
the same; thus,findAgent merely returns the root agent (effectively returning
(WebSessionAgent) getAgent())

 plan SelectSession extends Plan {

 #handles event WebDispatch ev;

 body() {
 ev.a = findAgent();
 ev.e = ev.a.createSessionRequest(ev);
 }

 #uses interface DispatcherAgent a;

 WebSessionAgent findAgent() {
 return a;
 }
 }

Developing and running JACK WebBot applications

WebBotManual
Release5.3

28 10-Jun-05
Copyright © 2001-2012, Agent Oriented Software Pty. Ltd.

3.5.2.2 Session agent

Thesession agentis responsiblefor dealingwith theclient request,settingany requiredvalues
in theresponseobjectandreturninga referenceto theappropriateresponsepageto besentby
the server to the client. A session agent shouldextend WebSessionAgent and should invoke
WebSessionAgent'sconstructor. Minimally, it requiresaplanthathandles WebSessionRequest
events and sets theresponse data member. This is illustrated in the example below.

plan SimpleJSPResponse extends Plan {

 #handles event WebSessionRequest ev;
 #uses interface WebSessionAgent me;

 body() {

 try {
 me.response(ev, "froboz/froboz.jsp");
 }
 catch (Exception e) {
 System.err.println("No good path: " + ev.orig.path);
 false;
 }
 }
}

Note that this material is covered in the tutorial examples presented in the last two chapters.

3.6 Building and running a JACK WebBot
application

To build and run a WebBot application, you will need to define a few environment variables,
compile your application's JSP files and the JACK files, and finally run the Servlet Container.
The environment variables are much the same for both building and running an application;
any exceptionsto this rulewill behighlighted.Thesequenceof stepsrequiredto build andrun
the application is listed below.

1. Setup your environment as required by your particular Servlet Container implementation.

2. Precompile the JSP files. Consult your Servlet Container's documentation on how to
achieve this with your particular installation.

3. Next, from within theparent directoryof theJACK sourcefiles,preparethe$CLASSPATH to
enable compilation of the JACK agents. When compiling the JACK agents,$CLASSPATH
should additionally include the path to your JACK installation (e.g.jack.jar).

4. Compile the JACK agents as follows:

– java aos.main.JackBuild -r $*

5. Start your Servlet Container.

Developing and running JACK WebBot
applications

WebBot Manual
Release 5.3
10-Jun-05 29
Copyright © 2001-2012, Agent Oriented Software Pty. Ltd.

These steps are encapsulated in scripts in the tutorial example in the sectionThe Simple
Calculator Example. Youmayfind it usefulto usetheseasastartingpoint for developingyour
own WebBot build and run scripts.

Developing and running JACK WebBot applications

WebBotManual
Release5.3

30 10-Jun-05
Copyright © 2001-2012, Agent Oriented Software Pty. Ltd.

Tutorial example: simple calculator

WebBot Manual
Release 5.3
10-Jun-05 31
Copyright © 2001-2012, Agent Oriented Software Pty. Ltd.

4 Tutorial example: simple calculator
4.1 Introduction
This chapter will take you step-by-step through the creation and running of a simple WebBot
application. The example is fairly trivial in its use of the JACK Agent Language; the goal of
the example is to demonstrate how to use WebBot,not how to program in the JACK Agent
Language. The example can be found inaos/jack/examples/webbot/calculator

Thesimplecalculatorwill thenbeextendedin thesectionExtending the Calculator to Handle
Multiple Sessions. An effort has been made to limit the need to consult other documents, but
depending on your computing environment, you may need to consult the documentation that
comes with the various third party components used by WebBot (e.g. the installation
instructions for your Servlet Container).

ThisWebBotexampleimplementsaverysimplefour-functioncalculator. All of thecalculator
functions are handled by a single JACK plan,FormResponse. Note that if this were a real
application it would be preferable to handle each calculator function using a separate plan.

To use the calculator, enter two numbers into the text fields and then press a button to select
the operation to be applied. The JACK agent computes the result (which can be an error
messageif for exampleadivisionby zerooccurs)anddisplaysit to theuservia themediumof
a new JavaServer Page.

Figure 4-1: Screen Snapshot of the Calculator Web Page

Tutorial example: simple calculator

WebBotManual
Release5.3

32 10-Jun-05
Copyright © 2001-2012, Agent Oriented Software Pty. Ltd.

The calculator device consists of a top row of four buttons, with three panes below. The top
paneconsistsof two text inputfields,eachacceptingasequenceof arbitrarytext characters,up
to amaximumlengthof 5.Theleft field is usedto enterthefirst integer operand;theright field
takesthesecondoperand(alsoaninteger).Oncethetwo operandshavebeentypedin, theuser
should then click on one of the four buttons at the top of the calculator. The WebBot
application will then apply the arithmetic operation, denoted by the button, to the two
operands.If theoperandsarevalid argumentsto thechosenarithmeticoperator, thentheresult
is displayedin themiddlepane(whichalsocontainstheresultof thepreviouscomputation,if
any). Otherwise, if the operands are invalid, then an error message is generated and displayed
in the bottom pane (which also contains the previous error message, if any).

If theoperatoris "Divide", theagentalsochecksto seewhetherthesecondoperandis zero.If
it is, anerrorstringis returnedanddisplayedin thebottompane.Theagentdoesnotcheckthe
types of the operands. If you enter non-integers into the operand fields and select an operator,
theapplicationwill simplybringupapagetelling youthatthereis nosuchservice(ratherthan
specifically flagging it as a type violation).

In the remaining sections, you will learn how to:

1. Set up your environment so that you can compile and run the WebBot application, in
Setting up the Build and Run Scripts.

2. ConfiguretheServletContainerfor yourapplication,in ConfiguringtheServletContainer.

3. Create a JSP file that will embody the logical structure of the web page, including the
parameters returned by the JACK agent, inCreating a JSP File.

4. DefineaJACK agentthatmakesuseof theinfrastructureprovidedby WebBot,in Defining
DispatcherAgent Agent.

4.2 Installing the tutorial example

4.2.1 WAR! What is it good for?
Wehavedecidedto packagetheWebBotexamplesasWebApplicationArchives(WAR files).
The Java Servlet Specification version 2.3 defines a web application as: '... a collection of
servlets, html pages, classes, and other resources that make up a complete application on a
webserver. Thewebapplicationcanbebundledandrunonmultiplecontainersfrom multiple
vendors.' This statement refers to one of the major advantages of packaging a WebBot
application as WAR files. WARs are a delivery mechanism which is portable across different
Servlet Containers, running on diverse operating systems.

The WebBot example code has build scripts that build the source code and package up the
resultantclassfilesandstaticwebcontentinto aWAR file. TheexampleWebBotapplications
have the basic directory structure shown in the next figure.

Tutorial example: simple calculator

WebBot Manual
Release 5.3
10-Jun-05 33
Copyright © 2001-2012, Agent Oriented Software Pty. Ltd.

Figure 4-2: Directory Structure for the Calculator Example

4.3 Setting up the build and run scripts
Thissectiondescribeshow to modify thebuild andrunscriptssothatthey reflectthestructure
of your computing environment. The calculator example is built by executing the script,
mkwebapp. Themkwebapp script will also compile all JACK files into Java and compile all
.java files into .class files.NotethatservletcontainersoftendynamicallycompileJSP files
into class files on demand. However, WebBot must have all JSP files it uses precompiled into
classes before the web application is launched. Themkjsp script achieves this and is invoked
from themkwebapp script.

4.3.1 The build scripts, mkwebapp and mkjsp

The build script,mkwebapp, sets up a number of environment variables, invokesmkjsp to
compiletheJSPfiles,andtheninvokestheJACK builder, JackBuild. Themkwebapp scriptsets
environment variables from theservlet.env andwebapp.env files. You should not need to
edit themkwebapp file itself. The*.env files will however usually require modifications to
match your own setup.

Theservlet.env file defines three variables required by external scripts. They are
JSP_COMPILER, SERVLET_CLASSPATH and SERVLET_CONTAINER_WEBAPPS.
Thesereferrespectively to theCLASSPATH definitionsrequiredfor compilingJSPpages,the
Servlet code and the directory in which web applications reside in your particular Servlet

Tutorial example: simple calculator

WebBotManual
Release5.3

34 10-Jun-05
Copyright © 2001-2012, Agent Oriented Software Pty. Ltd.

Container setup. Theservlet.env file delivered with the WebBot examples contains details
suitablefor thoseusingTomcat4.xastheirServletContainer. If youareusingTomcat4.x then
theonly variablewhichneedschangingshouldbetheTOMCAT_HOMEvariableat thetopof
the file.

Environment variables related directly to the web application itself are stored inwebapp.env.
These include variables for the name of the web application, the directory in which JACK is
installed and the path to the directory in which you are developing your application.

