
 www.agentlink.org1

Article

Introduction

Intelligent Agents are being used for
modelling simple rational behaviours in a
wide range of distributed applications.
Intelligent agents have received various,
if not contradictory, definitions; by general
consensus, they must show some degree
of autonomy, social ability, and combine
pro-active and reactive behaviour [5].
One of the better known and most
successful architectures for agents is the
so-called BDI (Belief-Desire-Intention)
architecture, which has seen a number of
academic and industrial applications.

Agent Oriented Software Pty. Ltd. (AOS),
based in Melbourne, Australia, has built
JACK Intelligent AgentsTM, a framework in
Java for multi-agent system development.
The company’s aim is to provide a
platform for commercial, industrial and
research applications. To this end, its
framework supplies a high performance,
light-weight implementation of the BDI
architecture, and can be easily extended
to support different agent models or
specific application requirements.

This paper is organised as follows.
Section 2 introduces JACK Intelligent
Agents, presenting the approach taken by
AOS to its design and outlining its major
engineering characteristics. The BDI
model is discussed briefly in Section 3.
Section 4 gives an outline of how to build
an application with JACK Intelligent
Agents. Finally, in Section 5 we discuss
how the use of this framework can be
beneficial to both engineers and re-
searchers. For brevity, we will refer to
JACK Intelligent Agents simply as
“JACK”.

The JACK Approach

Major design goals for JACK were: to
provide developers with a robust, stable,
light-weight product; to satisfy a variety of
practical application needs; to ease
technology transfer from research to
industry; and to enable further applied
research. It has been designed for
extension by properly trained engineers,
familiar with agent concepts and with a

sound understanding of concurrent
object-oriented programming.

Whilst applications can be built from the
ground up adopting an agent oriented
methodology and an appropriate frame-
work, most organisations already
possess and depend upon large legacy
software systems. Thus, JACK agents
have been designed mainly for use as
components of larger environments.
Consequently, an agent must coexist and
be visible as simply another object by
non-agent software. Conversely, a JACK
programmer must be allowed to easily
access any other component of a system.
Type safeness when accessing data,
reliability and support for a proper
engineering process are then key
requirements in this kind of environment.

For similar reasons, JACK agents are not
bound to any specific agent communica-
tions language. Nothing prevents the
adoption of high-level symbolic protocol a
la KQML, possibly by integrating software
already existing in the public domain.
However, JACK has been geared towards
industrial object-oriented middleware
(such as CORBA) and message passing
infrastructures (for instance, PVM or DIS
in simulation environments). In addition,
JACK provides a native light-weight
communications infrastructure for
situations where high performance is
required.

Overview of the JACK
framework

From an engineering perspective, JACK
consists of architecture-independent
facilities, plus a set of plug-in compo-
nents that address the requirements of
specific agent architectures. The plug-ins
supplied with version 1.2, released at the
end of October 1998, include support for
the BDI model.

To an application programmer, JACK
currently consists of three main exten-
sions to Java. The first is a set of syntac-

JACK Intelligent Agents -
Components for Intelligent Agents in Java
Paolo Busetta, Ralph Rönnquist, Andrew Hodgson, and Andrew Lucas
Agent Oriented Software Pty. Ltd., Melbourne, Australia
{paolo,ralph,ash,cal}@agent-software.com.au

ntelligent Agents are being used for modelling simple rational behaviours in a
wide range of distributed applications. In particular, multi-agent architectures

based on the Belief-Desire-Intention model have been used successfully in situa-
tions where modelling of human reasoning and team behaviour are needed, such as
simulating tactical decision-making in air operations and command and control
structures. Other applications include intelligent decision support, telephone call
centres, and air traffic management.

The JACK Intelligent AgentsTM framework by Agent Oriented Software brings the
concept of intelligent agents into the mainstream of commercial software engineer-
ing and Java. JACK Intelligent Agents is a third generation agent framework,
designed as a set of light-weight components with high performance and strong
data typing.

We present the design approach and major technical characteristics of JACK
Intelligent Agents. An outline of a typical development process involving the frame-
work is given. Also, we discuss the benefits of the component-based approach, both
for the software engineer developing sophisticated distributed applications, and for
the researcher exploring agent models and architectures.