The build script and default *.env files (suitable for Unix systems) are reproduced below:

4.3.1.1 The web application en vir onment file , webapp.env

Name of WebBot web application
WEBAPP_NAME=calculator

Directory where you have installed JACK
JACK_HOME=$HOME/Agent_Software/

Directory where you are developing your WebBot web application
WEBAPP_DIR=$JACK_HOME/aos/jack/examples/calculator

4.3.1.2 The Servlet Container en vir onment file , servlet.env

If the line below does not refer to the location of your Tomcat
installation,
alter it so that it represents the path to the Tomcat directory.
export TOMCAT_HOME=/misc/jakarta-tomcat-4.0.4

LIB=$TOMCAT_HOME/lib

Jar file containing classes for implementation of servlet API
SERVLET_JAR=$TOMCAT_HOME/common/lib/servlet.jar

SERVER=$LIB/webserver.jar

Servlet XML parser
XML=$TOMCAT_HOME/common/lib/xerces.jar

The next three variables are the only variables used externally
from this script.

CLASSPATH required to compiled jsp pages to java.
JSP_COMPILER=$LIB/jasper-compiler.jar:$LIB/jasper-runtime.jar

CLASSPATH required to compile classes using the servlet API
SERVLET_CLASSPATH=$SERVLET_JAR:$SERVER:$XML

Location of webapps directory in your servlet container.
your web application (packed as a web archive (WAR) file) is copied
into this location.
SERVLET_CONTAINER_WEBAPPS=$TOMCAT_HOME/webapps

Tutorial example: simple calculator

WebBot Manual
Release 5.3
10-Jun-05 35
Copyright © 2001-2012, Agent Oriented Software Pty. Ltd.

4.3.1.3 Script file , mkwebapp

#!/bin/sh
source ./servlet.env
source ./webapp.env

Alter the next line so that it references your JACK installation.
cp $JACK_HOME/lib/jack.jar lib

The next line invokes the script which compiles the JSP files.
./mkjsp

The line below defines the Java CLASSPATH variable.
export CLASSPATH=$WEBAPP_DIR/src:$SERVLET_CLASSPATH:$JACK_HOME/lib/
jack.jar:$JSP_COMPILER:$CLASSPATH

Clean out any previous Jack compilation.
java aos.main.JackBuild -c $WEBAPP_DIR/src
java aos.main.JackBuild -c $WEBAPP_DIR/web
The following lines invoke the Java compiler and build the JACK
agents.
echo building in $WEBAPP_DIR
java aos.main.JackBuild -r $WEBAPP_DIR/src
java aos.main.JackBuild -r $WEBAPP_DIR/web

Themkjsp scriptalsosetsenvironmentvariablesfrom servlet.env andwebapp.env. However
the line in the script which invokes the JSP compiling will need to be modified if you are not
using the Apache project's Jasper JSP compiler.

4.3.1.4 Script file , mkjsp

#!/bin/zsh

source ./servlet.env
source ./webapp.env

WEB_DIR=$WEBAPP_DIR/web

$JAVA_HOME needs to point to the location of your JDK. Alter the
line below accordingly.
export JAVA_HOME=/usr/local/jdk1.3

The line below defines a variable which will be passed as a "-cp"
argument
to Java (i.e. the CLASSPATH).
CP=$SERVLET_CLASSPATH:$JSP_COMPILER

The following line invokes the JSP compiler,
echo Building JSP
java -cp $CP org.apache.jasper.JspC -d $WEB_DIR -uriroot $WEB_DIR $WEB_DIR/
*.jsp

Tutorial example: simple calculator

WebBotManual
Release5.3

36 10-Jun-05
Copyright © 2001-2012, Agent Oriented Software Pty. Ltd.

4.3.2 Web Archive creation script, mkwar
OncetheWebBotWebApplicationhasbeencompiledby thepreviousscriptsis mustbebuilt
into a Web Archive (WAR). Themkwar script does this and is shown below.

#!/bin/sh

source ./webapp.env
Remove old web app
rm -rf $WEBAPP_NAME

Create new webapp directory and copy in classes and libraries into
webapp's
WEB- INF directory.
mkdir $WEBAPP_NAME
cp - a web/WEB- INF $WEBAPP_NAME
mkdir $WEBAPP_NAME/WEB-INF/classes
cp src/*.class $WEBAPP_NAME/WEB- INF/classes
cp src/*.ini $WEBAPP_NAME/WEB- INF/classes
cp web/*.class $WEBAPP_NAME/WEB- INF/classes
cp - a lib $WEBAPP_NAME/WEB- INF

Copy static content into webapp's root directory
cp web/*.txt $WEBAPP_NAME/
cp - a web/images $WEBAPP_NAME

build webapp web archive (WAR) file
cd $WEBAPP_NAME
jar - cf ../$WEBAPP_NAME.war *

4.3.3 Install script, installit.sh
For your convenience there is an install script provided which builds and installs the Web
Application. This script simply calls the previousmkwebapp andmkwar scripts before copying
the WAR file into the Servlet Container's webapps directory. The script is shown below.

#!/bin/sh
source ./servlet.env
source ./webapp.env
./mkwebapp
./mkwar
Remove old webapplication
rm -rf $SERVLET_CONTAINER_WEBAPPS/$WEBAPP_NAME
cp $WEBAPP_NAME.war $SERVLET_CONTAINER_WEBAPPS

Tutorial example: simple calculator

WebBot Manual
Release 5.3
10-Jun-05 37
Copyright © 2001-2012, Agent Oriented Software Pty. Ltd.

4.3.4 Start script, start.sh
The start script should be executed in order to start the Servlet Container (along with any
WebBot Web Applications you have installed into it). The script provided is specific to the
Tomcat Servlet Container, and will need to be modified if you are using a different Servlet
Container. The start script is reproduced below.

#!/bin/sh
export JAVA_HOME=/usr/local/jdk1.3.1_01
export CATALINA_HOME=/misc/jakarta-tomcat-4.0.4
$CATALINA_HOME/bin/startup.sh

4.3.5 Stop script, stop.sh
Use the stop script when you wish to shutdown the servlet container. For example, this is
usually necessary when deploying a new version of a web application. Again this script is
specificto theTomcatServletContainer. Thescriptwill requiremodificationif yourareusing
a different Servlet Container. The stop script is shown below.

#!/bin/sh
export JAVA_HOME=/usr/local/jdk1.3.1_01
export CATALINA_HOME=/misc/jakarta-tomcat-4.0.4
$CATALINA_HOME/bin/shutdown.sh

Thiscompletesthedefinitionof thebuild, install andrunscriptsfor thetutorial.They provide
agoodstartingpoint for developingyourown WebBotapplications.Thesection,Configuring
the Servlet Container, deals with the configuration files required by the Servlet Container. If
you have followed the installation instructions up to this point, then the tutorial example
should be ready to run. The next section will take you through the process of compiling and
running the example. Spend a few minutes trying out the calculator; having done so, you will
be better placed to understand the subsequent sections that discuss how its functionality is
implemented.

4.4 Compiling and running the application
To compile and install the application, run theinstallit.sh script, as shown below:

cd $JACK_HOME/aos/jack/examples/calculator/
./installit.sh

To run the Servlet Container follow the steps below:

cd $JACK_HOME/aos/jack/examples/calculator/
./start.sh

Now run your browser (if it's not already running that is!) and point it to the URI:http://

localhost:8080/calculator. Thisshouldbringup thecalculatorwebpage.Typeacoupleof
integers into the text fields and then click on one of the buttons (e.g.Add). The result will
appear in the Results Pane. To generate an error string, enter a zero into the righthand text
field, and click on theDivide button.

Tutorial example: simple calculator

WebBotManual
Release5.3

38 10-Jun-05
Copyright © 2001-2012, Agent Oriented Software Pty. Ltd.

Youarewelcometo explorethecalculatorto yourheart'scontent,but youwill quickly become
bored. When you have finished, kill the Servlet Container by running the stop.sh script as
shown below:

cd $JACK_HOME/aos/jack/examples/calculator/
./stop.sh

4.5 Configuring the Ser vlet Container
To configure the Servlet Container to handle our application, aweb.xml must be created.
Other configuration may be required for your particular Servlet Container, so please refer to
yourServletContainer'sdocumentation.TheTomcat4.x ServletContainershouldnot require
any configuration changes other than the WebBot Web Application'sweb.xml file.

4.5.1 Overview of web.xml
You should be able to leave most of the parameters in a defaultweb.xml unchanged. Hence,
the easiest approach to developing a new WebBot application is to take a copy of the WebBot
version ofweb.xml, and only edit the parameters explained in this section. Of course, your
particular application may require that you alter parameters not covered in this section; that
being the case, your Servlet Container's documentation should be your first port of call.

Theweb.xml configurationfile definestheservlets thatmakeupyourapplication.Thetutorial
example only has one servlet, but you can create an application containing a number of
servlets.

4.5.1.1 Parameter s used b y WebBot

The file contains two major definitional elements. The<servlet> definition is by far the
larger, and contains the servlet's initialisation parameters. Theservlet-mapping defines the
mapping between the URL patterns and servlets, i.e. which servlet to run, given a particular
URL. The structure and function of the<servlet> andservlet-mapping elements is outlined
below.

• servlet: Each servlet definition is delimited by "<servlet>" and "</servlet>". The key
parameters of the servlet definition are as follows:

– servlet-name:A unique identifier of the servlet.

 <servlet-name>calculator</servlet-name>

– servlet-class:The class that implements the servlet. This class is part of the JACK
distribution and will be included in thejack.jar file which comes with that
distribution.

 <servlet-class>aos.web.webbot.portal.WebPortal</servlet-class>

Tutorial example: simple calculator

WebBot Manual
Release 5.3
10-Jun-05 39
Copyright © 2001-2012, Agent Oriented Software Pty. Ltd.

The remaining parameters (<init-param>) are specific to WebBot, i.e. they are initialisation
parametersthatpertainto WebBot,ratherthantheServletContainerperse.Eachinitialisation
parameter is bounded by<init-param> and</init-param>. For example:

 <init-param>
 <param-name>type</param-name>
 <param-value>calculator.DispatcherAgent</param-value>
 </init-param>

The WebBot initialisation parameters are as follows:

– The class name of the request-handling JACK agent. WebBot uses this to create an
agent to handle the incoming requests.

 <init-param>
 <param-name>type</param-name>
 <param-value>DispatcherAgent</param-value>
 </init-param>

– Theinstancenameof therequesthandlingagent.WebBotusesthis to createandlocate
the request-handling agent.

 <init-param>
 <param-name>name</param-name>
 <param-value>requestHandler</param-value>
 </init-param>

– The class name of the class to invoke when the WebPortal cannot find an agent to
handle the request. In this tutorial, this class is defined as a side effect of compilation
of the JSP file, NoHandlerErrorPage.jsp.

 <init-param>
 <param-name>nohandler</param-name>
 <param-value>NoHandlerErrorPage</param-value>
 </init-param>

– The class name of the class to invoke when the agent handling the request fails (in the
JACK AgentLanguagesenseof theterm"fail") to completeits processingof theevent.
In this tutorial, this class is defined as a side effect of compilation of the JSP file,
NoServiceErrorPage.jsp.

 <init-param>
 <param-name>noservice</param-name>
 <param-value>NoServiceErrorPage</param-value>
 </init-param>

Tutorial example: simple calculator

WebBotManual
Release5.3

40 10-Jun-05
Copyright © 2001-2012, Agent Oriented Software Pty. Ltd.

• servlet-mapping: Each servlet mapping definition is delimited by "<servlet-mapping>"
and "</servlet-mapping>". The tutorial example has two mappings, one for JSP pages
and one for HTML form handling. The servlet mapping maps eachservlet-name to the
url-pattern that invokes it. Thus, the servlet defined above (i.e.calculator) will handle
all requests which end in.jsp or .webform. As you will see later, the URL pattern is used
to trigger the appropriate JACK plan.

 <servlet-mapping>
 <servlet-name>calculator</servlet-name>
 <url-pattern>*.jsp</url-pattern>
 </servlet-mapping>

 <servlet-mapping>
 <servlet-name>calculator</servlet-name>
 <url-pattern>*.webform</url-pattern>
 </servlet-mapping>

4.6 Creating a JSP file
As explainedin sectionJavaServer Pages (JSP) in theJACK WebBotArchitecturechapter, by
far the easiest way to create web pages with WebBot is to use Java Server Pages (JSP). This
tutorial example adopts this approach. The class file compiled from,$WEBAPP_DIR/web/

calculator.java, is used to generate a web page when the server gets a URI of the form
*.jsp. This file is generated from the filecalculator.jsp. If you are familiar with HTML,
then,having seenthescreensnapshotin thefigureabove,youwill beexpectingthe.jsp file to
reference a collection of.gif files. Indeed, the image is made up of many small.gif files
organised into table cells. To reduce the clutter in this.jsp file, the table rows containing the
.gif referencesareinsertedusinginclude directives.Theincludefileshavenamesof theform
"tr-graphics-*.txt". Despite this, there remains a fair amount of table data cell clutter
(bounded by<td> and</td>). To further improve the readability ofcalculator.jsp, such
table data cells are inserted viainclude directives of files named "td-cells-*.txt".

The file,calculator.jsp, is included below. Although the file has been formatted to improve
its readability, HTML canbehardto readat thebestof times.Essentiallythefile consistsof a
few lines of HTML header information, followed by the retrieval of some string values from
the WebBot agent; this is followed by an HTMLform whose input fields are spread across a
number of HTML table cells. The final part of the table contains the rows that hold the
"Results"and"Errors"strings(retrievedby thegetValue scriptletsat thestartof thefile). The
file ends with a few HTML syntactic necessities.

Tutorial example: simple calculator

WebBot Manual
Release 5.3
10-Jun-05 41
Copyright © 2001-2012, Agent Oriented Software Pty. Ltd.

To makefull useof WebBotyouwill needto haveasolidunderstandingof interactive forms in
HTML. To understand the example below, you only need to know a few things about HTML
forms:

• The form is sent to the server using anHTTP GET request. The data specified in the form
is appended to the URI found in the "ACTION" attribute of the form, and is prefixed by a
"?". For example, if the server URI is "localhost:8080", the "ACTION" attribute is "/
calculator/form.webform", and the form data contains two values "value1=5" and
"value2=6", then the URI would be: "http://localhost:8080/calculator/
form.webform?value1=5&value2=6".

• The form is made of a collection of "INPUT" elements, known as "form controls". The
"TYPE" attribute defines what sort of input field the INPUT element will be (e.g.
"TEXT"). Thebuttonsin ourexampleareimages,thustheir typeis "type=image". INPUT
elementsof this typehaveanassociated"ACTION" thatdefineswhatshouldhappenif the
userclickson theimage.In ourexample,theACTION is to submittheform to theserver,
i.e. "action=submit".

– Each INPUT element also has a "NAME"; this is used to identify the parameters
submittedin theform (operand1 andoperand2 areexamplesof two namedparameters
in calculator.jsp).

– One curiosity to be aware of is that INPUT elements of type "image" will submittwo
parameter/value pairs. The first parameter is of the form "name.x", and the second
"name.y". The values of these parameters are thex andy window coordinates of the
mouse pointer when the mouse button was pressed. These coordinates are not used in
this tutorial example. All the JACK agent cares about is which button was pressed;
thus, a simple test to see ifname.x is non-null will suffice to select the operator to be
applied to the two operands.

You should now be ready to cast your beady eye overcalculator.jsp, shown below. To help
you focus on the key sections, they are emboldened.

<html>

<head>
<meta http-equiv="Content-Type" content="text/html;
 charset=iso-8859-1">
</head>

<body bgcolor=#ff3300 marginwidth=0 marginheight=0 topmargin=0
 leftmargin=0>

<!-- Assignment of response values from the agent.
 These response values form part of the web page which is
 presented to the user. -->
<% String previousResult =
(String)request.getSession().getValue("previousResult"); %>
<% String currentResult =
(String)request.getSession().getValue("currentResult"); %>
<% String previousError =

Tutorial example: simple calculator

WebBotManual
Release5.3

42 10-Jun-05
Copyright © 2001-2012, Agent Oriented Software Pty. Ltd.