II

 www.agentlink.org 2

tical additions to its host language. These
additions, in turn, can be divided as
follows:

• a small number of keywords for the
identification of the main components of
an agent (such as agent, plan and
event);

• a set of statements for the declaration of
attributes and other characteristics of
the components (for instance, the
information contained in beliefs or
carried by events). All attributes are
strongly typed;

• a set of statements for the definition of
static relationships (for instance, which
plans can be adopted to react to a
certain event);

• a set of statements for the manipulation
of an agent’s state (for instance,
additions of new goals or sub-goals to
be achieved, changes of beliefs,
interaction with other agents).

Furthermore, the programmer can use
Java statements within the components
of an agent.

For the convenience of programmers, in
particular those with a background in AI,
JACK also supports logical variables and
cursors. These are particularly helpful
when querying the state of an agent’s
beliefs. Their semantics is mid-way
between logic programming languages
(with the addition of type checking Java
style) and embedded SQL.

The second extension to Java is a
compiler that converts the syntactic
additions described above into pure Java
classes and statements that can be
loaded with, and be called by, other Java
code. The compiler also partially trans-
forms the code of plans in order to obtain
the correct semantics of the BDI architec-
ture.

Finally, a set of classes (called the
kernel) provides the required run-time
support to the generated code. This
includes:

• the automatic management of
concurrency among tasks being
pursued in parallel (intentions in the BDI
terminology);

• the default behaviour of the agent in
reaction to events, failure of actions and
tasks, and so on; and

• a native light-weight, high performance
communications infrastructure for multi-
agent applications.

Importantly, the JACK kernel supports
multiple agents within a single process.
This is particularly convenient for saving
system resources. For instance, agents
that perform only short computations or
share most of their code or data can be
grouped together.

A JACK programmer can extend or
change the architecture of an agent by
providing new plug-ins. In most cases,
this simply means to override the default
Java methods provided by the kernel or
supply new classes for run-time support.
However, it is possible to add further
syntactic extensions to be handled by the
JACK compiler. Similarly, a different
communications infrastructure can be
supplied by overriding the appropriate
run-time methods. Future versions of
JACK will extend the base BDI model with
new plug-ins and will add a number of
development and monitoring tools.

Belief-Desire-Intention
Agents

The BDI agent model supported by JACK
v1.2 has its roots in philosophy and
cognitive science, and in particular in the
work of Bratman on rational agents [1]. A
rational agent has bounded resources,
limited understanding and incomplete
knowledge of what happens in the
environment it lives. Such an agent has
beliefs about the world and desires to
satisfy, driving it to form intentions to act.
An intention is a commitment to perform
a plan. In general, a plan is only partially
specified at the time of its formulation
since the exact steps to be performed
may depend on the state of the environ-
ment when they are eventually executed.
The activity of a rational agent consists of
performing the actions that it intended to
execute without any further reasoning,
until it is forced to a revision of its own
intentions by changes to its beliefs or
desires. Beliefs, desires and intentions
are called mental attitudes (or mental
states) of an agent.

Observe that BDI agents depart from
purely deductive systems and other
traditional AI models because of the
concept of intentionality, which signifi-
cantly reduces the extent of deliberation
required. BDI has demonstrated to be
well suited to modelling certain types of
behaviour, such as the application of
standard operational procedures by
trained staff. It has been successfully
adopted in fields as diverse as simulation
of military tactics, application of business

rules in workflows, and diagnostics in
telecommunication networks.

Based on previous research and practical
application, Rao and Georgeff [4] have
described a computational model for a
generic software system implementing a
BDI agent. Such a system is an example
of event-driven programs. In reaction to
an event, for instance a change in the
environment or its own beliefs, a BDI
agent adopts a plan as one of its inten-
tions. Plans are precompiled procedures
that depend on a set of conditions for
being applicable. The process of adopting
a plan as one of the agent’s intentions
may require a selection among multiple
candidates.

The agent executes the steps of the plans
that it has adopted as intentions until
further deliberation is required; this may
happen because of new events or the
failure or successful conclusion of
existing intentions. A step of a plan can
consist of adding a goal (that is, a desire
to achieve a certain objective) to the
agent itself, changing its beliefs, interact-
ing with other agents, and any other
atomic action on the agent’s own state or
the external world.

The abstract BDI architecture has been
implemented in a number of systems. Of
these, two are of particular relevance to
JACK since they represent its immediate
predecessors. The first generation is
typified by the Procedural Reasoning
System (PRS) [2], developed by SRI
International in the mid ’80s. dMARS [3],
built in the mid ’90s by the Australian
Artificial Intelligence Institute in Mel-
bourne, Australia, is a second generation
system. dMARS has been used as
development platform for a number of
technology demonstrator applications,
including simulations of tactical decision-
making in air operations and air traffic
management.