(String)request.getSession().getValue("previousError"); %>
<% String currentError =
(String)request.getSession().getValue("currentError"); %>

<!-- When the user clicks on one of the submit buttons,
 the parameter/value pairs in the form are sent to the URI
 specified in the forms "action",
 i.e. "/calculator/form.webform". -->
<form method="GET" action="/calculator/form.webform"}

<!-- To reduce the clutter in this jsp file, the table rows
 containing the gifs, which make up the image presented
 to the user, are inserted using "include" directives.
 The include files are named "tr-graphics-*.txt".
 This still leaves a fair amount of table data cell
 clutter (bounded by <td> and </td>). To improve
 the readability of this file, such table data cells
 are inserted via "include" directives of files named
 "td-cells-*.txt". -->

<table cellspacing="0" cellpadding="0" border="0" >
 <%@ include file="tr-graphics-1.txt" %>
 <tr>
 <%@ include file="td-cells-1.txt" %>

 <!-- This is the input element for the "Add" button. -->
 <td width=85 height=60 valign="top" colspan=5 rowspan=9>

<input type="image"
action=submit
name="add"

 alt="Add the two operands"
 src="images/button13_2.gif"
 width=85 height=60 align="top" border=0>
 </td>
 <%@ include file="td-cells-2.txt" %>

 <!-- This is the input element for the "Subtract" button. -->
 <td width=85 height=60 valign="top" colspan=4 rowspan=9>

<input type="image"
action=submit
name="subtract"

 alt="Subtract the two operands"
 src="images/button29_2.gif"
 width=85 height=60 align="top" border=0>
 </td>
 <%@ include file="td-cells-3.txt" %>

 <!-- This is the input element for the "Multiply" button. -->
 <td width=84 height=60 valign="top" colspan=5 rowspan=9>

<input type="image"
action=submit
name="multiply"

 alt="Multiply the two operands"
 src="images/button321_2.gif"
 width=84 height=60 align="top" border=0>
 </td>
 <%@ include file="td-cells-4.txt" %>

 <!-- This is the input element for the "Divide" button. -->
 <td width=84 height=60 valign="top" colspan=5 rowspan=9>

<input type="image"

Tutorial example: simple calculator

WebBot Manual
Release 5.3
10-Jun-05 43
Copyright © 2001-2012, Agent Oriented Software Pty. Ltd.

action=submit
name="divide"

 alt="Divide the two operands"
 src="images/button427_2.gif"
 width=84 height=60 align="top" border=0>
 </td>
 <%@ include file="td-cells-5.txt" %>
 </tr>
 <%@ include file="tr-graphics-2.txt" %>

 <!-- The two input fields, below, hold the operand values
 to be sent to the agent. -->
 <tr>
 <%@ include file="td-cells-6.txt" %>
 <td width=84 height=41 valign="top" colspan=7 rowspan=2
 bgcolor="#FFFFFF">
 <div align="center">

<input type="text" name="operand1" size="5">
 </div>
 </td>
 <%@ include file="td-cells-7.txt" %>
 </tr>
 <tr>
 <%@ include file="td-cells-8.txt" %>
 <td width=84 height=41 valign="top" colspan=6 rowspan=2
 bgcolor=#FFFFFF>
 <div align="center">

<input type="text" name="operand2" size="5">
 </div>
 </td>
 <%@ include file="td-cells-9.txt" %>
 </tr>

 <%@ include file="tr-graphics-3.txt" %>

 <!-- The parameters, previousResult and currentResult,
 returned by the agent are inserted in this row. -->
 <tr>
 <%@ include file="td-cells-10.txt" %>
 <td width=443 height=46 valign="top" colspan=31 rowspan=2
 bgcolor=#FFFFFF>
 <p><%=previousResult%>

<%=currentResult%></p>
 </td>
 <%@ include file="td-cells-11.txt" %>
 </tr>

 <%@ include file="tr-graphics-4.txt" %>

 <!-- The parameters, previousError and currentError,
 returned by the agent are inserted in this row. -->
 <tr>
 <%@ include file="td-cells-12.txt" %>
 <td width=443 height=46 valign="top" colspan=31
 bgcolor=#FFFFFF>
 <p><%=previousError%>

<%=currentError%></p>
 </td>
 <%@ include file="td-cells-13.txt" %>
 </tr>

Tutorial example: simple calculator

WebBotManual
Release5.3

44 10-Jun-05
Copyright © 2001-2012, Agent Oriented Software Pty. Ltd.

 <%@ include file="tr-graphics-5.txt" %>

</table>
</form>
</body>
</html>

So, if the user enters "4" into the left text field and "2" into the right field, and clicks on the
"Multiply" button,thentheURI submittedto theserverwill beasfollows(assumingthatthex
andy coordinates are31 and34 respectively):

http://localhost:8080/calculator/
form?operand1=4&operand2=34&multiply.x=31&multiply.y=34

4.7 Defining Dispatc herAg ent agent
The request-handling JACK agent is fully defined in the file:

 $WEBAPP_DIR/src/DispatcherAgent.agent

The file looks much like any other.agent file: it defines an agent, the events handled, the
plans used, and a private beliefset. However, if you look closely, you will notice a number of
differences with respect to the.agent files you have seen in the past:

• It imports a number ofjavax.servlet, aos.web.webbot.portal and
aos.web.webbot.session classes.

• TheDispatcherAgent agent extendsWebSessionAgent and implements
WebRequestHandler.

• It handlesWebSessionRequest andWebDispatch events (the latter is an extension of the
WebBotWebRequest event).

Before looking at the constituent parts ofDispatcherAgent.agent in more detail, it is worth
briefly restating the functionality expected of this agent. TheDispatcherAgent agent
implementsaverysimplefour-functioncalculator. All of thecalculatorfunctionsarehandled
by a single JACK plan (FormResponse). TheDispatcherAgent agent applies an arithmetic
operator to two integer operands and returns the result. If the operands are valid arguments to
thechosenarithmeticoperator, thentheresultis displayedin themiddlepane(whichwill also
contain the result of the previous computation, if any). However, if the operands are invalid
arguments to the selected operator, then an error message is returned.

The agent needs to maintain a history of the previous two results and error messages (if any)
so that these can be returned and displayed on the web page. Note that the agent does not
check the types of the operands. If the operands are non-integers, the agent will simply fail to
service the request. This leads Tomcat to bring up a web page indicating that there is no such
service, rather than specifically flagging it as a type violation. Recall that this page
(NoServiceErrorPage.jsp) is referenced inweb.xml via thenoservice parameter.

Tutorial example: simple calculator

WebBot Manual
Release 5.3
10-Jun-05 45
Copyright © 2001-2012, Agent Oriented Software Pty. Ltd.

Thenatureof theinteractionthatany request-handlingagent(suchasDispatcherAgent) needs
to have with the client is as follows. At its simplest, the agent receives an incoming
WebRequest. This event's signature will either trigger one of the agent's session-selection
plans, or fail to match any of its plans. In the latter case, and in fact if there is a failure of any
kind, it will result in the web page specified in thenoservice parameter inweb.xml.

The session-selection plan is supposed to determine whichWebSessionAgent to dispatch a
WebSessionRequest to. TheWebSessionRequest is created by invoking the agent's
createSessionRequest(WebRequest event) method.

TheWebSessionRequest socreatedwill thentriggeroneof thesessionagent'splansaccording
to the normal JACK Agent Language rules. This sets off a computational sequence
culminating in the assignment of variables that will be part of the response page returned to
the client. More specifically, the agent'sputValue method will store the named parameters'
values in the response object, and will also set the value of the response page (e.g.
calculator/calculator.jsp).

4.7.1 Impor ted c lasses
This tutorial example could hardly be simpler in terms of its use of WebBot, and as a result,
the imported classes are the very minimum required to build a WebBot application.

• TheHttpServletRequest andHttpServletResponse provide the HTTP-specific request
and response functionality of the Servlet API:

 import javax.servlet.http.HttpServletRequest;
 import javax.servlet.http.HttpServletResponse;

• Having usedtheJACK AgentLanguage,youwill bethoroughlyfamiliarwith thenext line
- it imports all of the JACK Agent Language functionality:

 import aos.jak.agent.Agent;

• Theaos.web.webbot.portal packageprovidesHttpServlet functionality. TheWebPortal
class,aos.web.webbot.portal.WebPortal, is a servlet that implements the
javax.servlet.Servlet interface by extending the class
javax.servlet.http.HttpServlet. The servlet is configured with the parameterstype

andname in the fileweb.xml. These parameters specify the class and instance name of the
agent that handles incoming requests. When an HTTP request is received, if there is no
agent of the specifiedname, theWebPortal creates one of the specifiedtype with the
specifiedname (specified inweb.xml).

• Theaos.web.webbot.session package provides theHTTPSession functionality and
provides methods for handlingWebSessionRequests, and other session-related activities.

Tutorial example: simple calculator

WebBotManual
Release5.3

46 10-Jun-05
Copyright © 2001-2012, Agent Oriented Software Pty. Ltd.

4.7.2 The agent definition
TheDispatcherAgent agent handles incoming requests. Itextends WebSessionAgent and
implements WebRequestHandler. In general, your WebBot application will define such an
incoming-request-handling agent. This agent can then either handle the request fully, or
dispatch the request to one of a number of session-handling agents.

The agent definition is shown below. The events and plans will be explained in the following
two sections. The beliefset is initialised using the contents of the filehistory.ini.

public agent DispatcherAgent extends WebSessionAgent
 implements WebRequestHandler {
 #handles event WebDispatch;
 #posts event WebDispatch dispatch;
 #handles event WebSessionRequest;
 #uses plan SelectSession;
 #uses plan FormResponse;
 #uses plan SimpleJSPResponse;
 #private data History history("history.ini");

 public boolean handle(WebPortal p,
 HttpServletRequest q,
 HttpServletResponse r) {
 System.err.println("WebSession agent called");
 System.out.println("WebSession agent called");
 WebDispatch wd = dispatch.select(p, q, r);

 if (!postEventAndWait(wd) {
 System.err.println("Failed to handle session select");
 return false;
 }

 if (wd.a == null || wd.e == null) {
 System.err.println("Got null agent or event back");
 return false;
 }

 return wd.a.postEventAndWait(wd.e);
 }

 public DispatcherAgent(String name) {
 super(name);
 }
}

Apart from its constructor that invokes theWebSessionAgent constructor, DispatcherAgent
defines a single method,handle(WebPortal p, HttpServletRequest q,
HttpServletResponse r).

Tutorial example: simple calculator

WebBot Manual
Release 5.3
10-Jun-05 47
Copyright © 2001-2012, Agent Oriented Software Pty. Ltd.

4.7.3 Events handled
DispatcherAgent handlestwo typesof event,thestandardWebBotWebSessionRequest event,
andtheWebDispatch event(definedbelow). TheWebRequest.setup method performsvarious
essential setup operations internal to WebBot.

public event WebDispatch extends WebRequest {

 public WebSessionAgent a;
 public Event e;

 #posted as
 select(WebPortal p, HttpServletRequest q, HttpServletResponse r) {
 setup(p, q, r);
 }
}

4.7.4 BeliefSet
The beliefset holds 4 elements that will be accessed using theparameter field. The four
parameters are:

1. result - the current result;

2. prevResult - the previous result;

3. error - the current error; and

4. prevError - the previous error.

These are all initialised to the empty string. The beliefset definition is shown below.

 beliefset History extends OpenWorld {
 #key field String parameter;
 #value field String value;
 #indexed query get(String parameter, logical String value);
}

4.7.5 Plans
DispatcherAgent has three plans:SelectSession, SimpleJSPResponse andFormResponse.

4.7.5.1 SelectSession Plan

TheSelectSession planis responsiblefor determiningwhichWebSessionAgent to dispatcha
WebSessionRequest to (using the methodfindAgent shown below). In this example,
findAgent merely returns the agent itself (i.e.DispatcherAgent). A more typical example
would select the agent appropriate to the session in question (see chapter "Tutorial Example:
Multiple Sessions"). ThisSelectSession plan also creates aWebSessionRequest by invoking
theagent'screateSessionRequest(WebRequest event) method.Notethatboththeagentand
theWebSessionRequest are returned as data of the invoking event.

Tutorial example: simple calculator

WebBotManual
Release5.3

48 10-Jun-05
Copyright © 2001-2012, Agent Oriented Software Pty. Ltd.

plan SelectSession extends Plan {

 #handles event WebDispatch ev;

 body() {
 ev.a = findAgent();
 ev.e = ev.a.createSessionRequest(ev);
 }

 /**
 * Determine which agent should deal with the request.
 * If sessions are used, then it would find the
 * appropriate session agent.
 */

 #uses interface DispatcherAgent a;

 WebSessionAgent findAgent() {
 return a;
 }
}

4.7.5.2 FormResponse plan

TheFormResponse plan implements the functionality of the four-function calculator. Because
all of thefunctionalityhasbeenpackedinto asingleplan,theplanbodyis quitelarge.To help
you focus on the sections that pertain to WebBot features, those parts are emboldened. This
plan handlesWebSessionRequest events and uses theWebSessionAgent interface. The plan is
relevant if theorig.webapp_path of the event is equal to "/form.webform". This comes from
the "action" of the "form" that the calculator web page submits.orig.webapp_path is a
convenience provided by WebBot. It is constructed by concatenating the PathInfo and
ServletPath variables from the original request. The resultantorig.webapp_path variable is
thereforeguaranteedto holdall of therequestURL aftertheservletname.Sofor examplefor
the calculator servlet the requesthttp://localhost:8080/calculator/form.webform will
have an orig.webapp_path of "/form.webform". It is recommended thatorig.webapp_path

path is used rather thanorig.path ororig.servlet_path as their values depend on servlet
mappings and are defined withinweb.xml.

With regard to WebBot, there are three important activities in the plan's body:

1. The test for which calculator button was pressed. As was explained in sectionCreating a
JSP File, because the buttons were implemented using an HTML form element of
type="image", two parameters are sent in the URI generated by theform. They are of the
form "name.x" and"name.y, wherename canbe"add","subtract","multiply" or "divide".
The"x" and"y" portionsof theparametersarenotused- they arethewindow coordinates
representing where the mouse pointer was when the mouse button was pressed. Because
only one button can have been pressed for any given URI submission, it is only necessary
to test the parameters to find one which is non-null. Of course, if "name.y" is non-null,
thensois "name.x", thusit is only necessaryto testfor oneor theother. This is donein the
conditional statement below (e.g.ev.getParameter("add.x") != null).

Tutorial example: simple calculator

WebBot Manual
Release 5.3
10-Jun-05 49
Copyright © 2001-2012, Agent Oriented Software Pty. Ltd.

2. Thestoringof resultsin theparametersto bereturnedto theclient,by invoking theagent's
putValue method with the parameter name and value as arguments (e.g.
me.putValue("previousError", prevError)).

3. The nomination of the response page using the agent'sresponse method (e.g.
me.response(ev, "calculator.jsp")).

plan FormResponse extends Plan {

#handles event WebSessionRequest ev;
#uses interface WebSessionAgent me;

 #reads data History history;

static boolean relevant(WebSessionRequest ev) {
return ev.orig.webapp_path.equals("/form.webform");

 body() {

 logical String result;
 logical String prevResult;
 logical String prevError;
 String operand1;
 String operand2;
 String newResult;

 history.get("result", result);
 history.get("error", prevError);

operand1 = (String)ev.getParameter("operand1");
operand2 = (String)ev.getParameter("operand2");

 if (ev.getParameter("add.x") != null) {
 newResult = operand1 + " + " + operand2 + " = " +
 (Integer.parseInt(operand1) +
 Integer.parseInt(operand2));
 history.add("result", newResult);
 history.add("prevResult", result.getValue());
 }
 if (ev.getParameter("subtract.x") != null) {
 newResult = operand1 + " - " + operand2 + " = " +
 (Integer.parseInt(operand1) -
 Integer.parseInt(operand2));
 history.add("result", newResult);
 history.add("prevResult", result.getValue());
 }
 if (ev.getParameter("multiply.x") != null) {
 newResult = operand1 + " * " + operand2 + " = " +
 (Integer.parseInt(operand1) *
 Integer.parseInt(operand2));
 history.add("result", newResult);
 history.add("prevResult", result.getValue());
 }
 if (ev.getParameter("divide.x") != null) {
 if (Integer.parseInt(operand2) != 0) {
 newResult = operand1 + " / " + operand2 + " = " +
 (Integer.parseInt(operand1) /
 Integer.parseInt(operand2));
 history.add("result", newResult);
 history.add("prevResult", result.getValue());

Tutorial example: simple calculator

WebBotManual
Release5.3

50 10-Jun-05
Copyright © 2001-2012, Agent Oriented Software Pty. Ltd.

 }
 else {
 newResult = "Zero divide error: " + operand1 +
 " / " + operand2;
 history.add("error", newResult);
 history.add("prevError", prevError.getValue());
 }
 }

 logical String outputResult;
 logical String error;
 logical String oldError;

 history.get("result", outputResult);
 history.get("prevResult", prevResult);
 history.get("error", error);
 history.get("prevError", oldError);

 try {
me.putValue("currentResult", outputResult.getValue());
me.putValue("previousResult", prevResult.getValue());
me.putValue("currentError", error.getValue());
me.putValue("previousError", oldError.getValue());
me.response(ev, "calculator.jsp");

 }
 catch (Exception e) {
 System.err.println("Could not find response to: " +
 ev.orig.webapp_path +
 " exception:"+e);
 e.printStackTrace();

 false;
 }
 }
}

The only other code fragment of interest is theException that is triggered when thetry
statement fails. This can occur, for example, if the path to the JSP page specified in the
response is incorrect. In a deployed application, we would probably want to generate a user-
friendly error dialogue of some kind.

Tutorial example: simple calculator

WebBot Manual
Release 5.3
10-Jun-05 51
Copyright © 2001-2012, Agent Oriented Software Pty. Ltd.