Application development
with JACK

In an ideal setting, a developer building
an application with JACK should start by
identifying the distributed components of
the system. The design of a multi-agent
application requires a sound understand-
ing of distributed system development
and distributed AI principles that we
cannot discuss here. However, observe
that in practical situations the decision as
to how to distribute functionality may be
dictated by a number of external con-

 www.agentlink.org3

straints, such as the existence of legacy
systems or a specific communications
infrastructure.

For this discussion, let us assume that
the functionality that has to be provided
by an agent has been identified and that
the BDI model has been chosen. At this
stage, two main activities that have to be
performed are (not necessarily in the
order given below):

• identifying the elementary classes (that
is, abstract data types and the operation
allowed on them) that are required to
manipulate the resources used by the
agent. These could be external (rela-
tional databases, the Internet, the arms
of a robot, a GUI and so on) as well as
internal (for instance, specific math-
ematical data structures to represent
financial or spatial information);

• identifying those elements that consti-
tute the mental states of the agent. This
boils down to finding:

- which external events drive the agent
(including messages from other
agents);

- which goals the agent can set for
itself;

- which beliefs influence the adoption of
plans; and finally

- the procedures (that is, the plans in
BDI terms) required to accomplish
tasks, achieve goals and react to
events in the various possible con-
texts.

The implementation of an agent is then a
mix of normal Java code for the elemen-
tary classes and extended Java for the
agent-specific components. The plans of
a JACK agent are, in general, sequences
of operations on elementary objects,
manipulations of the mental states (e.g.,
submitting sub-goals or changing beliefs)
and interactions with other agents.

Observe that a JACK plan could be
represented as procedural logic in a flow
diagram, state diagram, coordination
diagram or other similar notations in an
object-oriented methodology such as
UML. This is to say that JACK could be
used as an extended object-oriented
framework supporting event driven and
procedural logic in a concurrent execution
environment, with the additional benefits
of sensitivity to the context and sophisti-
cated management of failure provided by
the BDI architecture.

An example

To give a sample of the code of a JACK
agent, we have extracted an example
from one of the tutorials that are part of
the version 1.2 user manual. The purpose
is not to show agent programming but to
illustrate how JACK code looks as a
straightforward Java extension. This
section can be passed over by those not
familiar with Java.

This example has agents that “ping” each
other, that is, exchange empty messages.
The message being exchanged is
represented as an event which is origi-
nated by an agent and notified to another:

 event PingEvent extends MessageEvent {

 int value;

 #posted as ping(int value)

 {

 this.value = value;

 }

 }

Note the “event” keyword, in place of
“class” in Java. The event is also declared
“MessageEvent”, which means that it can
be notified to another agent; this drives
JACK to bring in all the required commu-
nications support. The #posted as
statement declares how the event is
generated (in this case, by invoking a
Java method “ping()” with one integer
parameter).

The following plan handles the notification
of the event above and replies to its
sender by “bouncing” the event back. This
simple example is not sensitive to the
context, i.e., there is no restriction on the
state of the beliefs of the agent for its
applicability.

plan BouncingPlan extends Plan {

 #handles event PingEvent pev;

 #sends event PingEvent pev;

 body()

 {

@send (ev.from, pev.ping(ev.value + 1));

 /// Reply to the sender of the event

 }

 }

A trivial “ping agent” is defined below. It
has a single plan and handles a single
event. When its method “ping (String
other)” is called, it notifies the PingEvent
with value 1 to the agent called “other”. If
the latter is another PingAgent, then
BouncingPlan above is invoked, a

PingEvent with value 2 is sent back, and
so on to infinity.

agent PingAgent extends Agent {

 #handles event PingEvent;

 #uses plan PingPlan;

 #posts event PingEvent pev;

 void ping (String other)

 {

 send(other, pev.ping(1));

 }

 }

The application can instantiate as many
PingAgent agents it desires. The name of
the agents and their network addresses
are determined by the communications
mechanism in use; as said before, JACK
provides a high performance messaging
system with a simple naming scheme.

Benefits of JACK

The approach taken by JACK has a
number of advantages in comparison with
both other agent frameworks coming from
the artificial intelligence world and
standard object-oriented architectures.