4.7.5.3 SimpleJSPResponse plan

The SimpleJSPResponse plan is a cut-down version of FormResponse. It is triggered when the
page is loaded, and merely returns the current values of the four beliefset elements, result,
prevResult, error and prevError.

plan SimpleJSPResponse extends Plan {

 #handles event WebSessionRequest ev;
 #uses interface WebSessionAgent me;
 #reads data History history;

 body() {
 logical String result;
 logical String prevResult;
 logical String error;
 logical String prevError;
 try {
 history.get("result", result);
 history.get("prevResult", prevResult);
 history.get("error", error);
 history.get("prevError", prevError);
 me.putValue("currentResult", result.getValue());
 me.putValue("previousResult", prevResult.getValue());
 me.putValue("currentError", error.getValue());
 me.putValue("previousError", prevError.getValue());
 me.response(ev, ev.orig.webapp_path);
 }
 catch (Exception e) {
 System.err.println("Could not find JSP path: " +
 ev.orig.webapp_path);
 false;
 }
 }
}

4.8 Summary
This chapter presented a simple application of WebBot that combines the properties of
WebRequestHandler with those of WebSessionAgent into a single agent, DispatcherAgent.
This agent handles incoming WebRequest events and uses the createSessionRequest method
to create a WebSessionRequest events. This event triggers a response from the session agent.
Because the agent combines session-selection functionality with that of a session agent, the
WebSessionRequest is actually handled by the same agent, DispatcherAgent. The session
agent (DispatcherAgent) sets various result parameters in the response object and returns a
reference to the response page, calculator.jsp.

The next chapter will augment this example so that the dispatch functions and session
responses are handled by separate agents.

Tutorial example: simple calculator

WebBotManual
Release5.3

52 10-Jun-05
Copyright © 2001-2012, Agent Oriented Software Pty. Ltd.

Tutorial example: multiple sessions

WebBot Manual
Release 5.3
10-Jun-05 53
Copyright © 2001-2012, Agent Oriented Software Pty. Ltd.

5 Tutorial e xample: m ultiple sessions
5.1 Intr oduction
The simple four-function calculator example illustrated how to implement an agent that
responds to incoming HTTP requests. If you were to deploy the application, you would
quickly discover thatit doesnotdiscriminatebetweenusers.Thecalculatormaintainsasingle
history of results; all users would see the same history. This is unsatisfactory because each
usershouldseetheirown uniquecalculatorinteractionhistory, not themergedhistoryof all of
the users' calculations. Indeed, the user might have two browser windows open, each with a
separate history of arithmetic calculations. The server must maintain a unique interaction
thread for each window; this functionality is provided bysessions.

Sessions form part of the Servlet API. WebBot provides support for the implementation of
sessions through the provision of theWebSessionAgent andWebSessionRequest classes.

Although the Servlet API provides support for tracking sessions through the use ofcookies,
thismethodis fairly limited. For example,if theclientsessionoccurredonamachinewhich is
shared by others (e.g. in an internet cafe environment), then it is feasible for a new user to
come along and pick up the previous user's session. Another drawback of cookies is that they
restrictyou to onesessionperbrowser, i.e. if theusertriesto have two browserwindowsopen
accessing the servlet, they will map to the same session.

A safer method of tracking sessions is to use URL rewriting. In this approach, a session
identifier is stored in a hidden attribute on the web page. This is then written into the URL
before sending the HTTP request back to the server. This is the preferred method when using
WebBot. If you store the session id in the attribute "jsessionid", and arrange for that to be
included in the URL, then theWebPortal setup method will extract it and store it in the
parameter "id". WebPortal will also pick up the "referrerid" and store it in the parameter
"refid". This can be used to determine if the web page has a referrer, and so can be used in
mostcasesto preventsomeonefrom droppingin onasession(unlessof course,thepersonhas
written their own browser).

5.2 Overview of modifications f or sessions
As alludedto in theprevioussection,thesimplecalculatorexamplewill bemodifiedsothatit
can maintain a separate interaction thread for each calculator browser window instance. The
DispatcherAgent will be broken up into two separate types of agent: one which performs the
messagedispatchfunction,andanotherwhichmanagestheinteractionfor agivensession.The
formerwill still benamedDispatcherAgent andtherewill beonly onesuchagentinstancein
the application. The latter will be namedSessionCalculator and at any one time, there will
be as many instances as there are sessions.

Tutorial example: multiple sessions

WebBotManual
Release5.3

54 10-Jun-05
Copyright © 2001-2012, Agent Oriented Software Pty. Ltd.

5.3 Location of the multi-session tutorial example
The multi-session example can be found in thesessioncalc directory under theexamples
directory. The directory structure is very similar to that of the simple calculator example
(previous figure) and is shown in the figure below.

Figure 5-1: Directory Structure for the Multi-Session Calculator Example

5.4 Setting up the build and run scripts
The build and run scripts are largely unchanged from the previous simple calculator example.
The webapp.env should be the only file requiring modification. The updated file is shown
below.

Name of WebBot web application
WEBAPP_NAME=sessioncalc

Directory where you have installed JACK
JACK_HOME=$HOME/Agent_Software/

Directory where you are developing your WebBot web application
WEBAPP_DIR=$JACK_HOME/aos/jack/examples/calculator

Tutorial example: multiple sessions

WebBot Manual
Release 5.3
10-Jun-05 55
Copyright © 2001-2012, Agent Oriented Software Pty. Ltd.

5.5 Configuring the Ser vlet Container

5.5.1 Chang es to the web.xml file
The fileweb.xml requires that the<servlet-name> be altered to reference the multi-session
version of the calculator:

<servlet-name>sessioncalc</servlet-name>

Theremainingparametersneedto bechangedsothatcalculator is replacedby sessioncalc;

• servlet-mapping:Eachservletmappingdefinitionis delimitedby <servlet-mapping> and
</servlet-mapping>. The servlet mapping maps eachservlet-name to theurl-pattern
that invokes it. Thus, the servlet defined above (i.e.sessioncalc) will handle all requests
with a URL of the form*.jsp or *.webform.

 <servlet-mapping>
 <servlet-name>sessioncalc</servlet-name>
 <url-pattern>*.jsp</url-pattern>
 </servlet-mapping>

 <servlet-mapping>
 <servlet-name>sessioncalc</servlet-name>
 <url-pattern>*.webform</url-pattern>
 </servlet-mapping>

• The following parameter has been added so that the application can determine the type of
the session agent.

 <init-param><param-name>session-agent-type
 <!-- The type of the session handling agent. -->
 </param-name>
 <param-value>SessionCalculator
 </param-value>
 </init-param>

This completes the definition of the build and run scripts for the multi-session calculator
example.

5.6 Compiling and running the application
To compile and install the application, run themkwebapp script, as shown below:

cd $JACK_HOME/aos/jack/examples/calculator/
./installit.sh

To run the Servlet Container follow the steps below:

cd $JACK_HOME/aos/jack/examples/calculator/
./start.sh

Tutorial example: multiple sessions

WebBotManual
Release5.3

56 10-Jun-05
Copyright © 2001-2012, Agent Oriented Software Pty. Ltd.

Now run your browser (if it's not already running that is!) and point it to the URI:http://

localhost:8080/sessioncalc. This should bring up the calculator web page. Type a couple
of integers into the text fields and then click on one of the buttons (e.g.Add). The result will
appear in the Results Pane. To generate an error string, enter a zero into the righthand text
field, and click on theDivide button.

Open another browser window and point it to the same URI (i.e.http://localhost:8080/

sessioncalc). Perform some different calculations in each browser window and verify that
eachwindow displaysaseparatehistoryin theResultsPaneand/ortheErrorsPane.Whenyou
have finished, kill the Servlet Container by running thestop.sh script.

5.7 Creating a JSP file
Theeasiestway to createwebpageswith WebBotis to useJavaServerPages(JSP). Thefile,
$WEBAPP_DIR/web/calculator.java, is used to generate a web page when the server gets a
URI of the formsessioncalc/*.jsp or sessioncalc/*.webform. This file is generated from
the filecalculator.jsp. In keeping with the approach adopted for the calculator example in
thechaptertitled "TutorialExample:SimpleCalculator",theuseof include directivesreduces
theclutterin calculator.jsp. Theincludefileshavenamesof theform "tr-graphics-*.txt"
and "td-cells-*.txt".

The file,calculator.jsp, is very similar to the file,calculator.jsp, from the "Tutorial
Example: Simple Calculator" chapter. The changes pertain to the use of sessions, and are
shown below.

Recall that the main JSP file,calculator.jsp, will compile into the filecalculator.java. In
order to make use of the WebBot session facilities, this.java file needs to import the
WebSessionAgent package. The first scriptlet, below, does just that. The second scriptlet
declares an instance ofWebSessionAgent, and the third retrieves the session using
request.getsession().

<!-- The WebSessionAgent, me, is assigned using
 request.getSession(). -->
<%@ page import="aos.web.webbot.session.WebSessionAgent" %>
<%! public WebSessionAgent me; %>
<% me = (WebSessionAgent) request.getSession(); %>

Tutorial example: multiple sessions

WebBot Manual
Release 5.3
10-Jun-05 57
Copyright © 2001-2012, Agent Oriented Software Pty. Ltd.

TheGET action has been changed to referencesessioncalc rather thancalculator, but is
otherwise the same as that incalculator.jsp in the "Tutorial Example: Simple Calculator"
chapter. The subsequent scriptlet invokes the method,
WebSessionAgent.sessionFormMarkup(), on theWebSessionAgent instance,me.

<!-- When the user clicks on one of the submit buttons,
 the parameter/value pairs in the form are sent to the URI
 specified in the forms "action",
 i.e. "/sessioncalc/form.webform". -->
<form method="GET" action="/sessioncalc/form.webform">

<!-- The sessionFormMarkup method adds a "jsessionid"
 into the form. -->
<%=me.sessionFormMarkup()%>

As before,theform is sentto theserverusinganHTTP GET request. Thedataspecifiedin the
form is appendedto theURI foundin the"ACTION" attributeof theform,andis prefixedby a
"?". The form data will include thejsessionid added in by the
WebSessionAgent.sessionFormMarkup() method. For example, if the server URI is
"localhost:8007", the "ACTION" attribute is "/sessioncalc/form.webform", the
jsessionid is SessionCalc_1 and the form data contains two values "operand1=5" and
"operand2=6", then the URI would be: "http://localhost:8080/sessioncalc/
form.webform?jsessionid=SessionCalc_1&operand1=5&operand2=6". Additionally, the
attribute/valuesrepresentingthebuttonthatwaspressedwouldalsobeincluded,for example:
"add.x=58&add.y=28". Recall that INPUT elements of type "image" will submittwo
parameter/value pairs. The first parameter is of the form "name.x", and the second "name.y".
Thevaluesof theseparametersarethex andy window coordinatesof themousepointerwhen
themousebuttonwaspressed.Thesecoordinatesarenotusedin this tutorialexample.All the
session agent needs is an indication of which button was pressed.

5.8 DispatcherAgent agent
This agent takes on the role of theroot agent shown in Figure [give name]. The agent
definition is reproduced below. In contrast to the non-sessions example in the chapter titled
"Tutorial Example: Simple Calculator", this version ofDispatcherAgent does not extend
WebSessionAgent; this is because it is only responsible for session-selection and dispatch.
Managing an individual session is the responsibility of theSessionCalculator agent.

TheDispatcherAgent handles incomingWebRequests (specifically, WebDispatch events). Its
SelectSession planis usedto matchtherequestto anexistingsession.If theWebRequest does
not match an existing session, then the planDefaultRequestHandler creates a new session to
handle it and stores a reference to that agent in itsSessions beliefset. TheMonitorSession
plan kills off the session agent if it has been inactive for 10 minutes or more. Thehandle
method uses thecreateSessionRequest method to create aWebSessionRequest event that
then gets posted usingpostEventAndWait.

Tutorial example: multiple sessions

WebBotManual
Release5.3

58 10-Jun-05
Copyright © 2001-2012, Agent Oriented Software Pty. Ltd.

public agent DispatcherAgent extends Agent implements WebRequestHandler {

 #handles event WebDispatch;
 #posts event WebDispatch dispatch;
 #handles event SessionAccess;
 #uses plan MonitorSession;
 #uses plan SelectSession;
 #uses plan DefaultRequestHandler; // The SelectSession plan
 // takes precedence.

 #private data Sessions sessions(); // Beliefset of all sessions.

 public boolean handle(WebPortal p,
 HttpServletRequest q,
 HttpServletResponse r) {
 WebDispatch wd = dispatch.select(p, q, r);
 if (!postEventAndWait(wd))
 return false;
 if (wd.a == null)
 return false;
 WebSessionRequest wsr = wd.a.createSessionRequest(wd);
 return wd.a.postEventAndWait(wsr);
 }

 public DispatcherAgent(String name) {
 super(name);
 }
}

5.8.1 Dispatc herAg ent's plans
DispatcherAgent has three plans:DefaultRequestHandler, MonitorSession and
SelectSession.

5.8.1.1 DefaultRequestHandler Plan

This plan handles requests by creating a new session agent to forward the request to. The
WebPortal.getInitParameter method returns the agent type. The agent type is specified in
the fileweb.xml. The agent is given a unique name of the formSessionCalc_<n>. A new
session agent is created and stored inWebDispatch.a. The session is added to the sessions
beliefset as a tuple containing the agent name and theWebSessionAgent.

Tutorial example: multiple sessions

WebBot Manual
Release 5.3
10-Jun-05 59
Copyright © 2001-2012, Agent Oriented Software Pty. Ltd.

plan DefaultRequestHandler extends Plan {

 #handles event WebDispatch ev;

 static long count = 0;

 #modifies data Sessions sessions;
 #uses interface Agent self;

 body()
 {
 WebPortal p = (WebPortal) ev.servlet;
 String type = p.getInitParameter("session-agent-type");
 String name = "SessionCalc_" + (count++);
 type != null ;
 System.err.println("Creating agent " + type +
 " [" + name +"]");
 ev.a = (WebSessionAgent) Kernel.createAgent(type, name,
 null);
 sessions.assert(name, ev.a, self.timer.getTime());
 }
}

5.8.1.2 MonitorSession plan

Thisplanis triggeredwhenaSessionAccess eventis received.It looksupthesessionentryfor
the event,ev, and waits for 10 minutes. TheSelectSession plan updates the session's time
entrywhenaWebDispatch eventis receivedfor thesession.Effectively, theclockis resetevery
time there is activity from a session (i.e. when a new ev.id is asserted). This is because the
sessions.get(ev.id, a, ev.time) statementwill fail if thereis anew assertionfor thatkey.
If thesessions.get statementdoesnot fail, thenthesessionis removedfrom thebeliefsetand
the agent is destroyed via thefinish() method.

plan MonitorSession extends Plan {

 #handles event SessionAccess ev;

 #uses data Sessions sessions;

 body()
 {
 logical WebSessionAgent $agent;
 sessions.get(ev.id, $agent, ev.time);
 WebSessionAgent a = (WebSessionAgent) $agent.getValue() ;

 @waitFor(elapsed(600));

 sessions.get(ev.id, a, ev.time);
 sessions.remove(ev.id, a, ev.time);
 a.finish();
 }

}

Tutorial example: multiple sessions

WebBotManual
Release5.3

60 10-Jun-05
Copyright © 2001-2012, Agent Oriented Software Pty. Ltd.

5.8.1.3 SelectSession plan

This plan determines which WebSessionAgent to dispatch a WebSessionEvent to. This is
achieved by looking up the ev.id in the sessions beliefset. The session is re-asserted with a
new time signature (effectively resetting the session timeout clock).

plan SelectSession extends Plan {

 #handles event WebDispatch ev;

 static boolean relevant(WebDispatch ev) {
 return ev.id != null ;
 }

 #uses data Sessions sessions;
 #uses interface Agent self;

 logical WebSessionAgent $agent;
 logical long $access;

 context() {
 sessions.get(ev.id, $agent, $access);
 }

 body() {
 ev.a = (WebSessionAgent) $agent.getValue();
 long time = self.timer.getTime();
 sessions.assert(ev.id, ev.a, time);
 }
}

5.8.2 Dispatc herAg ent's e vents

5.8.2.1 SessionAccess.e vent file

This event is posted when a new session is added to the sessions beliefset (see
DispatcherAgent's BeliefSet (Sessions.bel)).

public event SessionAccess extends Event {

 public String id;
 public long time;

 #posted as
 access(String i,long t)
 {
 id = i;
 time = t;
 }
}

Tutorial example: multiple sessions

WebBot Manual
Release 5.3
10-Jun-05 61
Copyright © 2001-2012, Agent Oriented Software Pty. Ltd.

5.8.2.2 WebDispatc h.event file

This event is unchanged from that presented in the "Tutorial Example: Simple Calculator"
chapter. The WebRequest.setup method performs various essential setup operations internal to
WebBot.

public event WebDispatch extends WebRequest {

 public WebSessionAgent a;
 public Event e;

 #posted as
 select(WebPortal p, HttpServletRequest q,
 HttpServletResponse r) {
 setup(p, q, r);
 }
}

5.8.3 Dispatc herAg ent's BeliefSet (Sessions.bel)
This beliefset holds all of the active sessions. When there is activity on a session, a new
assertion is added to the Sessions beliefset by the plan, SelectSession.plan. This has the
side effect of posting a SessionAccess event via the newfact method. A given assertion is
removed when there has been no activity on its session for 10 minutes or more
(MonitorSession.plan).

public beliefset Sessions extends ClosedWorld {

 #key field String id;
 #value field WebSessionAgent agent;
 #value field long access;

 #indexed query get(String i, WebSessionAgent a, long x);
 #indexed query get(String i, logical WebSessionAgent a, long x);
 #indexed query get(String i, logical WebSessionAgent a,
 logical long x);

 #posts event SessionAccess sa;

 public void newfact(Tuple tx, BeliefState is, BeliefState was)
 {
 Sessions__Tuple t = (Sessions__Tuple) tx;
 postEvent(sa.access(t.id, t.access));
 }
}

Tutorial example: multiple sessions

WebBotManual
Release5.3

62 10-Jun-05
Copyright © 2001-2012, Agent Oriented Software Pty. Ltd.