The adoption of Java guarantees a widely
available, well-supported execution
environment. In addition to the promises
of the language (summarised by the well
known slogan “compile once, run every-
where” by Sun Microsystems), we expect
that an increasing number of software
components, tools and trained engineers
will be available in the next few years.

To the AI researcher, the adoption of an
imperative, relatively low-level language
such as Java means losing some of the
expressive power offered by frameworks
based on logic or functional languages.
However this is compensated, not only by
the universal availability mentioned
above, but also by the modular approach
of JACK. As said in the previous sections,
most components of the framework can
be tuned and tailored. This makes JACK
particularly suited to experimentation with
new agent architectures in order to try
outnew functionality (new mental atti-
tudes, different semantics, additional
types of knowledge bases, and so on) or
to study performance characteristics in
specific contexts.

Moreover, when compared with frame-
works based on traditional AI languages,
JACK has distinctive advantages due to a
proper utilisation of the intrinsic charac-

 www.agentlink.org 4

teristics of Java. The most important is
strong typing, which reduces the chances
of programming errors introduced by
simple mis-typing. It also provides a very
basic version control by making sure that
interfaces are compatible at run-time.
Next is performance, which makes the
execution speed of agent code written in
JACK comparable to a direct implementa-
tion in C or C++.

For the engineer developing a sophisti-
cated distributed application, JACK offers
several interesting aspects; for instance:

• an efficient way to express high level
procedural logic within an object-
oriented environment.

This also helps in rapid application
development by allowing a clear
distinction between abstract data types
and their operations on the one side
and, on the other side, application-
specific behaviour requiring fine-tuning
or evolution when the system is already
operational. While the former should be
based on high performance, well tested,
highly reusable and ultimately expen-
sive code, the latter is better expressed
as plans which can be easily modified;

• the context sensitivity and sophisticated
semantics of mental attitudes of the BDI
architecture.

This characteristics enable some levels
of adaptability to changing conditions;

• ease of integration with legacy systems.

This enables, among other things, an
incremental approach to distributed
system development.

When compared with frameworks
originating from research environments,
JACK has the clear advantages of being
light-weight, of industrial strength and
accessible to a large community of
engineers trained in object-oriented
programming.

Conclusions

JACK Intelligent Agents is a multi-agent
framework that extends the Java lan-
guage. The current version supports the
BDI model, and its modularity enables
extensions and different models to be
easily supported.

JACK is an industry-strength product,
providing a framework that takes a
solution founded in artificial intelligence
research into practical use. Compared
with its “predecessors”, e.g., the PRS and
dMARS systems mentioned above and

other similar agent frameworks available
in the academic world, JACK is not a
“pure” AI system. Instead, it constitutes a
successful marriage between the vision
of agent research and the needs of
software engineering, bringing the power
of agent technology and enriching the
host language, Java.

We are confident that JACK will provide
benefits both to the software engineer
developing distributed systems and to the
academic researcher.

Acknowledgements

The authors would like to thank Prof.
Ramamohanarao Kotagiri of the Univer-
sity of Melbourne for his valuable
suggestions.

References

[1] M. E. Bratman, Intention, Plans, and
Practical Reasoning, Harvard University
Press, Cambridge, MA (USA), 1987.

[2] M. P. Georgeff and F. F. Ingrand,
“Decision - Making in an embedded
reasoning system”, Proceedings of the
International Joint Conference on
Artificial Intelligence, Detroit, MI (USA),
1989.

[3] M. d’Inverno, D. Kinny, M. Luck, M.
Wooldridge, “A Formal Specification of
dMARS”, INTELLIGENT AGENTS IV:
Agent Theories, Architectures, and
Languages, M. Singh, M. Wooldridge, and
A. Rao (editors), LNAI 1365, Springer-
Verlag, 1998.

[4] A. S. Rao and M. P. Georgeff, “An
Abstract Architecture for Rational
Agents”, Proceedings of the Third
International Conference on Principles of
Knowledge Representation and Reason-
ing (KR’92), C. Rich, W. Swartout and B.
Nebel (editors), Morgan Kaufmann
Publishers, 1992.

[5] M. Wooldridge and N. R. Jennings,
“Intelligent Agents: Theory and Practice,
The Knowledge Engineering Review, vol.
10, no 12, pp 115-152, 1995.

http://www.agent-software.com.au
(c) Copyright 1998, Agent Oriented
Software Pty. Ltd.