5.9 SessionCalculator a gent
Thisagentis responsiblefor respondingto incomingrequests.It implementsthefunctionality
of the four-function calculator (previously embedded within theDispatcherAgent in the
"Tutorial Example: Simple Calculator" chapter).

public agent SessionCalculator extends WebSessionAgent {

 #handles event WebSessionRequest;

 #private data History history("history.ini");

 #uses plan FormResponse;
 #uses plan SimpleJSPResponse;

 public SessionCalculator(String name) {
 super(name);
 }
}

5.9.1 SessionCalculator's plans

5.9.1.1 The plan FormResponse

Apart from changing the response to referencesessioncalc/calculator.jsp, this plan is
unchanged from that presented in the chapter titled "Tutorial Example: Simple Calculator"

 me.response(ev, "sessioncalc/calculator.jsp");

5.9.1.2 SimpleJSPResponse plan

This plan is unchanged from that presented in the chapter , "Tutorial Example: Simple
Calculator"

5.9.2 SessionCalculator's BeliefSet

5.9.2.1 The BeliefSet History.bel

This beliefset definition is unchanged from that presented in the chapter , "Tutorial Example:
Simple Calculator". The only difference is that it is now a part of theSessionCalculator
agent instead of theDispatcherAgent that previously included the sessions functionality.

beliefset History extends OpenWorld {
 #key field String parameter;
 #value field String value;
 #indexed query get(String parameter, logical String value);
}

Tutorial example: multiple sessions

WebBot Manual
Release 5.3
10-Jun-05 63
Copyright © 2001-2012, Agent Oriented Software Pty. Ltd.

5.10 Summary
This chapter extended the simple calculator application from the chapter , "Tutorial Example:
Simple Calculator" so that it handles multiple sessions. The DispatcherAgent of the previous
chapter was divided into two separate agents, one implementing WebRequestHandler, the other
extending WebSessionAgent. The former agent (named DispatcherAgent) handles incoming
WebRequest events and uses the createSessionRequest method to create a
WebSessionRequest event. The WebSessionRequest event triggers a response from the session
agent, SessionCalculator. The session agent (DispatcherAgent) sets various result
parameters in the response object and returns a reference to the response page,
calculator.jsp.

Tutorial example: multiple sessions

WebBotManual
Release5.3

64 10-Jun-05
Copyright © 2001-2012, Agent Oriented Software Pty. Ltd.

WebBot Manual
Release 5.3
10-Jun-05 65
Copyright © 2001-2012, Agent Oriented Software Pty. Ltd.

Index

A
agent

autonomous 11
agent-oriented programming 11
ASP 11

C
cookies 20, 53
createSessionRequest method 18

D
doGet method 19
doPost method 19

G
GET

HTTP method 12

H
HTML form 12

I
init-param 39
installation

of WebBot 21

J
JACK 11
JACK WebBot

Architecture 15
description 11

JavaServer Pages 11, 12, 40, 56
jsessionid 19, 20, 53, 57
JSP 11, 12, 13, 17, 18, 19, 21, 25, 33, 40, 56

compilation 35, 39
compiler 11, 15, 16

L
lookupHandler method 19

N
ns 25

P
param-name

name 24, 39
nohandler 24, 39
noservice 24, 39
type 24, 39

PHP 11
port

IP 24
PUT

HTTP method 12

R
request

parameter 12
response

parameter 12
root agent 18, 26

S
scriptlet 11, 25, 56
service method 12
servlet 12

API 11, 12, 13, 21
container 12, 13, 15

servlet-class 24, 38
servlet-mapping 24, 38
servlet-name 24, 38
session

agent 18, 28
selection plan 18

Sessions 16, 20, 53
sessions 20, 53, 56, 58, 62

T
Tomcat 14

WebBotManual
Release5.3

66 10-Jun-05
Copyright © 2001-2012, Agent Oriented Software Pty. Ltd.

U
URI 12
URL pattern 16
URL rewriting 20, 53

W
WAR 32
Web Application Archive 32
web.xml 16, 18, 19, 21, 22, 23, 38, 44, 45,

48, 55, 58
WebBot

description 11
WebPortal 18, 19, 20, 25, 39, 45, 53
WebSessionAgent 19, 28
WebSessionRequest event 18

	1 Preface
	1.1 Intended audience
	1.2 Overview of this manual
	1.3 Typographical conventions
	1.4 Related reference material
	1.5 Further information

	2 The JACK WebBot architecture
	2.1 Purpose and functionality
	2.2 Prerequisite background information
	2.2.1 JACK
	2.2.2 Servlet API
	2.2.3 JavaServer Pages (JSP)
	2.2.4 Servlet Container

	2.3 Overview of the JACK WebBot Architecture
	2.3.1 The architecture of a JACK WebBot application
	2.3.1.1 Layer 1 – Servlet Container
	2.3.1.2 Layer 2 – JACK WebBot
	2.3.1.3 Layer 3 – the JACK application

	2.3.2 The dynamic behaviour of JACK WebBot applications
	2.3.2.1 Layer 1 – Servlet Container.
	2.3.2.2 Layers 2 and 3 – WebBot and the JACK application.

	2.3.3 JACK WebBot servlet
	2.3.3.1 Major JACK WebBot classes
	public class WebPortal extends HttpServlet
	public interface WebRequestHandler
	public class WebSessionAgent extends Agent implements HttpSession

	2.3.4 Sessions

	3 Developing and running JACK WebBot applications
	3.1 Installation instructions
	3.2 Typical Application Directory Structure
	3.3 Configuring the Servlet Container.
	3.3.1 Setting up web.xml
	3.3.1.1 The servlet element

	3.4 JSP and ancillary Servlet Container files
	3.5 JACK definitions
	3.5.1 Servlet and JACK WebBot classes to import
	3.5.2 Agent, plan and event definitions
	3.5.2.1 The root agent
	3.5.2.2 Session agent

	3.6 Building and running a JACK WebBot application

	4 Tutorial example: simple calculator
	4.1 Introduction
	4.2 Installing the tutorial example
	4.2.1 WAR! What is it good for?

	4.3 Setting up the build and run scripts
	4.3.1 The build scripts, mkwebapp and mkjsp
	4.3.1.1 The web application environment file, webapp.env
	4.3.1.2 The Servlet Container environment file, servlet.env
	4.3.1.3 Script file, mkwebapp
	4.3.1.4 Script file, mkjsp

	4.3.2 Web Archive creation script, mkwar
	4.3.3 Install script, installit.sh
	4.3.4 Start script, start.sh
	4.3.5 Stop script, stop.sh

	4.4 Compiling and running the application
	4.5 Configuring the Servlet Container
	4.5.1 Overview of web.xml
	4.5.1.1 Parameters used by WebBot

	4.6 Creating a JSP file
	4.7 Defining DispatcherAgent agent
	4.7.1 Imported classes
	4.7.2 The agent definition
	4.7.3 Events handled
	4.7.4 BeliefSet
	4.7.5 Plans
	4.7.5.1 SelectSession Plan
	4.7.5.2 FormResponse plan
	4.7.5.3 SimpleJSPResponse plan

	4.8 Summary

	5 Tutorial example: multiple sessions
	5.1 Introduction
	5.2 Overview of modifications for sessions
	5.3 Location of the multi-session tutorial example
	5.4 Setting up the build and run scripts
	5.5 Configuring the Servlet Container
	5.5.1 Changes to the web.xml file

	5.6 Compiling and running the application
	5.7 Creating a JSP file
	5.8 DispatcherAgent agent
	5.8.1 DispatcherAgent's plans
	5.8.1.1 DefaultRequestHandler Plan
	5.8.1.2 MonitorSession plan
	5.8.1.3 SelectSession plan

	5.8.2 DispatcherAgent's events
	5.8.2.1 SessionAccess.event file
	5.8.2.2 WebDispatch.event file

	5.8.3 DispatcherAgent's BeliefSet (Sessions.bel)

	5.9 SessionCalculator agent
	5.9.1 SessionCalculator's plans
	5.9.1.1 The plan FormResponse
	5.9.1.2 SimpleJSPResponse plan

	5.9.2 SessionCalculator's BeliefSet
	5.9.2.1 The BeliefSet History.bel

	5.10 Summary

	Index

